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Abstract

This thesis studies spin glasses, disordered complex systems originating in statistical physics. Such
systems model optimization, sampling, and inference problems from probability and statistics, which are
of fundamental importance to modern data science. In particular, spin glasses provide natural examples
of random, high-dimensional, and often highly non-convex cost or log-likelihood functions, making them
an excellent testing ground for such questions.

Part I of this thesis studies statistical properties of these models. Chapter 2 identifies the storage
capacity of the Ising perceptron, a simple model of a neural network, subject to a numerical condition.
This gives a conditional proof of a 1989 conjecture of Krauth and Mézard. Chapter 3 gives a new proof
of the celebrated Parisi formula for the free energy of the spherical mean-field spin glass, which was first
proved by Talagrand and in more generality by Panchenko. Our proof takes a simpler modular approach,
drawing on recent advances in spin glass free energy landscapes due to Subag. Chapter 4 characterizes
the topology trivialization phase transition of multi-species spherical spin glasses and shows that low-
temperature Langevin dynamics finds the ground state in the topologically trivial regime; the latter
result is new even in the single-species setting.

Part II of this thesis concerns algorithms for optimization and sampling problems on spin glasses.
Chapter 5 studies the problem of optimizing the Hamiltonian of a multi-species spherical spin glass.
Our main result exactly characterizes the maximum value attainable by a class of algorithms that are
suitably Lipschitz in the disorder. This class includes gradient-based algorithms and Langevin dynamics
on constant time scales, and in particular includes the best algorithm known for this problem. This
chapter is part of a series of works where we establish exact algorithmic thresholds using the branching
overlap gap property (OGP), a landscape property introduced in our earlier work (which appears in
our S.M. thesis). In this chapter, we develop a more robust way to establish the branching OGP that
does not require Guerra’s interpolation; this allows our method to be applied to models well beyond the
(single-species) mean-field spin glass we previously considered.

Chapters 6 and 7 study sampling from the Gibbs measure of a spherical mean-field spin glass. Chap-
ter 6 develops a sampling algorithm based on simulating Eldan’s stochastic localization scheme, while
Chapter 7 analyzes simulated annealing of Langevin dynamics. We prove both algorithms succeed
for inverse temperatures up to a stochastic localization threshold. Chapter 6 gives the first stochas-
tic localization-based sampler with a guarantee of vanishing total variation error, improving on earlier
algorithms with vanishing Wasserstein error. Chapter 7 provides the first provable guarantees for a
Markov chain in this model beyond the uniqueness threshold, where mixing from worst-case initialization
is provably slow.
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Chapter 1

Introduction

This thesis studies spin glasses, models of random complex systems originating in statistical physics. These
models were first introduced in the 1970s to model certain disordered magnetic materials [EA75, SK75].
Since then, the mathematical study of these models has led to wide-ranging applications in computer science,
statistics, and beyond.

Concretely, a spin glass is described by a random Hamiltonian H : Ω→ R over a high-dimensional state
space Ω ⊆ RN (common choices are SN =

√
NSN−1 or ΣN = {±1}N ), which can be interpreted as a high-

dimensional objective function. The associated Gibbs measure µ(x) ∝ eH(x) is likewise a natural random
probability distribution. These notions of random function and distribution are useful to many applications:

• In Bayesian inference, one aims to estimate an unknown parameter x given some noisy observations A.
In such settings, µ models the posterior distribution L(x|A), which is a random distribution because
A is random. Applications of this perspective include community detection [DKMZ11, Moo17, Abb18],
error-correcting codes [RU08], and compressed sensing [ZK16]; see [ABDM23] for a survey treatment.

• The Hamiltonian H models an objective function generated from random data. These arise
in many applications in statistics and machine learning, for example as the objective in variational
inference or the loss function of a neural network [CHM+15, GGLZ23].

• In a complex system, small elementary components interact in a local manner, giving rise to inter-
esting emergent global behaviors. Here, H models an energy function whose terms describe which
local configurations are favored or disfavored. Applications include protein folding [BW87, RMS+21],
flocking birds [BCG+12], ecology [MGA23], and economics [BMN23].

All in all, spin glasses are a natural testing ground for random, high-dimensional optimization, sam-
pling, and inference problems at the heart of modern data science. This thesis will study these models
through the following questions.

• (Statics) What are the values of key statistical properties of a spin glass, such as the free energy or
satisfiability threshold? What is the structure of the energy landscape?

• (Algorithms) What are the optimal efficient algorithms for optimization and sampling problems over
random, highly non-convex landscapes? On the other hand, when are such problems intractable?

A recurring theme of this thesis is that these questions are deeply intertwined: algorithms can give proofs of
statistical properties, and statistical insights on solution geometry can inform algorithm design. In the rest
of this introductory chapter, we summarize the key ideas from each work appearing in this thesis.

1.1 Statics

Part I of this thesis studies three problems in statics. A common thread in these works is to use modern
algorithmic ideas to make progress on statics problems.
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1.1.1 Capacity threshold of Ising perceptron

Chapter 2 is based on the paper [Hua24], which appeared in FOCS 2024 as the Best Student Paper.
The Ising perceptron is a defined as the intersection of a high-dimensional discrete cube with random

half-spaces. Formally, for ΣN = {±1}N and i.i.d. gaussian vectors g1, . . . , gM ∼ N (0, IN ), the solution set
of this model is defined by

S = {x ∈ ΣN : 〈ga,x〉 ≥ 0 ∀1 ≤ a ≤M} . (1.1)

This is a simple model of a neural network: S represents the set of synaptic weights that memorize M
random patterns g1, . . . , gM . We let M = bαNc for constraint density α, and study the following problem.

Problem 1.1.1 (Capacity problem). Determine (if it exists) the critical constraint density α? such that

lim
N→∞

P(S 6= ∅) =

{
1 α < α?,

0 α > α?.

This critical α? is known as the capacity threshold, and models the maximum number of patterns per
synapse that this neural network can memorize.

Using non-rigorous statistical physics techniques, Krauth and Mézard [KM89] conjectured an explicit
value of α?, which is approximately 0.833. Ding and Sun [DS18] showed that this value is a lower bound on
the capacity, under a numerical condition that an explicit univariate function is nonpositive.1 In Chapter 2,
we show the matching upper bound, under a numerical condition that an explicit bivariate function (plotted
in Figure 2.1) is nonpositive. This gives a conditional proof of Krauth and Mézard’s conjecture.

Furthermore, one may define a more general perceptron model with margin parameter κ ∈ R by

S =

{
x ∈ ΣN :

〈ga,x〉√
N
≥ κ ∀1 ≤ a ≤M

}
.

Both our result and that of [DS18] hold for this model as well, and together confirm an analogous capacity
prediction α?(κ) under several further numerical conditions depending on κ.

Ideas of the proof. One strategy to try to locate the capacity threshold is the first and second moment
method: if E[|S|]� 1, then S is empty with high probability, and if E[|S|2] � E[|S|]2, then S is nonempty with
positive probability. If these estimates hold for respectively all α > α? and all α < α?, this shows the capacity
is α?. This strategy identifies the capacity threshold in the symmetric Ising perceptron [APZ19, PX21,
ALS22b], a closely related model where the constraints take the form |〈ga,x〉|/

√
N ≤ κ. Unfortunately, this

direct approach does not work in our model (1.1), as E[|S|] = 2N−M only is vanishing for α > 1, which does
not locate the true threshold α? ≈ 0.833. This demonstrates that the first moment is dominated by rare
events and does not capture the model’s typical behavior.

The main idea of both the paper of Ding and Sun [DS18] and our work is to work with a distribution
similar to the true one, on which the first and second moment method succeeds. The choice of distribution
is motivated by the TAP heuristic [TAP77] from physics: let G ∈ RM×N be the matrix whose rows are
g1, . . . , gM , and for m ∈ RN , n ∈ RM , define the TAP equation

n = Ḟ

(
Gm√
N
− b(m)n

)
, m = F̂

(
G>n√
N
− d(m,n)n

)
. (1.2)

Here, Ḟ , F̂ : R → R are explicit nonlinearities (applied coordinate-wise) and b, d are explicit scalar-valued
functions. The TAP heuristic predicts that for a typical realization of G, there is a unique solution (m,n),
and furthermore provides a predicted distribution for (m,n).

This leads to a wishful calculation: consider a planted model where we sample (m,n) from its predicted
distribution, and then G conditional on satisfying (1.2). If the TAP heuristic is true, the distribution of G
sampled from the planted model should approximate the true model. Indeed, we may think of (m,n) as

1The result of [DS18] states that for α < α?, S 6= ∅ with positive probability, i.e. lim infN→∞ P(S 6= ∅) > 0. The subsequent
works [Xu21, NS23] showed that this model has a sharp threshold sequence, which improves this guarantee to high probability.
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a function of G, and interpret the planted model as first sampling (m,n) from its distribution, and then
sampling G to be consistent with (m,n). Moreover, one can calculate that in the planted model, the first
and second moment method conditional on a typical realization of (m,n) locates the exact capacity
threshold α? (assuming our and [DS18]’s numerical conditions, which encode these moment computations).
That is, conditioning on (m,n) removes the rare events that dominated E[|S|] in the direct moment method,
and allows the moment method to succeed.

However, this wishful calculation does not mean anything unless we can rigorously link the planted model
to the true model, and this is the main difficulty of this problem. In [DS18], this calculation instead enters in
a motivational role; their rigorous argument constructs a truncation of |S| that weaves in the TAP heuristic,
and carries out the first and second moment method on this random variable. This truncation is the reason
their approach gives a lower bound. Our work shows that the true and planted models are contiguous in a
suitable sense, so that the wishful calculation implies the capacity threshold in the true model.

We show this contiguity by proving a version of the TAP heuristic: for a typical realization of G from
the true model, there exists a unique solution (m,n) to (1.2) in a certain region S ⊆ RN × RM (on which
the predicted distribution of (m,n) concentrates) with high probability. Existence is proven algorithmically,
by showing that the approximate message passing (AMP) iteration [Bol14, BM11] finds a TAP fixed point.
Uniqueness is shown by a new double-counting argument, which is the crux of this work. We show that in
the planted model, the same AMP iteration with high probability finds the planted point (m,n). Since
any realization of G with multiple TAP fixed points can arise in the planted model with any of these TAP
fixed points as the planted one, such G cannot occur in the true model with non-vanishing probability.

Finally, we mention that this strategy of showing contiguity with a model with planted TAP fixed point
also appears as a key technical step in Chapters 6 and 7, on sampling from a spin glass’s Gibbs measure. This
strategy first appeared in the work in Chapter 6, though the contiguity is proved in a different way and used
for a different purpose. The connections between these works are explained in detail in Subsections 1.2.2,
2.2.2 and 7.7.1.

1.1.2 Constructive proof of spherical Parisi formula

Chapter 3 is based on the paper [HS23b], which is joint work with Mark Sellke and is submitted for publi-
cation.

Let γ1, . . . , γP ≥ 0 be a fixed sequence of model parameters, which we encode in the mixture function
ξ(s) =

∑P
p=1 γ

2
ps
p. The mean-field spin glass Hamiltonian is the random function HN : RN → R defined by

HN (σ) =

P∑
p=1

γp
N (p−1)/2

N∑
i1,...,ip=1

gi1,...,ipσi1 · · ·σip , gi1,...,ip
i.i.d.∼ N (0, 1). (1.3)

Equivalently, this is the gaussian process on RN with covariance

EHN (σ)HN (ρ) = Nξ(〈σ,ρ〉/N) .

We consider the domain of HN to be either SN =
√
NSN−1 or ΣN = {±1}N (spherical or Ising spins). In

the spherical case, we define the free energy of this model to be

FN = log

∫
eHN (σ) dµ0(σ) ,

where µ0 is the uniform Haar measure on SN . In the Ising case the only difference is that µ0 is the counting
measure on ΣN . A central problem in spin glass theory is the following.

Problem 1.1.2. Determine the in-probability limit F = p-limN→∞ FN/N .

In [Par79], Parisi gave a prediction for the limiting free energy based on his groundbreaking replica
symmetry breaking ansatz. This formula takes the form of an infinite-dimensional variational problem:

p-lim
N→∞

FN
N

= P(ξ) ≡ inf
ζ∈P([0,1])

P(ζ; ξ) . (1.4)

13



Here P([0, 1]) denotes the set of Borel probability measures on [0, 1], and P is a certain Parisi functional.
After decades of progress in the probability and statistical physics communities [MPS+84a, MPV87,

Rue87, GG98, ASS03, Gue03], this formula was famously proved by Talagrand [Tal06b], and in more gen-
erality by Panchenko [Pan13a]. In Chapter 3, we give a new and simpler proof of the (more difficult) lower
bound in the Parisi formula for spherical models.

Proof ideas. Our proof takes a new view of the ultrametricity prediction [MPS+84a] at the heart of physi-
cists’ understanding of this model, which states that the Gibbs measure µ(dσ) ∝ eH(x)µ0(dσ) concentrates
on a hierarchy of clusters within clusters (and therefore the dominant contribution to FN comes from such
a set). For the spherical spin glass, this means that the Gibbs measure concentrates on a union of spherical
caps (“pure states”), whose centers are the leaves of an ultrametric, orthogonally-branching tree in RN . The
tree’s ancestor nodes represent recursive cluster centers located inside the sphere.

Moreover, it is predicted that this tree branches precisely at radii r ∈ [0,
√
N ] whose corresponding

self-overlap R = r2/N lies in the support of the minimizer ζ∗ to the Parisi formula (1.4). In other words,
ζ∗ specifies the tree’s shape, by specifying the set of radii where this tree branches; see Figure 1.1 for an
illustration. In general ζ∗ can be discrete (“finite RSB”), continuous (“full RSB”), or an interleaving of these
behaviors, and the ultrametric tree is correspondingly complex.

• q

ζ∗(q)

1

1

=⇒
cluster

pure state

Figure 1.1: Cumulative distribution function of a Parisi measure ζ∗ and its corresponding ultrametric tree.
If ζ∗ has a continuous part, the tree “branches continuously” in the limit.

Panchenko’s celebrated work [Pan13a] proved the Parisi ultrametricity conjecture, which leads to one
proof of the Parisi formula. In our proof, ultrametricity is not a derived consequence, but a starting point:
we construct a set of spherical caps arranged according to Parisi’s ansatz, each with free energy given by the
Parisi formula. This witnesses the lower bound.

Our approach begins with the minimizer ζ∗ of the Parisi formula; note that existence and uniqueness
of this measure is a fact about the Parisi variational problem, which a priori says nothing about the free
energy. We then construct a tree that branches precisely at the radii specified by ζ∗, starting at the origin and
proceeding outwards “layer by layer.” A key ingredient of this proof strategy is the uniform concentration
lemma introduced in [Sub24]. This lemma implies that even though any node x ∈ RN of the tree we construct
depends on HN in a complicated way, the restriction of HN to a codimension-1 orthogonal band passing
through x resembles a (rescaled) spherical spin glass in one fewer dimension. As a result, constructing the
children of an internal node x of the tree amounts to understanding a smaller spin glass’s ground state
energy. Similarly, computing the free energy of the pure state around a leaf x amounts to determining a
smaller spin glass’s free energy.

All in all, this results in a modular proof strategy, where the main task is to understand the free energy
or ground state energy of several smaller spin glasses. The benefit of this decomposition is that each of the
smaller spin glasses is simple: whereas the ζ∗ of the original model (and thus, the corresponding ultrametric
tree) can be arbitrarily complicated, each of the sub-models in the decomposition has one of four basic
behaviors corresponding to a single layer of the tree. We call these behaviors “fundamental model types,”
and they are depicted in Figure 1.2.

The remaining task is to lower bound the ground state energy of the topologically trivial, 1-step RSB
(1RSB) , and full RSB (FRSB) types, and the free energy of the replica symmetric (RS) type. Out of these,
two types are already understood: the ground state of the topologically trivial type is determined by works
[FLD14, BČNS22] (described further in Subsection 1.1.3) studying the energy landscape via the Kac–Rice
formula, and that of the FRSB type is witnessed by an algorithm due to Subag [Sub21a]. Our work develops
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Figure 1.2: Decomposition of an Parisi measure ζ∗ into fundamental parts.

a new truncated second moment argument, which determines the free energy of the RS type and the ground
state energy of the 1RSB type. This completes the proof.

1.1.3 Strong topological trivialization

Chapter 4 is based on the paper [HS23c], which is joint work with Mark Sellke. This work will appear in the
Annals of Probability.

A fundamental direction of inquiry in spin glass theory concerns the geometry of the landscape, the surface
plotted by the random Hamiltonian. An influential line of work, pioneered by [Fyo04, ABČ13], proposed
to quantify the complexity of the landscape by the number of critical points — that is, a higher number of
critical points is indicative of a more rugged landscape. They study the number of critical points (henceforth,
the complexity) via the Kac–Rice formula [Kac48, Ric44], which provides access to the expectation of this
random variable (the annealed complexity).

One notable phenomenon studied in this line of work is topology trivialization. This is a phase transi-
tion separating a “complex” regime, where the Hamiltonian has exponentially many critical points, from a
“simple” one where it has O(1) critical points. For the spherical mean-field model with Hamiltonian (1.3),
[FLD14, Fyo15, BČNS22] locate the phase boundary of annealed topological trivialization in the following

sense. If the parameter γ1 (which controls the strength of the external field term γ1

∑N
i=1 giσi in HN ) is

small, the annealed complexity of HN is exponentially large. As γ1 increases beyond a critical value, the
annealed complexity drops to 2 + o(1). Since any differentiable function on SN has at least two critical
points, namely the global maximum and minimum, in the latter regime these are the only critical points
with high probability.

In Chapter 4, we introduce and study several questions, which probe aspects of the topology trivialization
phenomenon that are not yet understood; see (1), (2), and (3). In this introductory chapter, we focus the
discussion on one of these questions, which links topology trivialization to algorithmic guarantees.

Problem 1.1.3. It has long been expected that in the topologically trivial phase, algorithms such as
gradient ascent or low-temperature Langevin dynamics efficiently find the global maximum. However, this
implication is not known rigorously, as regions with small gradient can in principle cause slow convergence.
Does topological trivialization imply the rapid convergence of such optimization algorithms?

We answer this question affirmatively, by establishing a structural property in the topologically trivial
phase that implies algorithmic tractability. Namely, we show that all O(1) critical points of HN have well-
conditioned (Riemannian) Hessian, and all points where HN has small gradient are near a true critical point,
a condition we call strong topological trivialization. We then show that under this condition, low-temperature
Langevin dynamics find the global maximum of HN efficiently, in O(logN) time.

In fact, we show these results for the multi-species spherical spin glass, where the Hamiltonian is a
generalization of (1.3) and the domain is a product of r = O(1) high-dimensional spheres (see (1.6) and
(1.7) below). This model includes the r = 2 bipartite SK model [KC75, KS85], and has been the subject of
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much recent work [BCMT15, Pan15, Mou21, Mou23, BL20, BS22a, Sub21b, Sub23b, Kiv23]. We identify
the annealed topology trivialization phase boundary for this model. In the trivialized regime, we show there
are exactly 2r critical points with high probability, which is the minimum possible for a Morse function on a
product of r spheres. Going further, we show strong topological trivialization also holds in this regime, and
therefore low-temperature Langevin dynamics efficiently find the global maximum.

Working with the multi-species spin glass introduces several new challenges not present in the single-
species setting. First, the main term one must evaluate in the Kac–Rice formula is the expected determinant
of a large random matrix. In the single-species setting, this matrix is a sample from the Gaussian Orthogonal
Ensemble (GOE), and the determinant has an explicit formula. In the multi-species setting, this matrix is a
gaussian block matrix, and the access we get to the determinant is much less explicit: it is a functional of the
random matrix’s limiting spectrum, which is defined through a vector Dyson equation. Our work develops
an understanding of the vector Dyson equation’s solution in order to complete this calculation.

Another challenge is that tools for evaluating these more general random determinants are only accurate
to a multiplicative factor of eo(N). As a result, evaluating the Kac–Rice formula only shows an upper
bound of eo(N) on the annealed complexity in the topologically trivial regime, as opposed to 2 + o(1) in the
single-species setting. One of the key innovations of our work is a method that, using only this weak form
of annealed topological trivialization as input, deduces that there are exactly 2r critical points with high
probability.

1.2 Algorithms

Part II of this thesis studies algorithms for optimization and sampling problems on spin glasses. A recurring
theme of this part is to identify the geometric structure in the problem that allows an efficient algorithm to
succeed, thereby linking algorithmic tractability to structural phase transitions in the solution landscape.

1.2.1 Optimization of spin glass Hamiltonians

Chapter 5 is based on the paper [HS23a], which is joint work with Mark Sellke and is submitted for publi-
cation. It studies the question: how well can an efficient algorithm optimize a random objective?

Background: optimizing the mean-field model. This chapter builds on our earlier work [HS25] with
Sellke, which appears in our S.M. thesis and studies the following problem.

Problem 1.2.1. Let HN be the mean-field spin glass Hamiltonian (1.3). Devise a polynomial-time algorithm
A which takes HN as input and outputs A(HN ) = σalg in SN =

√
NSN−1 or ΣN = {±1}N with HN (σalg)

as large as possible. What is the largest value of HN (σalg) that can be achieved?

It is known that the in-probability limiting maximum values

OPTIs = p-lim
N→∞

1

N
max
σ∈ΣN

HN (σ), OPTSp = p-lim
N→∞

1

N
max
σ∈SN

HN (σ)

are given by a zero-temperature version of the Parisi formula [Par79, Tal06b, Pan13a, AC17]. Optimization
algorithms for this problem were developed in [Sub21a] for the spherical setting, and [Mon21, AMS21, Sel24a]
for the Ising setting. These algorithms achieve values ALGIs and ALGSp which are explicit but generally
smaller than OPTIs and OPTSp. That is, for any ε > 0 independent of N ,

P(HN (σalg)/N ≥ ALG− ε) = 1− o(1). (1.5)

Here ALG = ALGIs or ALGSp respectively, and in fact the probability is at least 1−e−cN for some c = c(ε) > 0.
The main result of [HS25] is a matching hardness result for a class of Lipschitz algorithms, which we now

introduce. Let H = RN2+···+NP , and let g ∈H be the concatenation of the gaussians gi1,...,ip appearing in
HN . We may identify HN with g, and view A as a map from g ∈H to σalg ∈ RN . We say A is L-Lipschitz
if for all g, g′ ∈H ,

‖A(g)−A(g′)‖ ≤ L‖g − g′‖.
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r =
√
N

r = 0

Dense branching Not dense branching

Figure 1.3: Schematics of a densely branching tree and a tree with discrete jumps. Nodes represent points
in RN , and the vertical axis represents the points’ distance to the origin. The tree of points with value ALG
must branch densely, whereas the one of points with value OPT may have either behavior.

We also relax the domains SN and ΣN to BN = {σ ∈ RN : ‖σ‖ ≤
√
N} and CN = [−1, 1]N ; in the Ising

case this is necessary for Lipschitz algorithms mapping to this domain to exist. As explained in [HS25], the
class of O(1)-Lipschitz algorithms includes natural algorithms such as gradient descent, Langevin dynamics,
and approximate message passing (AMP) for O(1) time. In particular, this includes the above algorithms
that achieve ALG.2

Say HN is even if γp = 0 for all odd p. [HS25] shows the following hardness result.

Theorem 1.2.2. Suppose HN is even and let ALG = ALGSp (resp. ALGIs). For any ε > 0 and L > 0,
there exists c = c(ε, L) > 0 such that the following holds for sufficiently large N . For any L-Lipschitz
A : HN → σalg ∈ BN (resp. CN ),

P(HN (σalg)/N ≥ ALG + ε) ≤ e−cN .

The proof is based on a landscape property that we introduce, which we call the branching overlap
gap property. This is a generalization of the overlap gap property (OGP) introduced by Gamarnik and
Sudan [GS17a]; see [Gam21, Mon23a, AMS23c] for survey treatments. The basic idea is that a Lipschitz
algorithm, run on a suitable correlated family of problem instances HN , can be made to output a constellation
of solutions arranged as the leaves of a densely branching ultrametric tree; see e.g. (5.31) for a formal
definition. We show that for any ε > 0, with probability 1 − e−cN the solution space (of this correlated
family of problems) does not have a set of points with this geometry, each with value at least ALG+ ε. This
implies that a Lipschitz algorithm cannot reach ALG + ε.

Densely branching ultrametric trees also play an important role in the algorithms of [Sub21a, Mon21,
AMS21, Sel24a], and this is why our method is able to locate a sharp algorithmic threshold. The strategy
of these algorithms is to trace a root-to-leaf path of a densely branching ultrametric tree of points, whose
leaves all have value ALG. In other words, we can characterize ALG geometrically as the supremal
value whose super-level set typically contains a densely branching ultrametric tree. Algorithms
can reach values up to ALG by following a densely branching ultrametric, and cannot do better due to the
branching OGP.

Remark 1.2.3. As a consequence of the ultrametricity of Gibbs measures predicted by Parisi [Par79, Par83]
and proved by Panchenko [Pan13a], the set of points with value OPT also forms the leaves of an ultrametric
tree. The main difference between this tree and the tree of points with value ALG described above is that
the latter tree must branch densely, i.e. at a dense set of radii. In contrast, the tree of points with value
OPT may have jumps, corresponding to gaps in the overlap support of the model (1.3); see Figure 1.3 for
an illustration. In particular, ALG = OPT if and only if the tree of points with value OPT is also densely
branching, i.e. if the model (1.3) has full overlap support [0, 1] at zero temperature.

Our results and proof ideas. The results of [HS25] motivate the following question.

Problem 1.2.4. Can we establish exact algorithmic thresholds for optimizing spin glass Hamiltonians
beyond the mean-field model? How general is the above geometric description of ALG?

2The algorithms of [Mon21, AMS21, Sel24a] are AMP iterations run for O(1) time. While the algorithm of [Sub21a] does
not have this form, an analogous AMP iteration also achieves ALG in the spherical setting, as explained in [AMS21].
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A key challenge is that the method used to establish the branching OGP in [HS25] is somewhat brittle.
The main technical input to the hardness proof therein is to show that the leaves of any densely branching
ultrametric tree have average energy at most ALG. In [HS25], this is proved using Guerra’s interpolation
[Gue03], which applies only to models whose covariance structure is convex in a certain sense. This limits
the set of models on which this method succeeds.

In Chapter 5, we study this problem for multi-species spherical spin glass Hamiltonian, defined as follows.
Let I1 ∪ · · · ∪ Ir be a partition of [N ] = {1, . . . , N}, with limN→∞ |Is|/N = λs ∈ (0, 1) for all s ∈ [r]. For
i ∈ [N ], let s(i) ∈ [r] be such that i ∈ Is(i). For fixed model parameters γs1,...,sp ≥ 0, where 1 ≤ p ≤ P and
s1, . . . , sp ∈ [r], consider the Hamiltonian

HN (σ) =

P∑
p=1

1

N (p−1)/2

N∑
i1,...,ip=1

γs(i1),...,s(ip)gi1,...,ipσi1 · · ·σip , gi1,...,ip
i.i.d.∼ N (0, 1). (1.6)

We study the problem of optimizing this Hamiltonian over the product-of-spheres domain

SN =
{
x ∈ RN : ‖xs‖2 = λsN , ∀s ∈ S

}
, (1.7)

where xs ∈ RIs denotes the restriction of x to coordinates Is.
We emphasize that the interpolation method does not apply to this model, and for this reason the value

of OPT remains open. Nonetheless, we are able to characterize an explicit algorithmic threshold ALG. Our
main result is as follows. Let

BN =
{
x ∈ RN : ‖xs‖2 ≤ λsN , ∀s ∈ S

}
be the product of balls which relaxes the product of spheres SN .

Theorem 1.2.5. For any ε > 0 and L > 0, there exists c = c(ε, L) > 0 such that the following holds for
sufficiently large N . For any L-Lipschitz A : HN → σalg ∈ BN ,

P(HN (σalg)/N ≥ ALG + ε) ≤ e−cN .

Our companion work [HS24] provides an AMP algorithm similar to those of [Mon21, AMS21, Sel24a],
which outputs σalg ∈ SN achieving value ALG in the sense of (1.5). Together, these results show that ALG
is the optimal value attained by Lipschitz algorithms.

The main tool in the proof is a new method to establish the branching OGP, which does not use the
interpolation method. Instead, we upper bound the average value of the leaves of any dense ultrametric tree
by adapting the uniform concentration idea introduced in [Sub24]. Uniform concentration upper bounds
the increment between the value of any node in the tree and the average value of its children. This gives
a simpler and more robust proof of the branching OGP based on only gaussian concentration of measure.
Specializing to the one-species setting, our method also gives a new proof of Theorem 1.2.2 in spherical
models without the evenness assumption, which was previously required to apply the interpolation method.

This new method of showing the branching OGP is quite general. In work in progress with Sellke and Sun
[HSS25], we demonstrate that this approach also establishes an exact algorithmic threshold for the following
generalized random perceptron model. Let M = bαNc for fixed constraint density α > 0. Let φ ∈ Cb(R)
be an arbitrary activation function and g1, . . . , gM ∼ N (0, IN ). We consider the problem of optimizing the
Hamiltonian

HN (σ) =

M∑
a=1

φ

(
〈ga,σ〉√

N

)
.

A significant amount of recent work has been devoted to studying algorithmic properties of this and related
models [BS20, ALS22a, AS22, GKPX22, GKPX23, BAKZ24, MZZ24, LSZ25]. In [HSS25], we give a matching
optimization algorithm and hardness result for Lipschitz algorithms via the branching OGP.

Altogether, these results demonstrate that the geometric description of the algorithmic threshold put
forward in [HS25] is very general. This provides a unified picture of optimal algorithms in a broad class of
random optimization problems.
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Figure 1.4: Structural phases of the Gibbs measure; images adapted from [KMRT+07].

1.2.2 Sampling from Gibbs measures

Chapter 6 is based on the paper [HMP24], which is joint work with Andrea Montanari and Huy Tuan Pham
and is submitted for publication. Chapter 7 is based on the paper [HMRW25], which is joint work with
Sidhanth Mohanty, Amit Rajaraman, and David X. Wu and will appear in STOC 2025.

Recall the mixed p-spin Hamiltonian HN defined by (1.3). Let µ0 denote the uniform Haar measure on
SN =

√
NSN−1. For inverse temperature β ≥ 0, define the Gibbs measure µβ by

µβ(dσ) =
eβHN (σ)

Zβ
µ0(dσ) ,

where Zβ is a normalizing constant. This is a random, highly non-log-concave probability distribution.
Chapters 6 and 7 study the following problem.

Problem 1.2.6. Devise a polynomial-time randomized algorithm which takes (HN , β) as input and outputs
σalg ∈ SN , such that the the law µalg of σalg satisfies TV(µalg, µβ) = o(1). For which β is this possible?

Physics heuristics suggest that as one varies β, one encounters a series of phase transitions in the structure
of µβ which govern the tractability of this problem; see Figure 1.4 for an illustration. For small β, µβ is
expected to be well-connected, in the sense of e.g. satisfying a Poincaré inequality, and thus the Langevin
dynamics from any initialization mix rapidly to µβ . For β beyond the uniqueness threshold βuniq, it is
expected that nearly all of the mass of µβ remains in a well-connected cluster, but small clusters with poor
connectivity to the bulk of the measure (metastable states) appear. In this regime, it is expected that the
Langevin dynamics with random initialization will succeed by sampling from the main cluster, even though
these dynamics with worst-case initialization can get trapped in a metastable state. Beyond the shattering
threshold βsh, µβ shatters into exponentially many small clusters. In this regime, the Langevin dynamics
fail to efficiently sample from µβ , and it is expected that no efficient algorithm succeeds [CHS93].

However, much less is rigorously known about sampling algorithms for this problem. At sufficiently high
temperature, it is known that a Poincaré inequality holds and the Langevin dynamics mix rapidly to µβ
[GJ19]. Relatedly, recent lines of work on spectral independence and localization schemes [ALO21, CE22] have
developed powerful tools to establish functional inequalities that imply rapid mixing of many Markov chains.
This notably includes the Glauber dynamics for the analogous Gibbs measure on the cube ΣN = {±1}N
[EKZ22, AJK+21a, ABXY24] for suitably small β. However, all of these techniques can only apply for
β < βuniq, as they show rapid mixing from a worst-case initialization, which is false in the presence of
metastable states.

In order to sample at larger values of β, [AMS22] introduced a different sampling algorithm based
on simulating Eldan’s stochastic localization scheme [Eld13, Eld20b]. In particular, for the Sherrington–
Kirkpatrick model on the (more difficult) cube ΣN , their algorithm succeeds in the entire high-temperature
regime β < 1. This approach has since been applied to Bayesian posterior sampling [MW23] and is equivalent
to denoising diffusions from machine learning [HJA20]; see [Mon23b] for the connection. However, until now
a key limitation of this approach is that it comes with a guarantee of vanishing Wasserstein error, rather
than total variation error. That is, with high probability over HN , there exists a coupling of σalg ∼ µalg and
σ ∼ µβ such that

E‖σalg − σ‖2 = o(N) . (1.8)

We also mention that several other aspects of the physics picture above have been rigorously proven for
the spherical pure p-spin models. The presence of metastable states for all β > βuniq was shown in [BJ24].
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[AMS25] shows that at an absolute constant factor above βsh, µβ is shattered, and a class of stable algorithms
fails to sample from µβ . This provides evidence that the problem is computationally hard in the shattered
regime.

Our work improves on both approaches to sampling. In Chapter 6, we develop a stochastic localization
algorithm that samples from the spherical spin glass with vanishing total variation error. In Chapter 7, we
show that a simulated annealing variant of the Langevin dynamics, where we start at β = 0 and gradually
increase β over time, also samples from µβ . Both algorithms succeed up to a stochastic localization threshold
βSL ∈ (βuniq, βsh). In particular, Chapter 7 provides the first guarantee for a Markov chain in this problem
beyond βuniq, where mixing from a worst-case initialization is provably slow. For the pure p-spin models, βSL
is also within an absolute constant factor of the conjectured computational threshold βsh.

Proof ideas: algorithmic stochastic localization. The stochastic localization process can be described
by the Itô diffusion

dyt = m(yt, t)dt+ dBt , y0 = 0 . (1.9)

Here Bt is a RN -valued standard Brownian motion, and m(yt, t) is the mean of the tilted distribution

µβ,t(dσ) ∝ e〈yt,σ〉µβ(dσ) .

As explained in e.g. [Eld20b], µβ,t is a measure-valued martingale that, as t→∞, localizes to a point mass
(whose location is thus distributed as µβ). Hence, algorithmically simulating the process (1.9) via Euler
discretization provides a way to sample from µβ .

The main challenge in implementing this strategy is to algorithmically estimate the means m(yt, t) of
the measures µβ,t. In [AMS22], this estimator m̃t is defined as the fixed point of a TAP equation to which
a certain AMP iteration converges. Using the state evolution [Bol14, BM11] analysis of AMP, it is shown
that this estimator has error satsisfying

E‖m̃t −m(yt, t)‖2 = o(N) . (1.10)

This is enough to imply the Wasserstein error guarantee (1.8). The main contribution of our work in
Chapter 6 is to develop and analyze a more accurate mean estimator, which upgrades the error guarantee
to total variation. Our work shows that the error in (1.10) is actually O(1). Then, we identify a correction
term to m̃t, resulting in an estimator m̂t such that

E‖m̂t −m(yt, t)‖2 = o(1) . (1.11)

Adapting an analysis from [CCL+23] shows that an algorithmic simulation of (1.9) using mean estimator
m̂t has vanishing total variation error to the true process. This implies the result.

We discuss some ideas of the proof of the main estimate (1.11) at the end of this subsection.

Proof ideas: simulated annealing. A common method to show that a Markov chain mixes rapidly is
to establish a functional inequality, such as a Poincaré inequality. For simplicity, we restrict the discussion
here to measures µ ∈ P(SN ) with densities with respect to µ0, with the spherical Langevin dynamics as the
Markov semigroup, though these facts hold much more generally. For test functions f, g ∈ C∞(SN ), define
the Dirichlet form

Eµ(f, g) = Eσ∼µ〈∇f(σ),∇g(σ)〉 .

We say µ satisfies a Poincaré inequality with constant C if for any f ∈ C∞(SN ),

Eµ(f, f) ≥ CVarµ(f) . (1.12)

Let νt be the distribution obtained by running the spherical Langevin dynamics for time t, from initial
distribution ν0 ∈ P(SN ). The inequality (1.12) implies the exponential contraction of χ2 divergence

χ2(νt‖µ) ≤ e−Ctχ2(ν0‖µ) . (1.13)

If C is at least inverse polynomially large in N , this implies polynomial-time mixing of the spherical Langevin
dynamics from worst-case initialization.
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However, as discussed above, such an inequality can hold for µβ only if β < βuniq, as rapid mixing from
worst-case initialization cannot hold in the presence of metastable states. In order to analyze Markov chain
dynamics for larger β, in Chapter 7 we study weak Poincaré inequalities of the form

Eµ(f, f) ≥ CVarµ(f)− ε‖f − Eµf‖2∞ . (1.14)

Similarly to (1.13), this implies a mixing guarantee of the form

χ2(νt‖µ) ≤ e−Ctχ2(ν0‖µ) + ε

∥∥∥∥dν0

dµ
− 1

∥∥∥∥2

∞
. (1.15)

In our application, we will have C = Ω(1) and ε = e−Ω(N1/5). Then (1.15) implies mixing (up to χ2 error

e−Ω(N1/5), and thus total variation error e−Ω(N1/5)) from sufficiently warm starts.
This mixing guarantee combines well with the simulated annealing algorithm, which proceeds in T =

poly(N) stages as follows. For 1 ≤ i ≤ T , let βi = β · i/T . In the i-th stage, we run the spherical Langevin
dynamics corresponding to µβi for poly(N) time, initialized at the output of the previous stage. (In the first
stage, we initialize at a uniformly random point in SN .) The main idea of our approach is that for suitable
T , each µβi−1 is a sufficiently warm start for µβi . Thus, if all the µβi satisfy the weak Poincaré inequality
(1.14), we can inductively argue that the output of the i-th stage is an approximate sample from µβi . Hence
simulated annealing approximately samples from µβ .

Our proof that the µβi satisfy a weak Poincaré inequality parallels recent developments in the spectral
independence and localization schemes [ALO21, CE22] lines of work. For h ∈ RN and µ ∈ P(SN ), define
the tilted measure

µh(dσ) ∝ e〈h,σ〉µ(dσ) .

A central message of [ALO21, CE22] is that, roughly speaking, if ‖Cov(µh)‖op = O(1) for all h ∈ RN , then
µ satisfies a Poincaré inequality with constant Ω(1). This provides a powerful method for establishing a
Poincaré inequality, which has been useful in numerous applications.

Our work shows that analogously, if ‖Cov(µh)‖op = O(1) with high probability for random h, then µ
satisfies a weak Poincaré inequality. More precisely, let t ≥ 0, and let h = tσ+

√
tg, for (σ, g) ∼ µ⊗N (0, IN ).

If for all t, ‖Cov(µh)‖op = O(1) with probability 1 − e−Ω(N1/5), then ν satisfies (1.14) with C = Ω(1),

ε = e−Ω(N1/5). This provides a framework for proving weak Poincaré inequalities, where the main technical
input is to show ‖Cov(µh)‖op = O(1) holds with high probability for the aforementioned random tilts h. We
discuss this input further below.

Proof ideas: conditioning on TAP fixed point. In the algorithmic stochastic localization approach, we
must prove that the mean estimator m̂t of µβ,t satisfies (1.11). In the weak Poincaré inequalities approach,
we must show ‖Cov(µh)‖op = O(1) with high probability. One of the main steps of both proofs will be to
show that the law of HN is contiguous to a model with a planted TAP fixed point, similarly to the strategy
described in Subsection 1.1.1 and carried out in Chapter 2. We next explain why passing to a planted model
is useful.

It can be shown that in the true model, the measures µβ,t and µh concentrate near the (random)
codimension-1 band orthogonal to a suitable TAP fixed point mTAP (which equals m̃t in the algorithmic
stochastic localization approach), and passing through it:

B =
{
σ ∈ SN : 〈σ −mTAP,mTAP〉 = 0

}
.

So, for either estimating the mean or bounding the covariance, the region near this band is the key part of
the Gibbs measure we must understand.

However, it is difficult to study the Gibbs measure on this band in the true model, as we do not explicitly
know the joint law of (mTAP, HN ). This is the problem that the planted model solves: in the planted model,
we can explicitly compute the law of HN conditional on mTAP. This opens the way to calculations that
prove the mean estimate in Chapter 6 and covariance bound in Chapter 7.
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Chapter 2

Capacity threshold for the Ising
perceptron

Abstract – We show that the capacity of the Ising perceptron is with high probability upper bounded

by the constant α? ≈ 0.833 conjectured by Krauth and Mézard, under the condition that an explicit

two-variable function S?(λ1, λ2) is maximized at (1, 0). The earlier work of Ding and Sun [DS18] proves

the matching lower bound subject to a similar numerical condition, and together these results give a

conditional proof of the conjecture of Krauth and Mézard.

2.1 Introduction

The Ising perceptron was introduced in [Wen62, Cov65] as a simple model of a neural network. Mathemat-
ically, it is an intersection of a high-dimensional discrete cube with random half-spaces, defined as follows.
Fix any κ ∈ R (our main result is for κ = 0). For N ≥ 1, let ΣN = {±1}N , and let g1, g2, . . . be a sequence
of i.i.d. samples from N (0, IN ). For M ≥ 1, the Ising perceptron is the random set

SMN =

{
x ∈ ΣN :

〈ga,x〉√
N
≥ κ ∀1 ≤ a ≤M

}
. (2.1)

As explained in [Gar87], SMN models the set of configurations of synaptic weights in a single-layer neural
network that memorize all M patterns g1, . . . , gM . Define the random variable MN = MN (κ) as the largest
M such that SMN 6= ∅. Then, the capacity of this model is defined as the ratio MN/N , and models the
maximum number of patterns this network can memorize per synapse.

Krauth and Mézard [KM89] analyzed this model using the (non-rigorous) replica method from statistical
physics. They conjectured that as N →∞, the capacity concentrates around an explicit constant α? = α?(κ),
which is approximately 0.833 for κ = 0 and is formally defined in Proposition 2.3.2 below.1 This was part
of a series of works in the statistical physics literature [Gar87, GD88, Gar88, KM89, Méz89] which analyzed
various perceptron models using the replica or cavity methods and put forward detailed predictions for their
behavior. In particular, [KM89] provided a conjecture for the limiting capacity of the Ising perceptron, while
[GD88] gave an analogous conjecture for the spherical perceptron, where the spins x belong to the sphere
{x ∈ RN : ‖x‖ =

√
N} instead of ΣN .

Ding and Sun [DS18] proved that α? is a rigorous lower bound for the capacity, subject to a numerical
condition that an explicit univariate function is maximized at 0.

Theorem 2.1.1. [DS18, Theorem 1.1] Under Condition 1.2 therein, the following holds for the κ = 0 Ising
perceptron. For any α < α?, lim infN→∞ P(MN/N ≥ α) > 0.

1[KM89] studied a model with Bernoulli disorder, i.e. where the gai are i.i.d. samples from unif(±1) rather than N (0, 1). As
[NS23] shows this model’s sharp threshold sequence is universal with respect to any subgaussian disorder, we may work with
gaussian disorder for convenience.
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Furthermore, [Xu21, NS23] showed that the capacity has a sharp threshold sequence, thereby improving
the positive probability guarantee of Theorem 2.1.1 to high probability. Our main result is a matching upper
bound for the capacity, subject to a similar numerical condition.

Theorem 2.1.2. Under Condition 2.1.3 below, the following holds for the κ = 0 Ising perceptron. For any
α > α?, limN→∞ P(MN/N ≥ α) = 0.

Condition 2.1.3. The function S?(λ1, λ2) defined in (2.8) satisfies S?(λ1, λ2) ≤ 0 for all λ1, λ2 ∈ R.

See Subsection 2.2.6 for a discussion of this condition. In particular S?(1, 0) = 0 is a local maximum,
and numerical plots suggest it is the unique global maximum.

Theorem 2.1.2 is a consequence of the more general Theorem 2.3.6, which states that α?(κ) upper bounds
the capacity for general κ, under a number of numerical conditions depending on κ. The most complicated of
these is Condition 2.1.3, and we derive Theorem 2.1.2 by verifying the remaining conditions when κ = 0. This
computer-assisted verification is described in Appendix 2.B and carried out in the accompanying Python 3
file2 using python-flint, a rigorous library for interval arithmetic.

2.1.1 Related work

For the spherical perceptron, the capacity threshold of [GD88] has been proved rigorously for all κ ≥ 0
[ST03, Sto13a]. (See also [Sto13b] for some work on the κ < 0 case.) These works exploit the fact that
the spherical perceptron with κ ≥ 0 is a convex optimization problem. The Ising perceptron does not have
this property, and our understanding of it is comparatively less complete. The replica heuristic also gives
a prediction for the free energy of a positive-temperature version of this model [GD88, KM89], which was
verified by [Tal00] at sufficiently high temperature using a rigorous version of the cavity method. The works
[KR98, Tal99] showed that for the κ = 0 perceptron, there exists ε > 0 such that ε ≤ MN/N ≤ 1 − ε with
high probability. The breakthrough work of Ding and Sun [DS18] showed that α? lower bounds the capacity
for the κ = 0 perceptron, conditional on a numerical assumption. Very recently, [AT24] showed that 0.847 is
a rigorous upper bound for the capacity in this model. Recent works have also shown the replica-symmetric
formula for the free energy at low constraint density in generalized perceptron models [BNSX22], existence
of a sharp threshold sequence [Xu21, NS23], and universality in the disorder [NS23]. We also mention the
works [AS22, MZZ24] on algorithms for the negative spherical perceptron.

Another recent line of work originating with [APZ19] studied the symmetric binary perceptron,
where the constraints in (2.1) are replaced by |〈ga,x〉|/

√
N ≤ κ. Symmetry makes this model significantly

more tractable (see Subsection 2.2.1 for more discussion); a series of remarkable works have established the
limiting capacity [PX21, ALS22b], “frozen 1-RSB” structure [PX21], lognormal limit of partition function
[ALS22b], and critical window [Alt23, SS23], and shed light on the performance of algorithms [ALS22a,
GKPX22, GKPX23, BAKZ24].

2.1.2 Notation

While we introduce other parameters over the course of the proof, unless stated otherwise we send N →∞
first, treating the remaining parameters as small or large constants. Thus, we use oN (1) to denote a quantity
vanishing with N , while notations like oε(1) denote quantities independent of N tending to zero as the
subscripted parameter tends to 0 or∞ (which will be clear from context). We say an event occurs with high
probability if it occurs with probability 1− oN (1). Further notations will be introduced in Subsection 2.4.1,
before the main body of proofs.
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2.2 Further background and proof outline

This section contains a technical overview of the paper, and is organized as follows. In Subsection 2.2.1,
we review the AMP-conditioned moment method used in [DS18] to prove the capacity lower bound and
discuss the main difficulties of proving the upper bound. In Subsection 2.2.2, we outline a new approach
based on reducing to a planted model and argue that if three primary inputs (R1), (R2), (R3) hold, then
the upper bound reduces to a tractable moment computation. Subsection 2.2.3 discusses the most difficult
input (R1), and Subsection 2.2.4 discusses the more straightforward inputs (R2) and (R3). Subsection 2.2.5
discusses related work involving planted models. Finally, Subsection 2.2.6 heuristically carries out the afore-
mentioned moment computation, explains how Condition 2.1.3 emerges from it, and gives numerical evidence
for Condition 2.1.3 when κ = 0.

2.2.1 AMP-conditioned moment method

A natural approach to studying the limiting capacity is the moment method. Let M = αN , and let
G ∈ RM×N have rows g1, . . . , gM . Then let SN (G) = SMN (recall (2.1)) and ZN (G) = |SN (G)|. If
E[ZN (G)] � 1, then SN (G) is w.h.p. empty, and if E[ZN (G)2]/E[ZN (G)]2 is bounded, then SN (G) is
nonempty with positive probability. If these two estimates hold for (respectively) α = α?+ε and α = α?−ε,
for any ε > 0, this shows the limiting capacity is α?.

Let m?(G) = 1
|SN (G)|

∑
x∈SN (G) x denote the barycenter of the solution set SN (G). For models where

m?(G) = 0, such as the symmetric binary perceptron [APZ19, PX21, ALS22b], this two-moment analysis
often suffices to determine the limiting capacity. However, due to the asymmetry of the activation in
the present model, m?(G) is typically macroscopic and random. It is expected that for any α > 0, large-
deviations events in the location of m?(G) dominate the first and second moments. Thus ZN (G) is typically
exponentially smaller than E[ZN (G)], and E[ZN (G)]2 exponentially smaller than E[ZN (G)2], which causes
the moment method to fail. For example, for the κ = 0 perceptron, 1

N logE[ZN (G)] crosses zero at α = 1,
larger than α?(0) ≈ 0.833.

To overcome this difficulty, [DS18] and [Bol19] (the latter for the Sherrington–Kirkpatrick model) con-
currently developed a conditional moment method, in which one conditions on a suitable proxy for m?(G)
before computing moments. The conditioning step effectively recenters spins around m?(G), after which
the moment method can potentially succeed.

The choice of conditioning is motivated by the TAP heuristic [TAP77] from statistical physics, which
provides a powerful but non-rigorous framework to study this and other mean-field models. The central
object in this framework is a TAP free energy FTAP(m,n), which is defined in (2.15) and can be thought
of as a mean-field (dense graph) limit of the Bethe free energy of an appropriate message-passing system. It is
expected that FTAP has a unique stationary point (m,n) ∈ [−1, 1]N ×RM , with the following interpretation:
m approximates the barycenter m?(G) of SN (G), and for each a ∈ [M ], na approximates a function of
the average slack of the constraint 〈ga,x〉/

√
N ≥ κ over solutions x ∈ SN (G).3 It is also predicted that

m and n have specific coordinate profiles: for (q?, ψ?) defined as the fixed point of a scalar recursion (see
Condition 2.3.1) and F = F1−q? as in (2.13), the prediction is that the coordinates of ḣ = th−1(m) and

ĥ = F−1(ĥ) have empirical distribution approximating N (0, ψ?) and N (0, q?).
4

An important fact we will exploit is that for fixed (m,n), the stationarity condition ∇FTAP(m,n) = 0
can be written as two linear equations in G. These are the TAP equations, defined in (2.16). Using this
fact, we can define a planted model, which plays an important motivational role in [DS18, Bol19]: we first
chooose (m,n) with aforementioned coordinate profile, and then sampleG conditional on∇FTAP(m,n) = 0.
(This is different from the more well-known notion of planted model introduced in [AC08], in that we are
planting a TAP fixed point rather than a satisfying assignment; see Subsection 2.2.5 for further discussion.)

If we imagine for a moment that G were sampled from this planted model, then the moment method
becomes tractable. In this model, the law ofG conditional on (m,n) remains gaussian because the TAP equa-

3More generally, the statistical physics literature predicts that the Gibbs measure — here, the uniform measure on SN (G)
— decomposes as a convex combination of well-concentrated “pure states,” whose barycenters each approximate a stationary
point of the TAP free energy [MPV87]. The present model is expected to be replica symmetric, meaning the entire Gibbs
measure is one pure state.

4Here and throughout, nonlinearities such as th−1 and F−1 are applied coordinate-wise.
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tions are linear inG, and the conditional first and second moments of ZN (G) can be computed. They amount
to tractable O(1)-dimensional optimization problems: for example, computing E[ZN (G)|m,n] amounts to
optimizing the exponential-order contribution to the first moment from subsets of ΣN defined by their inner
products with m and ḣ (see Subsection 2.2.6 for details). The planted model removes the main difficulty of
the macroscopically-fluctuating barycenter, giving the moment method a chance to succeed.

However, this planted model is different from the true model, in which the TAP solution (m,n) depends
onG in a complicated way. It is a priori unclear that these can be rigorously linked, because in the true model
both existence and uniqueness of the TAP solution are not known. To carry out this approach, [DS18, Bol19]
instead condition on a sequence of approximate message passing (AMP) iterates (m0,n0, . . . ,mk,nk)
whose dependence on G is explicit. The AMP iteration was introduced in [Bol14, BM11], and is defined
(roughly speaking, see (2.17)) by iterating the TAP equations. Its behavior can be understood through the
powerful state evolution description of [Bol14, BM11, JM13, BMN20]: for any k not growing with N , state
evolution exactly characterizes the limiting overlap structure of (m0, . . . ,mk) and (n0, . . . ,nk). Using this
description, it can be shown that the AMP iterates converge to an approximate stationary point of FTAP:

lim
k1,k2→∞

p-lim
N→∞

N−1/2‖(mk1 ,nk1)− (mk2 ,nk2)‖ = lim
k→∞

p-lim
N→∞

N−1/2‖∇FTAP(mk,nk)‖ = 0. (2.2)

Here p-lim denotes limit in probability. It is in this sense that the AMP iterates are a proxy for (m,n).
While the main advantages of conditioning on the AMP filtration are explicit dependence on G and state

evolution, the main disadvantage is the greater complexity of the resulting moment calculation. Although the
law of G conditional on (m0,n0, . . . ,mk,nk) remains gaussian, the conditional first and second moments of
ZN (G) are now O(k)-dimensional optimization problems, in which one optimizes over subsets of ΣN defined
by their inner products with m0, . . . ,mk and related vectors. These problems are not in general tractable.
We note that [Bol19, BNSX22] successfully carry out this optimization in their respective settings, but only
at sufficiently high temperature or low constraint density.

An important insight of [DS18] is that this approach still gives a tractable proof of the capacity lower
bound, because — to show a lower bound for ZN (G) — one may truncate ZN (G) before computing mo-

ments. They construct a truncation Z̃N (G) of ZN (G), restricting (among other conditions) to x ∈ ΣN
with prescribed inner products with m0, . . . ,mk. The conditional first moment of Z̃N (G) is then explicit,
while the conditional second moment becomes a 1-dimensional optimization. [DS18] shows that (under the

aforementioned numerical condition) E[Z̃N (G)2]/E[Z̃N (G)]2 is bounded for any α < α?, which implies the
capacity lower bound.

We mention that [BY22, BNSX22] carry out similar truncated second moment arguments in their re-
spective settings, and the former improves the parameter regime where the method of [Bol19] obtains the
replica symmetric free energy lower bound for the Sherrington–Kirkpatrick model.

The main difficulty of the capacity upper bound is that truncation is no longer available. Without it,
proving the capacity upper bound within the AMP-conditioned moment method would require solving the
above O(k)-dimensional optimization problem, which does not appear to be tractable.

2.2.2 Approximate contiguity with planted model

Our proof revisits and justifies the planted model heuristic described above, where we select (m,n) with
appropriate coordinate profile and generate G conditional on ∇FTAP(m,n) = 0. We will show that the
true model is approximately contiguous to the planted model, in the sense of (2.3) below. So, rather than
conditioning on the AMP filtration, we can condition directly on (m,n) after all. The conditional first
moment of ZN (G) then reverts to a simple optimization in two, rather than O(k), dimensions. This makes
the capacity upper bound tractable.

The idea of passing by contiguity to a model with a planted TAP solution is also used in simultaneous joint
work with A. Montanari and H. T. Pham [HMP24], on sampling from the Gibbs measure of a spherical mixed
p-spin glass in total variation by an algorithmic implementation of stochastic localization [Eld20b, AMS22].
A similar inequality to (2.3) appears as Proposition 4.4(d) therein. However, these two papers differ in both
how this reduction is used, and how it is proved. While [HMP24] develops a reduction similar to (2.3), its
main focus is to compute a high-precision estimate for the mean of a Gibbs measure, and the reduction to
a planted model arises as a step in the analysis of this estimator. In the present paper, the reduction (2.3)
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is itself the main technical step, but the proof of it is also more challenging. Most notably, a key ingredient
in the proof of (2.3), in both the present paper and [HMP24], is the uniqueness of the TAP fixed point in
a certain region, see (R1) below. Whereas this ingredient is available in the spin glass setting of [HMP24]
from known results, showing it in our setting requires new ideas, described in detail in Subsection 2.2.3.

We now state the approximate contiguity estimate. For small υ > 0, let Sυ denote the set of (m,n)
whose coordinate profile is υ-close (in a suitable metric, see (2.27)) to that predicted by the TAP heuristic.
We will show, roughly speaking, that there exists C = O(1) such that for any G-measurable event E ,

P(E ) ≤ C sup
(m,n)∈Sυ

P(E |∇FTAP(m,n) = 0)1/2 + oN (1). (2.3)

Remark 2.2.1. For reasons described below, we actually prove (2.3) for perturbations FεTAP, Sε,υ of FTAP,
Sυ, and this qualification holds for the entire discussion below, even where not stated. These perturbations
are defined in (2.24) and (2.27), and the formal version of (2.3) is given in Lemma 2.3.8.

We then take E = {SN (G) 6= ∅}. The first moment bound will show that (under Condition 2.1.3) this
event has vanishing probability in the planted model for any α > α?. Then (2.3) implies the conclusion.

Next, we discuss the proof of (2.3). The following two central ingredients establish uniqueness and
existence of the critical point of FTAP within the set Sυ, with high probability in the true model.

(R1) The expected number of critical points of FTAP in Sυ is 1 + o(1).

(R2) With high probability, there exists a critical point of FTAP in Sυ.

Remark 2.2.2. Although the TAP perspective predicts FTAP has a unique critical point in the full input
space, uniqueness in Sυ (and for the perturbed FεTAP) suffices for our proof.

A short argument based on the Kac–Rice formula [Kac48, Ric44] (see [AT09, Theorem 11.2.1] for a text-
book treatment) shows that (2.3) follows from (R1), (R2), and the following additional input, which is a
concentration condition on the change of volume term |det∇2FTAP(m,n)| in the Kac–Rice formula. This
argument is carried out in the proof of Lemma 2.3.8, see (2.33).

(R3) There exists C ′ = O(1) such that uniformly over (m,n) ∈ Sυ,

E[|det∇2FTAP(m,n)|2
∣∣∇FTAP(m,n) = 0]1/2 ≤ C ′ E[|det∇2FTAP(m,n)|

∣∣∇FTAP(m,n) = 0].

Remark 2.2.3. Since the probability in (2.3) is exponentially small, the proof can be carried out with eo(N)

in place of C in (2.3). Consequently, showing (R1) and (R3) with eo(N) in place of 1+o(1), O(1) also suffices.

Input (R2) is proved constructively, by showing that AMP finds a critical point in the following sense.

(R4) There exists rk = ok(1) such that with high probability, FTAP has a unique critical point in a rk
√
N -

neighborhood of the AMP iterate (mk,nk) (which lies in Sυ by state evolution), for each sufficiently
large k.

Input (R3) will follow from a classic spectral concentration argument of [GZ00]. We next discuss the proofs
of (R1), (R4) and (R3), in that order.

2.2.3 Topological trivialization of TAP free energy

Condition (R1) is the most important input to the proof of (2.3). It is related to a remarkable line of work
pioneered by [Fyo04, ABČ13], on the landscapes of random high-dimensional functions. This line of work
has obtained expected critical point counts in a variety of settings, including spherical p-spin glasses [AB13,
ABČ13] (see [Sub17a, AG20, SZ21, BSZ20, HS23b] for matching second moment estimates in certain cases)
spiked tensor models [BMMN19, ABL22], the TAP free energy for Z2-synchronization [FMM21, CFM23],
bipartite spin glasses [Kiv23, McK24], the elastic manifold [BBM24], and generalized linear models [MBB20].
We also refer the reader to earlier non-rigorous work on this topic from the statistical physics literature
[BM80, PP95, CLR05].
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One phenomenon studied in these works is topological trivialization [FLD14, Fyo15, BČNS22, HS23c],
a phase transition where the number of critical points drops from ecN to eo(N), or often O(1). Proving (R1)
amounts to showing annealed topological trivialization for FεTAP on Sε,υ.

The strategy of these works is to calculate the expected number of critical points using the Kac–Rice
formula, evaluating the integrand using random matrix theory. Usually, the most complicated term in the
integrand is the expected absolute value of the determinant of a random matrix. The most well-understood
application is where the landscape is a spherical mixed p-spin glass, in which case this random matrix is a
GOE shifted by a scalar multiple of the identity. For this case, an exact formula for this expected absolute
determinant is known, see [ABČ13, Lemma 3.3]. This makes the Kac–Rice calculation explicit and tractable.
In particular, [Fyo15, BČNS22] use this approach to determine the topologically trivial phase of spherical
mixed p-spin glasses, and [HMP24] uses these results to establish (R1) for its application. However, for other
models, results on topological trivialization are not as readily available.

It may still be possible to show (R1) for our model in this way, by evaluating the more general random
determinant that appears in the Kac–Rice formula. This is the approach taken by [FMM21] which, for
Z2-synchronization at sufficiently large signal, shows annealed trivialization of suitably low-energy TAP
solutions. Their method bounds the random determinant in the Kac–Rice formula using free probability
[Voi91]. Furthermore, [BBM23] introduced a general tool for studying random determinants, showing that
under mild conditions, their exponential order is the integral of log |λ| against the random matrix’s limiting
spectral measure. The spectral measure can then be studied using free probability.

Using this approach, one can often express the exponential order of the expected number of critical points
as a variational formula, in which one term is an implicitly-defined function arising from free probability
[Kiv23, HS23c, BBM24, McK24]. This yields a plausible way to show (R1): if we can show the variational
formula for our model has value zero, annealed trivialization follows (in the sense of eo(N) expected critical
points, which suffices by Remark 2.2.3). Recently, [HS23c] showed that this method can be carried out for
multi-species spherical spin glasses, and it in fact characterizes the topologically trivial phase. Nonetheless,
the variational formula is highly model-dependent — the proof in [HS23c] relies on a detailed understanding
of a vector Dyson equation — and it is unclear if this method can be carried out for our model.

We instead show annealed topological trivialization by a different, and arguably more conceptual, ap-
proach. We will show that (R1) follows from the following variant of (R4):

(R5) In a model where we plant a stationary point (m,n) ∈ Sε,υ of FεTAP (i.e. condition on ∇FεTAP(m,n) =
0), the same AMP iteration finds (m,n), in the sense of (R4), with high probability.

This implication is proved in Lemma 2.4.15. Heuristically, the reason (R5) implies (R1) is that any realization
of the disorder where FεTAP has T > 1 stationary points in Sε,υ can arise in T different planted models, and
the event in (R5) can hold in only one of these T realizations. If the expected number of critical points is
too large, (R5) cannot occur with the stated probability. The input (R5) can be proved by similar methods
as (R4), as described in the next subsection. This method yields the first proof of topological trivialization
that does not directly evaluate the Kac–Rice formula. We believe this is interesting in its own right.

2.2.4 Critical point near late AMP iterates and determinant concentration

This subsection discusses inputs (R4), (R5), and (R3), in that order. As state evolution ensures ‖∇FTAP(mk,nk)‖ =
ok(1)

√
N (recall (2.2)), (R4) holds if, for example, FTAP is C-strongly concave in a neighborhood of late AMP

iterates for C > 0 independent of k. Recent works in the variational inference literature [CFM23, CFLM23,
Cel24] develop tools to establish this local concavity, and using them prove analogs of (R4) in several models.

In our setting, the fact that FTAP is not strongly concave near late AMP iterates introduces some
complications. In fact, FTAP is strongly concave in m, but convex — and problematically, not strongly
convex — in n. This issue is one reason we carry out the argument on a perturbation FεTAP of FTAP, and
a similarly perturbed AMP iteration and set Sε,υ. (This perturbation serves several other purposes as well,
described in Remark 2.4.5.) We will show that near late AMP iterates, FεTAP is strongly convex in n and
GεTAP(m) ≡ infn FεTAP(m,n) is strongly concave, which is enough to imply (R4). Strong convexity of FεTAP
in n holds (deterministically) essentially by construction.

Our proof of local strong concavity of GεTAP uses an idea introduced in [Cel24], to bound the Hessian at a
late AMP iterate by applying a gaussian comparison inequality conditionally on the AMP iterates. [Cel24]
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considers a setting where AMP is performed on disorder W ∼ GOE(N) and the relevant Hessian is of the
form A+W , where A is a function of a late AMP iterate. He develops a method to upper bound the top
eigenvalue of this matrix by applying the Sudakov–Fernique inequality [Sud71, Fer75, Sud79] to the part of
W that remains random after observing the AMP iterates. For us, the Hessian takes the form

∇2GεTAP(m,n) = A1 +
1

N
G>A2G+ ∆, (2.4)

where A1,A2 are functions of (m,n), and ∆ is a low-rank term depending on both G and (m,n). We can
arrange FεTAP so that ∆ does not contribute to the top eigenvalue. However, the post-AMP Sudakov–Fernique
inequality does not apply to the remaining part, because — unlike for a GOE matrix — the quadratic form
induced by G>A2G is not a gaussian process. We instead recast the top eigenvalue as a minimax program,
via the identity (for A2 ≺ 0)

λmax

(
A1 +

1

N
G>A2G

)
= sup
‖v̇‖=1

inf
v̂∈RM

{
〈v̇,A1v̇〉 − 〈v̂,A−1

2 v̂〉+
2√
N
〈v̂,Gv̇〉

}
.

This can be bounded by Gordon’s inequality [Gor85, Gor88] conditional on the AMP iterates. Interestingly,
the bound obtained in this way is sharp, matching a lower bound for the top eigenvalue obtained by free
probability (see Remark 2.6.15).

The input (R5) follows similarly to (R4). We will show that with high probability over the planted
model, late AMP iterates are approximate critical points of FεTAP, near which FεTAP(m, ·) is strongly convex
and GεTAP is strongly concave. While the law of the disorder is different under the planted model, it remains
gaussian and a similar analysis can be carried out.

We turn to (R3). An argument of [GZ00] implies that if a symmetric X ∈ RN×N has independent (not
necessarily centered or identically distributed) entries on and above the diagonal with uniformly bounded
log-Sobolev constant, then 1√

N
X enjoys a strong spectral concentration property: any 1-Lipschitz spec-

tral trace has O(1)-scale subgaussian fluctuations. We will see that conditional on ∇FεTAP(m,n) = 0,
det∇2FεTAP(m,n) is a nonrandom multiple of det∇2GεTAP(m,n), which has form (2.4). The entries of this
matrix are not independent, but we can rewrite it via the classical trick

det

(
A1 +

1

N
G>A2G

)
= detX, X =

[
A1

1√
N
G>

1√
N
G −A−1

2

]
. (2.5)

Conditional on ∇FεTAP(m,n) = 0, the matrices A1,A2 are nonrandom while G has a (noncentered) gaussian
law. Thus the result of [GZ00] applies to X. (A slightly more elaborate version of (2.5) also accounts for
the random low-rank spike ∆ in (2.4), see (2.76).)

From the above discussion, conditional on ∇FεTAP(m,n) = 0, FεTAP(m, ·) is strongly convex near n and
GεTAP is w.h.p. strongly concave near m. This implies that the spectrum of ∇2FεTAP(m,n), and thus X,
is bounded away from zero, and provides the final ingredient to prove (R3): since x 7→ log |x| is O(1)-
Lipschitz away from zero, log |detX| is approximately a O(1)-Lipschitz spectral trace, which has O(1)-scale
subgaussian fluctuations by [GZ00].

Remark 2.2.4. The fact that this log determinant has O(1)-scale fluctuations is only possible because the
spectrum is bounded away from zero. For Wigner or Ginibre matrices, two examples of random matrices
whose limiting bulk spectrum does include zero, the log determinant is known to have Θ(

√
logN) fluctuations

[TV12, NV14], which diverges with N .

2.2.5 On planted models

Reducing to a planted model is a powerful tool in the analysis of random functions. This technique was
introduced in the seminal work [AC08] and has seen a wide range of applications in the past decade. The
underlying idea is to show contiguity of the original model with a planted version, defined as the null model
conditioned on having a particular (randomly chosen) solution. If this holds, properties of the null model
can be deduced from the planted version, which is often easier to analyze.
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A frequent application of this method is to probe the local landscape around a typical solution. This
is the original application of [AC08]: contiguity implies that the landscape around a typical solution to
the null model can be approximated by the landscape around the planted solution in the planted model.
From this, [AC08] shows the existence of a shattering transition in several random constraint satisfaction
problems. This approach has since also been used to show “frozen 1RSB” structure in the symmetric binary
perceptron [PX21, ALS22b] and shattering in the Gibbs measures of spherical spin glasses [AMS25]. In a
similar spirit, [HMP24] passes to a model with a planted TAP solution to obtain a high-precision estimate
of the magnetization of a spherical spin glass.

In other applications, including the present work, the object of interest is not the local landscape, but
the planted model is nonetheless simpler to analyze than the null model. Such applications include the RS
free energy of random constraint satisfaction problems [BC16, BCH+16, CKPZ17, CEJ+18, CKM20], the
1RSB free energy of random regular NAE-SAT [SSZ22], and the Parisi formula for spherical spin glasses in
the RS and zero-temperature 1RSB phases [HS23b]. Passage to a planted model is also a crucial tool in the
analysis of sampling algorithms based on stochastic localization [AMS22, AMS23b].

2.2.6 First moment in planted model

In this subsection, we give a heuristic calculation of the first moment of ZN (G) in the planted model.
The function S?(λ1, λ2) appearing in Condition 2.1.3 arises from this calculation, and under this condition
the first moment method succeeds. At the end of this subsection, we also give numerical evidence for
Condition 2.1.3 when κ = 0.

We work at constraint density α?, setting M = bα?Nc and G, SN (G), ZN (G) as above with this M . Let
Pm,n
Pl and Em,n

Pl denote probability and expectation w.r.t. the model conditional on ∇FTAP(m,n) = 0. We
will argue that under Condition 2.1.3, Em,n

Pl ZN (G) = eo(N). Then, at any constraint density α > α?, the
(α− α?)N additional constraints will make this moment exponentially small.

This argument will be made rigorous in Section 2.7. Per the above discussion, the rigorous version of
this argument will plant a critical point of FεTAP rather than FTAP.

We first define the function S?. Let (q0, ψ0) = (q?(α?, κ), ψ?(α?, κ)) be defined by Condition 2.3.1. As

discussed in Subsection 2.2.1, these are the variances of the (gaussian) coordinate empirical measures of ĥ, ḣ

predicted by the TAP heuristic, at constraint density α?. Let Ḣ ∼ N (0, ψ0) and Ĥ ∼ N (0, q0). These two
random variables may be defined on different probability spaces, as all expectations in the below formulas
will involve random variables from only one space. LetM = th(Ḣ) andN = F1−q0(Ĥ). For any measurable
Λ : R→ [−1, 1], define

ent(Λ) = EH

(
1 + Λ(Ḣ)

2

)
, (2.6)

where H(x) = −x log x − (1 − x) log(1 − x) is the binary entropy function. Let Ψ be the complementary
gaussian cumulative density function defined in (2.12). For s ≥ 0, define

S?(Λ, s) =
1

2
s2ψ0 + ent(Λ) + α? E log Ψ

κ−
E[MΛ(Ḣ)]

q0
Ĥ − E[ḢΛ(Ḣ)]

ψ0
N√

1− E[MΛ(Ḣ)]2

q0

+ sN

 . (2.7)

Finally, let Λλ1,λ2
(x) = th(λ1x+ λ2th(x)) and define

S?(Λ) = inf
s≥0

S?(Λ, s), S?(λ1, λ2) = S?(Λλ1,λ2
). (2.8)

These quantities have the following physical meanings. Ḣ, Ĥ,M ,N are the coordinate distributions of
ḣ, ĥ,m,n. Λ specifies a set ΣN (Λ) ⊆ ΣN of points x where xi has “conditional average” Λ(ḣi), in the sense
that (informally, see (2.81))

1

#{i ∈ [N ] : ḣi ≈ ḣ}

∑
i∈[N ]:ḣi≈ḣ

xi ≈ Λ(ḣ), ∀ḣ ∈ R. (2.9)
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Note that ent(Λ) is the entropy of this set, that is (see Lemma 2.7.6)

1

N
log |ΣN (Λ)| ' ent(Λ). (2.10)

Here and throughout, ' denotes equality up to additive oN (1).
Let ZN (G,Λ) = |SN (G) ∩ ΣN (Λ)| denote the number of solutions with profile Λ. We will see that for

all s ≥ 0, S?(Λ, s) upper bounds the exponential order of Em,n
Pl ZN (G,Λ). Thus S?(Λ) also upper bounds

this quantity, and Em,n
Pl ZN (G) is bounded (heuristically) by Laplace’s principle:

1

N
logEm,n

Pl ZN (G) ' sup
Λ

{
1

N
logEm,n

Pl ZN (G,Λ)

}
≤ sup

Λ
S?(Λ) + oN (1).

While this supremum is a priori an infinite-dimensional optimization problem, the following observation
reduces it to two dimensions. For any a1, a2, a Lagrange multipliers calculation (see Lemma 2.7.10) shows
that the maximum of ent(Λ) subject to E[ḢΛ(Ḣ)] = a1, E[MΛ(Ḣ)] = a2 is attained by Λ of the form
Λλ1,λ2

. As the remaining terms in S?(Λ, s) depend on Λ only through E[ḢΛ(Ḣ)] and E[MΛ(Ḣ)], we may
restrict attention to Λ of this form. Thus

1

N
logEm,n

Pl ZN (G) ≤ sup
λ1,λ2

S?(λ1, λ2) + oN (1).

This implies Em,n
Pl ZN (G) = eo(N) under Condition 2.1.3.

We next argue that S?(Λ, s) upper bounds the exponential order of Em,n
Pl ZN (G,Λ), as claimed above.

Due to (2.10), it suffices to bound the probability that some x ∈ ΣN (Λ) satisfies all constraints. The planted

model has the following law. Let ḣ ∈ RN , ĥ ∈ RM have coordinate distributions approximating N (0, ψ0),

N (0, q0), and let m = th(ḣ), n = F1−q0(ĥ). A gaussian conditioning calculation (see Corollary 2.4.18)
shows that conditional on ∇FTAP(m,n) = 0,

G√
N

d
=
ĥm>

Nq0
+
nḣ
>

Nψ0
+
P⊥n G̃P

⊥
m√

N
+ oN (1).

Here G̃ is an i.i.d. copy of G, P⊥m denotes the projection operator to the orthogonal complement of m,
and oN (1) is a matrix of operator norm oN (1). For any x ∈ ΣN (Λ), we have 1

N 〈m,x〉 ' E[MΛ(Ḣ)] and
1
N 〈ḣ,x〉 ' E[ḢΛ(Ḣ)]. So,

Gx√
N

d
=

E[MΛ(Ḣ)]

q0
ĥ+

E[ḢΛ(Ḣ)]

ψ0
n+

√
1− E[MΛ(Ḣ)]2

q0
g̃ + o(

√
N),

where g̃ ∼ N (0, P⊥n ) and o(
√
N) denotes a vector of norm o(

√
N). Thus

1

N
logPm,n

Pl

(
Gx√
N
≥ κ1

)
' 1

N
logP

g̃ ≥ κ1− E[MΛ(Ḣ)]
q0

ĥ− E[ḢΛ(Ḣ)]
ψ0

n√
1− E[MΛ(Ḣ)]2

q0

 . (2.11)

This can be bounded by a change of measure calculation also used in [DS18]. Let ĝ ∼ N (sn, IN ) for any
s ≥ 0. Note that conditional on 〈ĝ,n〉 = 0, we have ĝ =d g̃. So, if S denotes the event in (2.11), then

P(g̃ ∈ S) ≤ P(ĝ ∈ S)

P(〈ĝ,n〉 ≈ 0)
≈ exp

(
1

2
s2ψ0N

)
P(ĝ ∈ S).

Since ĥ has coordinate distribution Ĥ, this implies (see Lemma 2.7.8 for formal statement) that (2.11) is
bounded by

1

2
s2ψ0 + α? E log Ψ

κ− E[MΛ(Ḣ)]
q0

Ĥ − E[ḢΛ(Ḣ)]
ψ0

N√
1− E[MΛ(Ḣ)]2

q0

+ sN

 .
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(a) x, y ∈ [−1, 1]2 (b) S ?(th−1(x), th−1(y)) ≥ −0.01

Figure 2.1: Plots of (x, y) 7→ S ?(th
−1(x), th−1(y)) for κ = 0. Figure 2.1a plots over x, y ∈ [−1, 1]2,

while Figure 2.1b restricts to inputs with S ?(th
−1(x), th−1(y)) ≥ −0.01. The plots lie below 0, and from

Figure 2.1b it appears the unique maximizer is (x, y) = (th(1), 0), corresponding to (λ1, λ2) = (1, 0).

Combining with (2.10) shows that 1
N logEm,n

Pl ZN (G,Λ) ≤ S?(Λ, s) + oN (1).
We conclude this subsection with a discussion of Condition 2.1.3. We expect m to approximate the

barycenter of SN (G), and therefore that S?(λ1, λ2) is maximized by (λ1, λ2) = (1, 0), corresponding to
Λλ1,λ2

(Ḣ) = th(Ḣ) = M . Let

S ?(λ1, λ2) = S?(Λλ1,λ2 ,
√

1− q0),

which is an upper bound for S?.

Lemma 2.2.5 (Proved in Section 2.7). The following holds.

(a) The function S?(λ1, λ2) attains its supremum on R2.

(b) S?(1, 0) = S ?(1, 0) = 0.

(c) ∇S?(1, 0) = ∇S ?(1, 0) = 0.

(d) ∇2S?(1, 0) � ∇2S ?(1, 0)

Claim 2.2.6 (Proved in Appendix 2.B). For κ = 0, there exists C > 0 such that ∇2S ?(1, 0) � −CI.

Lemma 2.2.5 is proved for all κ, while Claim 2.2.6 is verified numerically for κ = 0 using rigorous interval
arithmetic. Together, they imply that for κ = 0, (1, 0) is a local maximum of S? and S ?. In Figure 2.1,
we provide a plot of S ? for the case κ = 0. This gives numerical evidence that S ?, and therefore S?, has
global maximum (1, 0).

2.3 Formal statement of results

In this section we state our main result for general κ, Theorem 2.3.6. We also reduce Theorem 2.3.6 to two
primary inputs: approximate contiguity with a planted model (Lemma 2.3.8) and the upper bound for the
first moment in the planted model (Proposition 2.3.9), which are proved in Section 2.4–2.6 and Section 2.7.
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2.3.1 Krauth–Mézard threshold

We first define the threshold α? conjectured by [KM89], following the presentation of [DS18]. Define the
standard gaussian density and complementary CDF by

ϕ(x) =
exp(−x2/2)

(2π)1/2
, Ψ(x) =

∫ ∞
x

φ(u) du. (2.12)

Fix once and for all κ ∈ R. For q ∈ [0, 1), define5

E(x) =
ϕ(x)

Ψ(x)
, F1−q(x) =

E
(1− q)1/2

(
κ− x

(1− q)1/2

)
. (2.13)

For ψ ≥ 0 and Z ∼ N (0, 1), further define

P (ψ) = E[th(ψ1/2Z)2], Rα(q) = αE[F1−q(q
1/2Z)2],

and define the Gardner free energy (or Gardner volume formula) by

G (α, q, ψ) = − (1− q)ψ
2

+ E log(2ch(ψ1/2Z))− αE log Ψ

(
κ− q1/2Z

(1− q)1/2

)
. (2.14)

The physical meanings of these formulas are best understood in terms of a heuristic derivation of the TAP free
energy FTAP(m,n) and TAP equations, which we explain next. (These quantities will be formally defined
in (2.15), (2.16).) If we regard G as a complete bipartite factor graph on N variables and M constraints, we
can study the perceptron model by the standard belief propagation (BP) equations [MM09, Chapter 14].
In the mean-field (dense graph) limit, these equations simplify considerably. First, because the influence
of any particular message is small, all the messages emanating from a particular variable i ∈ [M ] (resp.
constraint a ∈ [M ]) can be consolidated into a single message mi (resp. na). The TAP variables (m,n) thus
represent these consolidated messages. The BP equations then become the TAP equations, and the Bethe
free energy of this BP system becomes the TAP free energy. See [Méz17] for an example of this derivation
in a related model.

Moreover, by central limit theorem considerations, we expect that the coordinates of ḣ = th−1(m)

and ĥ = F−1
1−‖m‖2/N (n) have gaussian empirical measure. Let these gaussians have variance ψ and q,

respectively; this is the physical meaning of these parameters. Then the BP consistency relations require
that ψ, q satisfy the fixed-point equation q = P (ψ), ψ = Rα(q), and the corresponding Bethe free energy is
precisely G (α, q, ψ). Finally, we expect α? to be the constraint density where this Bethe free energy crosses
zero. Under the following condition, which was verified in [DS18] for κ = 0, this heuristic picture can be
formalized into a definition of α?.

Condition 2.3.1. There exist 0 < αlb < αub and 0 < qlb < qub < 1 (depending on κ) such that the
following holds. For any α ∈ (αlb, αub),

sup
q∈(qlb,qub)

(P ◦Rα)′(q) < 1,

and there is a unique q? = q?(α, κ) ∈ (qlb, qub) such that q? = P (Rα(q?)). Let ψ? = ψ?(α, κ) = Rα(q?).
For α ∈ (αlb, αub), the function G?(α) = G (α, q?(α, κ), ψ?(α, κ)) is strictly decreasing, with a unique root
α? = α?(κ).

Proposition 2.3.2 ([DS18, Proposition 1.3]). For κ = 0, Condition 2.3.1 holds for αlb = 0.833078599,
αub = 0.833078600, qlb = 0.56394907949, qub = 0.56394908030.

5The function F1−q is denoted Fq in [DS18]. We change this notation to be consistent with the meaning of Fε,% (2.18)
appearing in our proofs.

33



2.3.2 Main result

Throughout, let α? = α?(κ) and (q0, ψ0) = (q?(α?, κ), ψ?(α?, κ)) be given by Condition 2.3.1. We now
introduce two more numerical conditions needed for our main result, which will be verified for κ = 0 in
Appendix 2.B using rigorous interval arithmetic. In the below formulas, let Z ∼ N (0, 1).

Condition 2.3.3. We have α? E[th′(ψ
1/2
0 Z)2]E[F ′1−q0(q

1/2
0 Z)2] < 1.

Condition 2.3.4. Define the functions m : (−1,+∞)→ (0,+∞) and f̂0 : R→ (0,+∞) by

m(z) = E[(z + ch2(ψ
1/2
0 Z))−1],

f̂0(x) = −
F ′1−q0(x)

1 + (1− q0)F ′1−q0(x)
=

E ′((κ− x)/(1− q0)1/2))

(1− q0)(1− E ′((κ− x)/(1− q0)1/2))
.

(By Lemma 2.4.21(b) below, E ′ has image in (0, 1), and thus f̂0(x) > 0.) Then, for d0 = α? E[F ′1−q0(q
1/2
0 Z)]

and λ : (−1,+∞)→ R defined by

λ(z) = z − α? E

[
f̂0(q

1/2
0 Z)

1 +m(z)f̂0(q
1/2
0 Z)

]
− d0,

we have λ0 ≡ infz>−1 λ(z) < 0.

The following lemma shows that minimizer of λ exists and is the unique root of a decreasing function, and
it suffices to check Condition 2.3.4 at the value λ(z0).

Lemma 2.3.5 (Proved in Section 2.6). The function λ is differerentiable with λ′(z) = 1 − α?θ(z), where
θ : (−1,+∞)→ (0,+∞) is defined by

θ(z) = E[(z + ch2(ψ
1/2
0 Z))−2]E

( f̂0(q
1/2
0 Z)

1 +m(z)f̂0(q
1/2
0 Z)

)2
 .

Moreover θ is continuous and strictly decreasing, with

lim
z↓−1

θ(z) = +∞, lim
z↑+∞

θ(z) = 0.

In particular θ has a well-defined inverse θ−1 : (0,+∞)→ (−1,+∞), and λ is strictly convex on (−1,+∞)
with minimizer z0 = θ−1(α−1

? ). Thus λ0 defined in Condition 2.3.4 satisfies λ0 = λ(z0).

Theorem 2.3.6 (Main result, general κ). For any κ ∈ R, under Conditions 2.1.3, 2.3.1, 2.3.3, and 2.3.4
the following holds. For any α > α?(κ), we have limN→∞ P(MN (κ)/N ≥ α) = 0.

Remark 2.3.7. The conditions in Theorem 2.3.6 serve the following purposes.

• Condition 2.1.3 controls the first moment of the partition function in the planted model.

• Condition 2.3.1 makes the threshold α?(κ) well-defined.

• Condition 2.3.3 ensures that the AMP iterates converge in the sense of (2.2).

• Condition 2.3.4 ensures that GεTAP (see Subsection 2.2.4) is locally concave near late AMP iterates.

With the exception of Appendix 2.B, we will assume all conditions in Theorem 2.3.6 without further notice.
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2.3.3 Proof of Theorem 2.3.6

We will carry out nearly the entire proof at constraint density α?. Thus, we set M = bα?Nc and define
G ∈ RM×N and ZN (G) as above.

The main step of the proof is a reduction to a planted model, formalized by Lemma 2.3.8 below. Let P
denote the law of G with i.i.d. N (0, 1) entries, and let Pm,n

ε,Pl be the planted law defined in Definition 2.4.3.
This is the law of G conditional on ∇FεTAP(m,n) = 0, for a perturbation FεTAP of FTAP defined in (2.24).
(These will actually be probability measures over (G, ġ, ĝ) for auxiliary disorder ġ, ĝ defined below.) Let
Sε,υ be a similar perturbation of Sυ defined in (2.27).

Lemma 2.3.8 (Proved in Section 2.4–2.6). For any (G, ġ, ĝ)-measurable event E and any ε, υ > 0, there
exists C = C(ε, υ) such that

P(E ) ≤ C sup
(m,n)∈Sε,υ

Pm,n
ε,Pl (E )1/2 + oN (1).

The following proposition controls the first moment of ZN (G) in the planted model, formalizing the heuristic
calculation in Subsection 2.2.6. Here Em,n

ε,Pl denotes expectation with respect to Pm,n
ε,Pl .

Proposition 2.3.9 (Proved in Section 2.7). For any δ > 0, there exists ε, υ > 0 such that

sup
(m,n)∈Sε,υ

Em,n
ε,Pl [ZN (G)] ≤ eδN .

From these two results, Theorem 2.3.6 follows by a short argument.

Proposition 2.3.10. For any δ > 0,

P[ZN (G) ≤ eδN ] = 1− oN (1).

Proof. Let E = {ZN (G) ≤ eδN}. By Lemma 2.3.8 and Markov’s inequality,

P(E c) ≤ C sup
(m,n)∈Sε,υ

Pm,n
ε,Pl (E c)1/2 + oN (1) ≤ Ce−δN/2 sup

(m,n)∈Sε,υ
Em,n
ε,Pl [ZN (G)]1/2 + oN (1).

By Proposition 2.3.9, we may choose ε, υ so this supremum is at most eδN/4.

Proof of Theorem 2.3.6. Let Mall = bαNc, and let Gall = (G
Ĝ

) ∈ RMall×N , where Ĝ ∈ R(Mall−M)×N has

i.i.d. N (0, 1) entries. Set δ < 1
2 (α−α?) log 1

Φ(κ) . Let E = {ZN (G) ≤ eδN}, which satisfies P(E ) = 1− oN (1)

by Proposition 2.3.10. Then

P(MN (κ)/N ≥ α) = P(ZN (Gall) > 0) ≤ P(E c) + E[ZN (Gall)1{E }].

Since the rows of Ĝ are i.i.d. samples from N (0, IN ) independent of G, for any x ∈ ΣN ,

E[ZN (Gall)1{E }] ≤ eδN P
g∼N (0,IN )

(
〈g,x〉√
N
≥ κ

)Mall−M

= eδNΦ(κ)Mall−M = oN (1).

2.3.4 TAP and AMP formulas

In this subsection we provide the formulas for the TAP free energy, TAP equations, and AMP iteration
mentioned above. The heuristic derivation of the former two were discussed below (2.14), and the latter is
obtained by iterating the TAP equations in a suitable way.

The contents of this subsection play no formal role in the following proofs. We include these formulas for
the reader’s convenience, to allow a comparison with the ε-perturbed TAP free energy and AMP iteration
defined in Subsection 2.4.2 below. (See also (2.36), (2.37) for the ε-perturbed TAP equations.) For (m,n) ∈
RN × RM , let q(m) = ‖m‖2/N and ψ(n) = ‖n‖2/N . The TAP free energy for this model is

FTAP(m,n) =

N∑
i=1

H
(

1 +mi

2

)
+

M∑
a=1

log Ψ

κ− 〈ga,m〉√
N

+ (1− q(m))na

(1− q(m))1/2

+
N

2
(1− q(m))ψ(n). (2.15)
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(Recall H(x) = −x log(x) − (1 − x) log(1 − x) is the binary entropy function.) The TAP equations are the
stationarity conditions of FTAP, and are

n = F1−q(m)(ĥ) ≡ F1−q(m)

(
Gm√
N
− b(m)n

)
, m = th(ḣ) ≡ th

(
G>n√
N
− d(m,n)m

)
, (2.16)

where

b(m) = 1− q(m), d(m,n) =
1

N

M∑
a=1

F ′1−q(m)(na).

Recall that these are the mean-field limit of the BP equations for this model. The terms b(m)n and
d(m,n)m compensate for backtracking and are known as the Onsager correction terms.

Let q0, ψ0 be as in Condition 2.3.1, and define

b0 = E[th′(ψ
1/2
0 Z)] = 1− q0, d0 = α? E[F ′1−q0(q

1/2
0 Z)].

The AMP iteration associated to FTAP is given by n−1 = 0 ∈ RM , m0 = q
1/2
0 1 ∈ RN , and

nk = F1−q0(ĥ
k
) = F1−q0

(
Gmk

√
N
− b0nk−1

)
, mk+1 = th(ḣ

k+1
) = th

(
G>nk√

N
− d0m

k

)
. (2.17)

2.4 Reduction to planted model

In this section we prove the central Lemma 2.3.8, using inputs from Section 2.5–2.6 as described below.
Subsection 2.4.1–2.4.5 are devoted to this proof. Subsection 2.4.6 derives the law of the planted model Pm,n

ε,Pl ,
which will be useful for calculations in the rest of the paper. To maintain a smooth presentation, we defer
some proofs to Subsection 2.4.7, and routine but technical arguments to Appendix 2.A.

2.4.1 Parameter list and notations

For convenience, we record here the order in which several parameters used in the proof of Lemma 2.3.8 are
set. Each item in this list can be set sufficiently small or large depending on any preceding item.

• ε, size of the perturbation to the AMP iteration and TAP free energy.

• Ccvx and Cbd, estimates for ρε (defined below, see (2.22)) and its derivatives.

• η, bound on strong convexity of FεTAP(m,n) in n, and Creg, bound on regularity of ∇2FεTAP.

• r0, radius around late AMP iterates where there is a unique critical point of FεTAP.

• υ0, accuracy of AMP iterate under which there is a unique critical point of FεTAP nearby.

• k, index of AMP iterate (mk,nk) with accuracy υ0.

• υ, tolerance in Sε,υ.

• υ1, accuracy of AMP iterate under which, by convex-concavity considerations, the nearby unique
critical point lies in Sε,υ.

• `, index of AMP iterate (m`,n`) with accuracy υ1.

• N , problem dimension.
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This information will be reviewed when these parameters are introduced. Notations such as ok(1) will
denote quantities that tend to zero as the subscripted parameter tends to zero or infinity, which may depend
arbitrarily on preceding items in this list but do not depend on subsequent items. We will use the term
“absolute constant” to mean a constant depending on none of these parameters (but possibly depending on
κ, α?, q0, ψ0, which are fixed at the outset). Note that the statement of Lemma 2.3.8 is monotone in υ, and
thus υ can be set small depending on the parameters preceding it in this list.

We also define more notations appearing in the proofs. Throughout, Z,Z ′, Z ′′ denote i.i.d. standard
gaussians. We use P2(Rk) to denote the space of probability measures on Rk with bounded second moment
and W2 to denote 2-Wasserstein distance. p-lim denotes limit in probability.

We often consider functions F : RN × RM → R, with input (m,n) ∈ RN × RM . We will write
∇mF ∈ RN , ∇nF ∈ RM for the restriction of ∇F to the coordinates corresponding to m and n. The
Hessian restrictions ∇2

m,mF ∈ RN×N , ∇2
m,nF ∈ RN×M , and ∇2

n,nF ∈ RM×M are defined similarly.

Pm = mm>/‖m‖2 ∈ RN×N denotes the projection operator onto the span of m, and P⊥m = IN − Pm
denotes the projection operator onto its orthogonal complement.

2.4.2 Perturbed nonlinearities, AMP iteration, and TAP free energy

We next introduce perturbed versions of the AMP iteration (2.17) and TAP free energy (2.15). The purpose
of the various perturbations is discussed in Remark 2.4.5 below. Let ε > 0 be small. For % ≥ 0, define

F ε,%(x) = logEχε(x+ %1/2Z), χε(x) = exp

(
−1

2
εx2

)
P(x+ ε1/2Z ′ ≥ κ).

Then, define the perturbed nonlinearities

thε(x) = th(x) + εx, Fε,%(x) = F
′
ε,%(x). (2.18)

An elementary calculation shows that explicitly,

F ε,%(x) = −1

2
log(1 + ε%)− εx2

2(1 + ε%)
+ log Ψ

(
κ(1 + ε%)− x√

(%+ ε(1 + ε%))(1 + ε%)

)

Fε,%(x) = − εx

1 + ε%
+

1√
(%+ ε(1 + ε%))(1 + ε%)

E

(
κ(1 + ε%)− x√

(%+ ε(1 + ε%))(1 + ε%)

)
. (2.19)

Let

%ε(q, ψ) =
1− q + ε− ε2(ψ + ε)

1− 2ε(ψ + ε)
.

Define perturbed variants of the functions P,Rα? by

P ε(ψ) = E[thε((ψ + ε)1/2Z)2], Rε(q, ψ) = α? E[Fε,%ε(q,ψ)((q + ε)1/2Z)2],

and let ζε(ψ) = Rε(P ε(ψ), ψ).

Proposition 2.4.1 (Proved in Appendix 2.A). There exists ι > 0 such that for all sufficiently small ε > 0,

sup
ψ∈[ψ0−ι,ψ0+ι]

ζ ′ε(ψ) < 1,

and there is a unique solution ψε ∈ [ψ0− ι, ψ0 + ι] to ψε = ζε(ψε). Let qε = P ε(ψε) and %ε = %ε(qε, ψε). We
further have (qε, ψε, %ε)→ (q0, ψ0, 1− q0) as ε ↓ 0.

Lemma 2.4.2 (Proved in Subsection 2.4.7). We have %ε = E[th′ε((ψε + ε)1/2Z)].
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Let dε = α? E[F ′ε,%ε((qε + ε)1/2Z)]. Further, let ġ ∼ N (0, IN ), ĝ ∼ N (0, IM ) be independent of G. The

perturbed AMP iteration is defined by n−1 = 0 ∈ RM , m0 = q
1/2
ε 1 ∈ RN , and

nk = Fε,%ε(ĥ
k
) = Fε,%ε

(
Gmk

√
N

+ ε1/2ĝ − %εnk−1

)
, (2.20)

mk+1 = thε(ḣ
k+1

) = thε

(
G>nk√

N
+ ε1/2ġ − dεmk

)
. (2.21)

Define the convex function Vε : R→ R and its dual

Vε(ḣ) = log(2ch(ḣ)) +
1

2
εḣ2, V ∗ε (m) = inf

ḣ

{
−mḣ+ Vε(ḣ)

}
.

Let Ccvx, Cbd > 0 be large in ε. Let ρε : R→ R be an (unspecified) thrice-differentiable function satisfying

ρε(qε) = %ε, ρ′ε(qε) = −1, ρ′′ε (qε) = Ccvx, (2.22)

such that the image of ρε and its derivatives satisfies

ρε ∈ [C−1
bd , Cbd], |ρ(p)

ε | ≤ Cbd for p ∈ {1, 2, 3}. (2.23)

(For every Ccvx, there exists Cbd such that this is possible.) Recall that for (m,n) ∈ RN × RM , we defined
q(m) = ‖m‖2/N and ψ(n) = ‖n‖2/N . The perturbed TAP free energy is

FεTAP(m,n) =

N∑
i=1

V ∗ε (mi) + ε1/2〈ġ,m〉+

M∑
a=1

F ε,ρε(q(m))

(
〈ga,m〉√

N
+ ε1/2ĝa − ρε(q(m))na

)
+
N

2
ρε(q(m))ψ(n). (2.24)

We are now ready to define the planted model.

Definition 2.4.3. For (m,n) ∈ RN×RM , let Pm,n
ε,Pl denote the law of (G, ġ, ĝ) conditional on∇FεTAP(m,n) =

0, and Em,n
ε,Pl denote the corresponding expectation. (P and E continue to refer to the law of (G, ġ, ĝ) with

i.i.d. standard gaussian entries.)

Remark 2.4.4. As shown in Lemma 2.4.16 below, for any fixed (m,n), ∇FεTAP(m,n) = 0 is equivalent to
two linear equations (2.36), (2.37) in (G, ġ, ĝ), and thus in the planted model (G, ġ, ĝ) remains gaussian.

Remark 2.4.5. The above perturbations serve the following purposes.

• V ∗ε (mi) regularizes the term H( 1+mi
2 ) in the original FTAP, avoiding the singular behavior of FTAP near

the boundary of [−1, 1]N .

• F ε,%ε is chosen so that FεTAP is strongly convex in n. As a consequence, if we define

GTAP(m) = inf
n
FTAP(m,n), GεTAP(m) = inf

n
FεTAP(m,n),

then GεTAP(m) also regularizes GTAP(m), avoiding a singular behavior near the boundary of 1√
N
Gm ≥

κ. Indeed, GTAP(m) = −∞ if this inequality fails in any coordinate.

• The nonlinearities thε and Fε,%ε have Lipschitz inverses, so that Euclidean distances in (m,n) and

(ḣ, ĥ) are comparable.

• The perturbations ε1/2ĝ and ε1/2ġ are for technical convenience, as solutions to the original TAP
equation (2.16) must lie on the codimension-one manifold

〈ḣ+ d(m,n)m,m〉 =
1√
N
〈n,Gm〉 = 〈n, ĥ+ b(m)n〉.

With this perturbation, Kac–Rice arguments can take place on full space.

• We will see in Section 2.6 that the Hessian of GεTAP(m) is the sum of an anisotropic sample covariance
matrix, a full-rank diagonal matrix, and a low-rank spike (recall (2.4)). The condition ρ′′ε (qε) = Ccvx

ensures this spike cannot contribute to the top eigenvalue by adding a large negative spike to the
Hessian. This simplifies the proof of strong concavity of GεTAP near late AMP iterates.
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2.4.3 Inputs to reduction

We next state several inputs needed to prove Lemma 2.3.8. As anticipated in Subsection 2.2.2, the main input
is Proposition 2.4.8, which formalizes criteria (R4) and (R5). First, we record that FεTAP is (deterministically)
strongly convex in n.

Proposition 2.4.6 (Proved in Subsection 2.4.7). There exists η = η(ε, Ccvx, Cbd) > 0 such that ∇2
n,nFεTAP(m,n) �

ηIM for any (m,n) ∈ RN × RM .

We next record a basic regularity estimate. Define

∇2
�FεTAP(m,n) = ∇2

m,mFεTAP(m,n)− (∇2
m,nFεTAP(m,n))(∇2

n,nFεTAP(m,n))−1(∇2
m,nFεTAP(m,n))>.

(2.25)
This arises as the Hessian of GεTAP, as shown in Lemma 2.4.10 below.

Proposition 2.4.7 (Proved in Appendix 2.A). For any D > 0, there exists Creg = Creg(ε, Ccvx, Cbd, D) such

that over both P and Pm
′,n′

ε,Pl for any ‖m′‖2, ‖n′‖2 ≤ DN , with high probability the following holds. For all

‖m‖2, ‖n‖2 ≤ DN , we have ‖∇2FεTAP(m,n)‖op ≤ Creg.

For ḣ ∈ RN , ĥ ∈ RM , define the coordinate empirical measures

µḣ =
1

N

N∑
i=1

δ(ḣi), µĥ =
1

M

M∑
a=1

δ(ĥi). (2.26)

In words, these are probability measures on R with mass 1/N on each ḣi (resp. 1/M , ĥi). For υ > 0, let

Tε,υ =
{

(ḣ, ĥ) ∈ RN × RM : W2(µḣ,N (0, ψε + ε)),W2(µĥ,N (0, qε + ε)) ≤ υ
}
,

Sε,υ =
{

(thε(ḣ), Fε,%ε(ĥ)) : (ḣ, ĥ) ∈ Tε,υ
}
. (2.27)

Let (mk,nk) be as in (2.20), (2.21).

Proposition 2.4.8 (Proved in Section 2.5 and Section 2.6). There exist r0 > 0, k0 : R+ → N, υ : R+×N→
R+, depending on ε, Ccvx, Cbd, η, Creg, and an absolute constant Cspec > 0 such that the following holds. For
any υ0 > 0 and k ≥ k0(υ0), with high probability under P:

(a) (mk,nk) ∈ Sε,υ0 ,

(b) ‖∇FεTAP(mk,nk)‖ ≤ υ0

√
N ,

(c) ∇2
�FεTAP(m,n) � −CspecIN for all (m,n) such that ‖(m,n)− (mk,nk)‖ ≤ r0

√
N .

Moreover, let υ = υ(υ0, k). For any (m′,n′) ∈ Sε,υ, with high probability under Pm
′,n′

ε,Pl , the above three
conclusions hold and:

(d) ‖(mk,nk)− (m′,n′)‖ ≤ υ0

√
N .

The following concentration estimate follows by adapting an argument of [GZ00] and provides input (R3).

Lemma 2.4.9 (Proved in Section 2.6). There exists C depending on ε, Ccvx such that for sufficiently small
υ, uniformly over (m,n) ∈ Sε,υ,

Em,n
ε,Pl

[
|det∇2FεTAP(m,n)|2

]1/2 ≤ CEm,n
ε,Pl

[
|det∇2FεTAP(m,n)|

]
.
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2.4.4 Unique nearby critical point and conditioning lemma

Lemma 2.4.11 below provides a criterion under which a function has a unique critical point near a given
approximate critical point. Lemma 2.4.12 is a lemma about conditioning a random function on a random
vector with a unique critical point nearby, which is an adaptation of the Kac–Rice formula. This important
technical tool also appears as [HMP24, Lemma 3.6], where it is used in conjunction with known results
on topological trivialization to condition on the TAP fixed point selected by AMP. Here, we use it with
properties of the planted model provided by Proposition 2.4.8 to prove topological trivialization itself.

Lemma 2.4.10. Let U1 ⊆ RN , U2 ⊆ RM be open and convex. Suppose F : U1×U2 → R is twice differentiable
and satisfies ∇2

n,nF(m,n) � ηIM for all (m,n) ∈ U1 ×U2 for some η > 0, and G(m) ≡ minn∈U2
F(m,n)

exists for all m ∈ U1. Then n(m) = arg minn∈U2
F(m,n) is unique and differentiable, with

∇n(m) = (∇2
n,nF(m,n(m)))−1(∇2

m,nF(m,n(m)))>. (2.28)

Moreover G is twice differentiable, with

∇G(m) = ∇mF(m,n), ∇2G(m) = ∇2
�F(m,n). (2.29)

Proof. Strong convexity of F in n implies that n(m) is unique, and can be defined as the solution to
∇mF(m,n) = 0. Then (2.28) follows from the implicit function theorem, while (2.29) follows from (2.28)
and the chain rule.

Lemma 2.4.11. Let F : RN×RM → R be twice differentiable and (m0,n0) ∈ RN×RM . Let η, Creg, υ0 > 0,

r0 = 2η−1(1 + Cregη
−1)2υ0, and U = B((m0,n0), r0

√
N). Suppose that:

(C1) ‖∇F(m0,n0)‖ ≤ υ0

√
N ,

(C2) ‖∇2F(m,n)‖op ≤ Creg for all (m,n) ∈ U ,

(C3) ∇2
n,nF(m,n) � ηIM for all (m,n) ∈ RN × RM ,

(C4) ∇2
�F(m,n) � −ηIN for all (m,n) ∈ U .

Then, there is a unique (m∗,n∗) ∈ U such that ∇F(m∗,n∗) = 0. Moreover, for sufficiently small (possibly
in N) ι > 0, the image of U under the map ∇F contains B(0, ι) ⊆ RN × RM and is one-to-one on this set.

Proof. Let U1 = B(m0, r0

√
N) ⊆ RN and U2 = RM . Item (C3) implies that the hypotheses of Lemma 2.4.10

hold for FεTAP with this (U1, U2). Thus, for m ∈ U1, n(m) and G(m) from Lemma 2.4.10 are well-defined,
with derivatives given therein. If (m∗,n∗) is a critical point of F , then m∗ must be a critical point of G.
Item (C4) and equation (2.29) imply that ∇2G(m) � −ηIN for all m ∈ U1. Thus G has at most one critical
point in U1, and F has at most one critical point in U1 × U2 ⊇ U .

We now show that such a point exists. By strong concavity of F(m0, ·) and (C1),

‖n0 − n(m0)‖ ≤ η−1‖∇nF(m0,m0)‖ ≤ η−1υ0

√
N.

Because ‖∇2F(m,n)‖op ≤ Creg, the map (m,n) 7→ ∇F(m,n) is Creg-Lipschitz. Thus

‖∇G(m0)‖ = ‖∇F(m0,n(m0))‖ ≤ ‖∇F(m0,n0)‖+ Creg‖n0 − n(m0)‖ ≤ (1 + Cregη
−1)υ0

√
N.

By strong concavity of G, there exists a critical point m∗ of G with

‖m0 −m∗‖ ≤ η−1‖∇G(m0)‖ ≤ η−1(1 + Cregη
−1)υ0

√
N.

Then, with n∗ = n(m∗), (m∗,n∗) is a critical point of F . By conditions (C2), (C3) and equation (2.28),
n(·) is Cregη

−1-Lipschitz. So,

‖n0 − n∗‖ ≤ ‖n0 − n(m0)‖+ Cregη
−1‖m0 −m∗‖ ≤ η−1(1 + Cregη

−1)2υ0

√
N.
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This shows that (m∗,n∗) ∈ U , proving the first claim, and furthermore (m∗,n∗) lies in the interior of U . To
show the second claim, we first prove that any (m,n) ∈ U such that ‖∇F(m,n)‖ ≤ ι lies in a neighborhood
of (m∗,n∗). First,

‖n− n(m)‖ ≤ η−1‖∇nF(m,n)‖ ≤ η−1ι.

Similarly to above, ‖∇G(m)‖ ≤ (1 + Cregη
−1)ι, so we conclude

‖m−m∗‖ ≤ η−1(1 + Cregη
−1)ι, ‖n− n∗‖ ≤ η−1(1 + Cregη

−1)2ι.

Thus (m,n) lies in a neighborhood of (m∗,n∗), which is contained in U because (m∗,n∗) lies in the interior
of U . However, by Schur’s lemma,

det∇2F(m∗,n∗) = det∇2
n,nF(m∗,n∗) det∇2

�F(m∗,n∗) 6= 0.

By the inverse function theorem, ∇F is invertible in a neighborhood of (m∗,n∗), mapping it bijectively to
a neighborhood of 0. This concludes the proof.

Lemma 2.4.12. Let F : RN ×RM → R be a twice differentiable random function and (m0,n0) ∈ RN ×RM
be a random vector in the same probability space. Let η, Creg, υ0, r0 be as in Lemma 2.4.11, and U =

B((m0,n0), r0

√
N) (which is now a random set). Let D > 0 be arbitrary and E0 be the event that (C1)

through (C4) hold and ‖m0‖2, ‖n0‖2 ≤ DN .
Let ϕ∇F(m,n) denote the probability density of ∇F(m,n) w.r.t. Lebesgue measure on RN×RM . Suppose

ϕ∇F(m,n)(z) is bounded for (m,n) ∈ RN × RM and z in a neighborhood of 0, and continuous in z in this
neighborhood uniformly over (m,n). Then, for any event E ⊆ E0 in the same probability space,

P(E ) =

∫
RN×RM

E
[
|det∇2F(m,n)|1{E ∩ {(m,n) ∈ U}}

∣∣∇F(m,n) = 0
]
ϕ∇F(m,n)(0) d(m,n).

Proof. On E0, Lemma 2.4.11 implies there is a unique critical point (m∗,n∗) of F in U . Moreover the image
of U under ∇F contains B(0, ι) for small ι and is one-to-one on this set. By the area formula, on E0,

1 =
1

|B(0, ι)|

∫
U

|det∇2F(m,n)|1{‖∇F(m,n)‖ ≤ ι} d(m,n).

Since E ⊆ E0, multiplying both sides by 1{E } and taking expectations (via Fubini’s theorem) yields

P(E ) =
1

|B(0, ι)|
E
∫
RN×RM

|det∇2F(m,n)|1{‖∇F(m,n)‖ ≤ ι}1{m ∈ U} d(m,n)

=

∫
RN×RM

E
[
|det∇2F(m,n)|1{E ∩ {m ∈ U}}

∣∣‖∇F(m,n)‖ ≤ ι
] P{‖∇F(m,n)‖ ≤ ι}

|B(0, ι)|
d(m,n).

We now take the limit as ι → 0. On E0, |det∇2F(m,n)| ≤ CM+N
reg . Since m0,n0 are bounded on E0,

1{m ∈ U} = 0 almost surely for m outside a compact set. Since ϕ∇F(m,n)(z) is bounded and continuous
in z, P{‖∇F(m,n)‖ ≤ ι}/|B(0, ι)| is bounded, and limits to ϕ∇F(m,n)(z) as ι→ 0. Taking ι→ 0 gives the
result by dominated convergence.

2.4.5 Proof of planted reduction

We are now ready to prove Lemma 2.3.8. As anticipated in Subsection 2.2.2, Lemma 2.4.13 deduces (R2)
from (R4), and Lemma 2.4.15 deduces (R1) from (R5). Then, Lemma 2.3.8 follows readily from the Kac–Rice
formula.

Lemma 2.4.13. For any υ > 0, Sε,υ contains a critical point of FεTAP with high probability under P.

Proof. Let η = min(η(ε, Ccvx, Cbd), Cspec), where these terms are given by Propositions 2.4.6 and 2.4.8.
Then, let D = 2 max(qε, ψε) and Creg = Creg(ε, Ccvx, Cbd, D) be given by Proposition 2.4.7. Let r0 be given
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by Proposition 2.4.8. Let υ1 be small enough in υ that, with r1 = 2η−1(1 + Cregη
−1)2υ1, we have r1 ≤ r0

and ⋃
(m̃,ñ)∈Sε,υ1

B((m̃, ñ), r1

√
N) ⊆ Sε,υ. (2.30)

(Since Sε,υ is the image of a product of two Wasserstein-balls under (thε, Fε,%ε), and th−1
ε , F−1

ε,%ε have Lip-
schitz constant depending only on ε, there exists υ1 such that this holds.) Let ` = k0(υ1) be given by
Proposition 2.4.8. By Propositions 2.4.7 and 2.4.8, with high probability under P,

• ‖∇2FεTAP(m,n)‖op ≤ Creg for all ‖m‖2, ‖n‖2 ≤ DN ,

• (m`,n`) ∈ Sε,υ1 ,

• ‖∇FεTAP(m`,n`)‖ ≤ υ1

√
N ,

• ∇2
�FεTAP(m,n) � −CspecIN for all ‖(m,n)− (m`,n`)‖ ≤ r0

√
N .

We now apply Lemma 2.4.11 with (FεTAP,m`,n`, υ1, r1) in place of (F ,m0,n0, υ0, r0). The above points im-
ply that conditions (C1), (C2), (C4) hold, and condition (C3) holds by Proposition 2.4.6. By Lemma 2.4.11,
FεTAP has a critical point in B((m`,n`), r1

√
N). This lies in Sε,υ by (2.30).

The following lemma shows that the condition in Lemma 2.4.12 regarding ϕ∇F holds for F = FεTAP.

Lemma 2.4.14 (Proved in Subsection 2.4.7). The density ϕ∇FεTAP(m,n)(z) under P is bounded for (m,n) ∈
RN × RM and z in a neighborhood of 0, and continuous in z in this neighborhood uniformly over (m,n).

Lemma 2.4.15. Let Crtυ denote the set of critical points of FεTAP in Sε,υ. For small υ > 0, E |Crtυ| ≤
1 + oN (1).

Proof. By the Kac–Rice formula,

E |Crtυ| =
∫
Sε,υ

Em,n
ε,Pl

[
|det∇2FεTAP(m,n)|

]
ϕ∇FεTAP(m,n)(0) d(m,n). (2.31)

As above, let η = min(η(ε, Ccvx, Cbd), Cspec), D = 2 max(qε, ψε), and Creg = Creg(ε, Ccvx, Cbd, D). Let r0 be
given by Proposition 2.4.8, and

υ0 =
ηr0

2(1 + Cregη−1)2
.

Then set k = k0(υ0), where k0(·) is as in Proposition 2.4.8. Let E be the event that:

• ‖mk‖2, ‖nk‖2 ≤ DN ,

• ‖∇2FεTAP(m,n)‖op ≤ Creg for all ‖m‖2, ‖n‖2 ≤ DN ,

• ‖∇FεTAP(mk,nk)‖ ≤ υ0

√
N ,

• ∇2
�FεTAP(m,n) � −CspecIN for all ‖(m,n)− (mk,nk)‖ ≤ r0

√
N .

We claim that E ⊆ E0, where E0 is the event defined in Lemma 2.4.12 with (FεTAP,mk,nk) for (F ,m0,n0)

(and thus U = B((mk,nk), r0

√
N)). The above points imply conditions (C1), (C2), (C4), and condition

(C3) follows from Proposition 2.4.6. By Lemma 2.4.14, Lemma 2.4.12 applies. Thus,

1 ≥ P(E ) =

∫
RN×RM

Em,n
ε,Pl

[
|det∇2FεTAP(m,n)|1{E ∩ {(m,n) ∈ U}}

]
ϕ∇FεTAP(m,n)(0) d(m,n). (2.32)

Let υ ≤ min(υ(υ0, k), υ(r0, k)), for υ(·, ·) as in Proposition 2.4.8. Define (compare with (2.31))

I1 =

∫
Sε,υ

Em,n
ε,Pl

[
|det∇2FεTAP(m,n)|1{E ∩ {(m,n) ∈ U}}

]
ϕ∇FεTAP(m,n)(0) d(m,n)
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and I2 = E |Crtυ| − I1. By Propositions 2.4.7 and 2.4.8, for any (m,n) ∈ Sε,υ, we have Pm,n
ε,Pl (E ∩ {(m,n) ∈

U}) ≥ 1− ι for some ι = oN (1). By Cauchy–Schwarz and Lemma 2.4.9,

I2 =

∫
Sε,υ

Em,n
ε,Pl

[
|det∇2FεTAP(m,n)|1{(E ∩ {(m,n) ∈ U})c}

]
ϕ∇FεTAP(m,n)(0) d(m,n)

≤
∫
Sε,υ

Em,n
ε,Pl

[
|det∇2FεTAP(m,n)|2

]1/2 Pm,n
ε,Pl [(E ∩ {(m,n) ∈ U})c]1/2 ϕ∇FεTAP(m,n)(0) d(m,n)

≤ Cι1/2
∫
Sε,υ

Em,n
ε,Pl

[
|det∇2FεTAP(m,n)|

]
ϕ∇FεTAP(m,n)(0) d(m,n)

(2.31)
= Cι1/2 E |Crtυ|.

So, I1 ≥ (1− Cι1/2)E |Crtυ|. Since (2.32) implies I1 ≤ 1, and ι = oN (1), the conclusion follows.

Proof of Lemma 2.3.8. Set υ > 0 small enough that Lemma 2.4.15 holds. Let E1 be the event that FεTAP has
a critical point in Sε,υ. By the Kac–Rice formula,

P(E ∩ E1) ≤ E[1{E ∩ E1}|Crtυ|]

=

∫
Sε,υ

Em,n
ε,Pl

[
|det∇2FεTAP(m,n)|1{E ∩ E1}

]
ϕ∇FεTAP(m,n)(0) d(m,n).

This is bounded by∫
Sε,υ

Em,n
ε,Pl

[
|det∇2FεTAP(m,n)|2

]1/2 Pm,n
ε,Pl (E )1/2ϕ∇FεTAP(m,n)(0) d(m,n)

≤ C sup
(m,n)∈Sε,υ

Pm,n
ε,Pl (E )1/2 ×

∫
Sε,υ

Em,n
ε,Pl

[
|det∇2FεTAP(m,n)|

]
ϕ∇FεTAP(m,n)(0) d(m,n)

≤ C sup
(m,n)∈Sε,υ

Pm,n
ε,Pl (E )1/2 · E |Crtυ|

Lem. 2.4.15
≤ (1 + oN (1))C sup

(m,n)∈Sε,υ
Pm,n
ε,Pl (E )1/2. (2.33)

The result follows because P(E ) ≤ P(E ∩ E1) + P(E c
1 ), and P(E c

1 ) = oN (1) by Lemma 2.4.13.

2.4.6 Conditional law in planted model

Having proved the reduction to the planted model Pm,n
ε,Pl , we now calculate the law of the disorder in it. This

is stated in Lemma 2.4.17 for general (m,n), and Corollary 2.4.18 for (m,n) ∈ Sε,υ. The following lemma
is proved by direct differentiation of FεTAP.

Lemma 2.4.16 (Proved in Appendix 2.A). Let m ∈ RN , n ∈ RM , and

h́ =
Gm√
N

+ ε1/2ĝ − ρε(q(m))n, dε(m,n) =
1

N

M∑
a=1

(na − Fε,ρε(q(m))(h́a))2 + F ′ρε(q(m))(h́a).

Then,

∇mFεTAP(m,n) = −th−1
ε (m) +

G>Fε,ρε(q(m))(h́)
√
N

+ ε1/2ġ + ρ′ε(q(m))dε(m,n)m, (2.34)

∇nFεTAP(m,n) = ρε(q(m))
(
n− Fε,ρε(q(m))(h́)

)
. (2.35)

In particular ∇FεTAP(m,n) = 0 if and only if, with ḣ = th−1
ε (m) and ĥ = F−1

ε,ρε(q(m))(n),

Gm√
N

+ ε1/2ĝ = ĥ+ ρε(q(m))n, (2.36)

G>n√
N

+ ε1/2ġ = ḣ− ρ′ε(q(m))dε(m,n)m. (2.37)

(Note that (2.36) is equivalent to ĥ = h́.)
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Lemma 2.4.17. Under Pm,n
ε,Pl , G has law

G√
N

d
=

ĥm>

N(q(m) + ε)
+

nḣ
>

N(ψ(n) + ε)
+

∆(m,n)nm>

N(q(m) + ψ(n) + ε)
+

G̃√
N
, where (2.38)

∆(m,n) = ρε(q(m))− ρ′ε(q(m))dε(m,n)− 〈n, ĥ〉
N(q(m) + ε)

− 〈m, ḣ〉
N(ψ(n) + ε)

(2.39)

and where G̃ has the following law. Let ė1, . . . , ėN and ê1, . . . , êM be orthonormal bases of RN and RM
with ė1 = m/‖m‖ and ê1 = n/‖n‖, and abbreviate G̃(i, j) = 〈êj , G̃ėi〉. Then the G̃(i, j) are independent
centered gaussians with variance

E G̃(i, j)2 =


ε/(q(m) + ψ(n) + ε) i = j = 1,

ε/(q(m) + ε) i = 1, j 6= 1,

ε/(ψ(n) + ε) i 6= 1, j = 1,

1 i 6= 1, j 6= 1.

(2.40)

Proof. This is a standard gaussian conditioning calculation, which we present briefly. For fixed v̇ ∈ RN ,
v̂ ∈ RM and

ŵ =
〈m, v̇〉

N(q(m) + ε)
v̂ − 〈m, v̇〉〈n, v̂〉

N2(q(m) + ε)(q(m) + ψ(n) + ε)
n,

ẇ =
〈n, v̂〉

N(ψ(n) + ε)
v̇ − 〈m, v̇〉〈n, v̂〉

N2(ψ(n) + ε)(q(m) + ψ(n) + ε)
m,

we may verify the independence

〈v̂,Gv̇〉√
N

−
〈
ŵ,
Gm√
N

+ ε1/2ĝ

〉
−

〈
ẇ,
G>n√
N

+ ε1/2ġ

〉
⊥⊥

{
Gm√
N

+ ε1/2ĝ,
G>n√
N

+ ε1/2ġ

}
.

By Lemma 2.4.16, ∇FεTAP(m,n) = 0 if and only if (2.36) and (2.37) hold. Let û, u̇ denote the right-hand
sides of (2.36), (2.37), respectively. Then, for all v̇, v̂,

E
[
〈v̂,Gv̇〉√

N

∣∣∣∣(2.36), (2.37)

]
= 〈ŵ, û〉+ 〈ẇ, u̇〉.

Expanding shows G has the conditional mean given in (2.38). The law (2.40) of G̃ follows from computing
the covariance of the gaussian process

(v̇, v̂) 7→ 〈v̂, G̃v̇〉√
N

≡ 〈v̂,Gv̇〉√
N

−
〈
ŵ,
Gm√
N

+ ε1/2ĝ

〉
−

〈
ẇ,
G>n√
N

+ ε1/2ġ

〉
.

(Note that if v̂ ∈ {ê2, . . . , êM}, then 〈n, v̂〉 = 0 and thus ẇ = 0. Similarly if v̇ ∈ {ė2, . . . , ėN}, then ŵ = 0.
So in most cases the above formulas simplify considerably.)

Corollary 2.4.18. If (m,n) ∈ Sε,υ, then under Pm,n
ε,Pl , G has law

G√
N

d
=

(1 + oυ(1))ĥm>

N(qε + ε)
+

(1 + oυ(1))nḣ
>

N(ψε + ε)
+
oυ(1)nm>

N
+

G̃√
N
, (2.41)

where oυ(1) denotes a term vanishing as υ → 0 and G̃ is as in Lemma 2.4.17.

This corollary is proved by a standard approximation argument, which we record as Fact 2.4.20 below.

Definition 2.4.19. A function f : R→ R is (2, L)-pseudo-Lipschitz if |f(x)−f(y)| ≤ L|x−y|(|x|+ |y|+ 1).
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Fact 2.4.20 (Proved in Appendix 2.A). Suppose µ, µ′ ∈ P2(R) and let µ2 = Ex∼µ[x2]. If f is (2, L)-pseudo-
Lipschitz, then

|Eµ[f ]− Eµ′ [f ]| ≤ 3LW2(µ, µ′)(µ2 + W2(µ, µ′) + 1).

Proof of Corollary 2.4.18. Let ḣ = th−1
ε (m), ĥ = F−1

ε,%ε(n), so (ḣ, ĥ) ∈ Tε,υ. Recall µḣ defined in (2.26).

Since ḣ 7→ thε(ḣ)2 is (2, O(1))-pseudo-Lipschitz, by Fact 2.4.20,

|q(m)− qε| =
∣∣∣Eḣ∼µḣ

[thε(ḣ)2]− Eḣ∼N (0,ψε+ε)
[thε(ḣ)2]

∣∣∣ = oυ(1).

Similarly ψ(n) = ψε + oυ(1) and dε(m,n) = dε + oυ(1). Also, by gaussian integration by parts and
Lemma 2.4.2,

Eḣ∼N (0,ψε+ε)
[ḣthε(ḣ)] = (ψε + ε)%ε.

Thus ∣∣∣∣∣ 〈m, ḣ〉
N(ψε + ε)

− %ε

∣∣∣∣∣ =
∣∣∣Eḣ∼µḣ

[ḣthε(ḣ)]− Eḣ∼N (0,ψε+ε)
[ḣthε(ḣ)]

∣∣∣ = oυ(1).

Similarly 〈n,ĥ〉
N(qε+ε)

= dε + oυ(1). Finally, equation (2.22) and regularity of ρε, ρ
′
ε (recall (2.23)) imply

ρε(q(m)) = %ε + oυ(1), ρ′ε(q(m)) = −1 + oυ(1).

Combining these estimates shows the conditional mean of G in (2.38) simplifies to the form (2.41). In
particular note that ∆(m,n) = oυ(1).

2.4.7 Deferred proofs

We now prove various results deferred from the above proof.

Lemma 2.4.21 ([DS18, Lemma 10.1]). The function E satisfies the following for all x ∈ R.

(a) 0 ≤ E(x) ≤ |x|+ 1.

(b) E ′(x) = E(x)(E(x)− x) ∈ (0, 1).

(c) E ′′(x) ∈ (0, 1).

(d) E(3) ∈ (−1/2, 13).

Proof of Lemma 2.4.2. We calculate

qε = E[thε((ψε + ε)1/2Z)2]

= ε2(ψε + ε) + 2εE[(ψε + ε)1/2Zth((ψε + ε)1/2Z)] + E[th2((ψε + ε)1/2Z)2]

= ε2(ψε + ε) + 2ε(ψε + ε)E[1− th2((ψε + ε)1/2Z)] + E[th2((ψε + ε)1/2Z)2].

Thus

E[th2((ψε + ε)1/2Z)2] =
qε − 2ε(ψε + ε)− ε2(ψε + ε)

1− 2ε(ψε + ε)
,

and

E[th′ε((ψε + ε)1/2Z)] = 1 + ε− E[th2((ψε + ε)1/2Z)] =
1− qε + ε− ε2(ψε + ε)

1− 2ε(ψε + ε)
= %ε.

Differentiating (2.19) and applying Lemma 2.4.21(b) shows the following fact.
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Fact 2.4.22. For ε, % > 0 and any x ∈ R,

− 1 + ε2

%+ ε(1 + ε%)
≤ F ′ε,%(x) ≤ − ε

1 + ε%
.

Thus
1 + %F ′ε,%(x) ≥ ε

%+ ε(1 + ε%)
. (2.42)

For % in any compact set away from 0, |F ′ε,%|, |F ′′ε,%| and |F (3)
ε,% | are uniformly bounded independently of ε.

Proof of Proposition 2.4.6. It is clear that∇2
n,nFεTAP(m,n) is diagonal, so it suffices to check ∂2

naF
ε
TAP(m,n) ≥

η for all a ∈ [M ]. We calculate

∂2
naF

ε
TAP(m,n) = ρε(q(m))

(
1 + ρε(q(m))F ′ε,%

(
〈ga,m〉√

N
+ ε1/2ĝa − ρε(q(m))na

))
(2.42)

≥ ερε(q(m))

ρε(q(m)) + ε(1 + ερε(q(m)))
.

Since ρε ∈ [C−1
bd , Cbd] the result follows.

Proof of Lemma 2.4.14. The function x 7→ ρε(q(m))Fε,ρε(q(m))(x) is uniformly Lipschitz over m ∈ RN ,

because ρε(q(m)) ∈ [C−1
bd , Cbd]. Note that ĝ appears in (2.35) through the term ε1/2ĝ in h́ and is independent

of all other terms apeparing in (2.35). Thus ϕ∇nFεTAP(m,n)(z) is bounded, and continuous for z in an

neighborhood of 0, uniformly in m,n. Similarly, ġ appears in (2.34), (2.35) only as the term ε1/2ġ in (2.34).
This implies the conclusion.

2.5 Analysis of AMP

In this section, we prove items (a), (b), and (d) of Proposition 2.4.8. Item (c) will be proved in Section 2.6.

2.5.1 Scalar recursions

For q ∈ [0, qε], ψ ∈ [0, ψε], define

PAMP(ψ) = E[thε((ψ + ε)1/2Z + (ψε − ψ)1/2Z ′)thε((ψ + ε)1/2Z + (ψε − ψ)1/2Z ′′)],

RAMP(q) = α? E[Fε,%ε((q + ε)1/2Z + (qε − q)1/2Z ′)Fε,%ε((q + ε)1/2Z + (qε − q)1/2Z ′′)],

Define the sequences (qk)k≥0 and (ψk)k≥1 by q0 = 0 and the recursion

ψk+1 = RAMP(qk), qk = PAMP(ψk).

Lemma 2.5.1. The sequences (qk)k≥0, (ψk)k≥1 are increasing, and for small ε, we have qk ↑ qε and ψk ↑ ψε.

Proof. Let the functions

t̃hε(x) = thε((ψε + ε)1/2x), F̃ε(x) = Fε,%ε((qε + ε)1/2x)

have Hermite expansions

t̃hε(x) =
∑
p≥0

apHp(x), F̃ε(x) =
∑
p≥0

bpHp(x),

where Hp(x) is the p-th Hermite polynomial, normalized to EHp(Z)2 = 1. Then

PAMP(ψ) =
∑
p≥0

a2
p

(
ψ + ε

ψε + ε

)p
, RAMP(q) = α?

∑
p≥0

b2p

(
q + ε

qε + ε

)p
.
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So, PAMP and RAMP are increasing and convex. Thus (qk)k≥0, (ψk)k≥1 are increasing, and their limit is the
smallest fixed point of PAMP ◦RAMP. It remains to show this fixed point is (qε, ψε). By definition of qε, ψε,
(qε, ψε) is a fixed point. Since PAMP ◦ RAMP is convex, it suffices to show (PAMP ◦ RAMP)′(qε) < 1. Note
that

(PAMP ◦RAMP)′(qε) = P ′AMP(ψε)R
′
AMP(qε).

By gaussian integration by parts,

P ′AMP(ψ) = E[th′ε((ψ + ε)1/2Z + (ψε − ψ)1/2Z ′)th′ε((ψ + ε)1/2Z + (ψε − ψ)1/2Z ′′)],

R′AMP(q) = α? E[F ′ε,%ε((q + ε)1/2Z + (qε − q)1/2Z ′)F ′ε,%ε((q + ε)1/2Z + (qε − q)1/2Z ′′)],

and in particular

P ′AMP(ψε) = E[th′ε((ψε + ε)1/2Z)2], R′AMP(qε) = α? E[F ′ε,%ε((qε + ε)1/2Z)2].

In light of Proposition 2.4.1, a simple continuity argument shows

E[th′ε((ψε + ε)1/2Z)2]
ε↓0→ E[th′(ψ

1/2
0 Z)2], E[F ′ε,%ε((qε + ε)1/2Z)2]

ε↓0→ E[F ′1−q0(q
1/2
0 Z)2].

Thus,

(PAMP ◦RAMP)′(qε) = α? E[th′ε((ψε + ε)1/2Z)2]E[F ′ε,%ε((qε + ε)1/2Z)2]

ε↓0→ α? E[th′(ψ
1/2
0 Z)2]E[F ′1−q0(q

1/2
0 Z)2]

Cond. 2.3.3
< 1.

Thus, (RAMP ◦ PAMP)′(qε) < 1 for sufficiently small ε. Hence qk ↑ qε and ψk ↑ ψε.

2.5.2 State evolution

The limiting overlap structure of the AMP iterates in the null model follows directly from the state evolution
of [Bol14, BM11, JM13, BMN20]. Define the infinite arrays (Σ̇i,j : i, j ≥ 1) and (Σ̂i,j : i, j ≥ 0) by

Σ̇i,j =

{
ψε i = j,

ψi∧j i 6= j,
Σ̂i,j =

{
qε i = j,

qi∧j i 6= j.

For any k ≥ 0, let Σ̇≤k ∈ Rk×k and Σ̂+
≤k ∈ R(k+1)×(k+1) denote the sub-arrays indexed by i, j ≤ k.

Proposition 2.5.2. For any k ≥ 0, as N → ∞ the empirical coordinate distribution of the AMP iterates
converges in W2 in probability under P, to

1

N

N∑
i=1

δ(ḣ1
i , . . . , ḣ

k
i )

W2→ N (0, Σ̇≤k + ε11>),
1

M

M∑
a=1

δ(ĥ0
a, . . . , ĥ

k
a)

W2→ N (0, Σ̂≤k + ε11>). (2.43)

Proof. The state evolution [BMN20, Theorem 1] implies that (in probability)

1

N

N∑
i=1

δ(ḣ1
i , . . . , ḣ

k
i )

W2→ N (0, Σ̇
(0)
≤k + ε11>),

1

M

M∑
a=1

δ(ĥ0
a, . . . , ĥ

k
a)

W2→ N (0, Σ̂
(0)
≤k + ε11>).

holds for arrays Σ̇(0), Σ̂(0) defined as follows. As initialization, Σ̂
(0)
0,i = Σ̂

(0)
i,0 = Σ̂0,i for all i ≥ 0. Then, for

(Ĥ0, . . . , Ĥk) ∼ N (0, Σ̂
(0)
≤k + ε11>) and 0 ≤ i ≤ k, define recursively

Σ̇
(0)
k+1,i+1 = Σ̇

(0)
i+1,k+1 = α? E[Fε,%ε(Ĥi)Fε,%ε(Ĥk)].

For (Ḣ0, . . . , Ḣk+1) ∼ N (0, Σ̇
(0)
≤k+1 + ε11>) and 1 ≤ i ≤ k + 1, let

Σ̂
(0)
k+1,i = Σ̂

(0)
i,k+1 = E[thε(Ḣi)thε(Ḣk+1)].
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It remains to show Σ̇(0), Σ̂(0) coincide with Σ̇, Σ̂. Since Σ̂0,0 = qε, induction shows the diagonal entries are

Σ̇
(0)
k,k = ψε = Σ̇k,k, Σ̂

(0)
k,k = qε = Σ̂k,k.

Then, the above recursion gives Σ̇
(0)
i+1,j+1 = RAMP(Σ̂

(0)
i,j ), Σ̂

(0)
i,j = PAMP(Σ̇

(0)
i,j ). By induction, for i 6= j,

Σ̇
(0)
i,j = ψi∧j = Σ̇i,j , Σ̂

(0)
i,j = qi∧j = Σ̂i,j .

Thus Σ̇(0) = Σ̇ and Σ̂(0) = Σ̂.

The following proposition characterizes the limiting overlap structure in the planted model. To conserve
notation, we will denote the planted solution by (m,n), rather than (m′,n′) as in Proposition 2.4.8.

Proposition 2.5.3. Let (m,n) ∈ Sε,oN (1), ḣ = th−1
ε (m), ĥ = F−1

ε,%ε(n), and (G, ġ, ĝ) ∼ Pm,n
ε,Pl . For any

k ≥ 0, as N → ∞ the empirical coordinate distribution of (ḣ, ĥ) and the AMP iterates converges in W2 in
probability under Pm,n

ε,Pl , to

1

N

N∑
i=1

δ(ḣ1
i , . . . , ḣ

k
i , ḣi)

W2→ N (0, Σ̇≤k+1 + ε11>),
1

M

M∑
a=1

δ(ĥ0
a, . . . , ĥ

k
a, ĥa)

W2→ N (0, Σ̂≤k+1 + ε11>).

We prove this proposition by introducing an auxiliary AMP iteration. We fix m,n, ḣ, ĥ as in Proposi-
tion 2.5.3. Let G̃ ∈ RM×N be given by (2.40) and Ĝ ∈ RM×N have i.i.d. N (0, 1) entries, and couple these
matrices so that a.s.

P⊥n G̃P
⊥
m = P⊥n ĜP

⊥
m, (2.44)

and, with G denoting this common value, G̃ −G and Ĝ −G are independent. Further, let Z ∼ N (0, 1),

ξ̇ ∼ N (0, IN ), ξ̂ ∼ N (0, IM ) be coupled to G̃ such that

G̃+ ∆ = G−
√

ε

q(m) + ε
· ξ̂m

>

‖m‖
−
√

ε

ψ(n) + ε
· nξ̇

>

‖n‖
, where (2.45)

∆ =

√
ε

q(m) + ε
+

ε

ψ(n) + ε
− ε

q(m) + ψ(n) + ε

nm>

‖n‖‖m‖
Z. (2.46)

(Such a coupling exists by (2.40).) The auxiliary AMP iteration has initialization n(1),−1 = 0,m(1),0 = q
1/2
ε 1,

and iteration

m(1),k = thε(ḣ
(1),k

), n(1),k = Fε,%ε(ĥ
(1),k

),

for ḣ
(1),k

, ĥ
(1),k

as follows. Let ψ0 = 0, and

ĥ
(1),k

=
1√
N
Ĝ

(
m(1),k − qk

qε
m

)
+

√
ε(qε − qk)√
qε(qε + ε)

ξ̂ +
qk + ε

qε + ε
ĥ− %ε

(
n(1),k−1 − ψk

ψε
n

)
(2.47)

ḣ
(1),k+1

=
1√
N
Ĝ
>
(
n(1),k −

ψk+1

ψε
n

)
+

√
ε(ψε − ψk+1)√
ψε(ψε + ε)

ξ̇ +
ψk+1 + ε

ψε + ε
ḣ− dε

(
m(1),k − qk

qε
m

)
.

Define augmented arrays (Σ̇+
i,j : i, j ∈ {�, ./} ∪ Z≥1) and (Σ̂+

i,j : i, j ∈ {�, ./} ∪ Z≥0) by

Σ̇+
i,j =



ψε + ε i = j ≥ 1 or i = j = �,
ψj + ε i > j ≥ 1,

ψi + ε i ≥ 1, j = �,
√
ε(ψε−ψi)√
ψε(ψε+ε)

i ≥ 1, j =./,

1 i = j =./,

0 i = �, j =./,

Σ̂+
i,j =



qε + ε i = j ≥ 0 or i = j = �,
qj + ε i > j ≥ 0,

qi + ε i ≥ 0, j = �,
√
ε(qε−qi)√
qε(qε+ε)

i ≥ 0, j =./,

1 i = j =./,

0 i = �, j =./,
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with the remaining entries defined by symmetry over the diagonal. Note that on indices (i, j) where {i, j} ∩
{�, ./} = ∅, these arrays coincide with Σ̇ + ε11> and Σ̂ + ε11>. Let Σ̇+

≤k ∈ R(k+2)×(k+2) and Σ̂+
≤k ∈

R(k+3)×(k+3) denote the sub-arrays indexed by {�, ./} and {1, . . . , k} (resp. {0, . . . , k}).

Proposition 2.5.4 (Proved in Appendix 2.A). For any k ≥ 0, as N →∞ we have the convergence in W2

in probability under Pm,n
ε,Pl

1

N

N∑
i=1

δ(ḣi, ξ̇i, ḣ
(1),1
i , . . . , ḣ

(1),k
i )

W2→ N (0, Σ̇+
≤k),

1

M

M∑
a=1

δ(ĥa, ξ̂a, ĥ
(1),0
a , . . . , ĥ(1),k

a )
W2→ N (0, Σ̂+

≤k).

This is proved by applying state evolution, analogously to Proposition 2.5.2. We next show that this
AMP iteration approximates the original one, in the following sense.

Proposition 2.5.5 (Proved in Appendix 2.A). For any k ≥ 0, as N →∞ we have ‖ĥ
(1),k
− ĥ

k
‖/
√
N → 0

in probability under Pm,n
ε,Pl and if k ≥ 1, ‖ḣ

(1),k
− ḣ

k
‖/
√
N → 0 in probability under Pm,n

ε,Pl .

Proof of Proposition 2.5.3. If we identify index � with k + 1, the array {Σ̇+
i,j : i, j ∈ {�} ∪ {1, . . . , k}}

coincides with Σ̇≤k+1 + ε11>, and similarly {Σ̂+
i,j : i, j ∈ {�}∪ {0, . . . , k}} coincides with Σ̂≤k+1 + ε11>. By

Proposition 2.5.4,

1

N

N∑
i=1

δ(ḣ
(1),1
i , . . . , ḣ

(1),k
i , ḣi)

W2→ N (0, Σ̇+
≤k+1 + ε11>),

1

M

M∑
a=1

δ(ĥ(1),0
a , . . . , ĥ(1),k

a , ĥa)
W2→ N (0, Σ̂+

≤k+1 + ε11>)

in probability under Pm,n
ε,Pl . Proposition 2.5.5 implies the conclusion.

2.5.3 Completion of the proof

We separately prove Proposition 2.4.8 under P and Pm,n
ε,Pl .

Proof of Proposition 2.4.8(a)(b), under P. By Proposition 2.5.2, for any k,

µ
ḣ
k

W2→ N (0, ψε + ε), µ
ĥ
k

W2→ N (0, qε + ε)

in probability. So, with high probability, (ḣ
k
, ĥ

k
) ∈ Tε,υ0 and thus item (a) holds. Approximation arguments

similar to the proof of Corollary 2.4.18 using Fact 2.4.20 yield

q(mk)→ E[thε((ψε + ε)1/2Z)2] = qε

in probability. Regularity of ρε and its derivatives then implies

ρε(q(m
k))→ %ε, ρ′ε(q(m

k))→ −1

in probability. Proposition 2.5.2 also implies

lim
k→∞

p-lim
N→∞

1

N
‖ḣ

k+1
− ḣ

k
‖2 = lim

k→∞
p-lim
N→∞

1

N
‖ĥ

k+1
− ĥ

k
‖2 = 0.

Below, let ok,P (
√
N) denote a random vector v such that limk→∞ p-limN→∞

1√
N
‖v‖ = 0, and ok,P (1) denote

a random scalar ι such that limk→∞ p-limN→∞ |ι| = 0. Let

h́
k

=
Gmk

√
N

+ ε1/2ĝ − ρε(q(mk))nk.
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By Lemma 2.4.2,

ĥ
k

=
Gmk

√
N

+ ε1/2ĝ − %εnk−1.

The above discussion implies ĥ
k
− h́

k
= ok,P (

√
N), and thus nk − Fε,ρε(q(m))(h́

k
) = ok,P (

√
N). By (2.35),

∇nFεTAP(mk,nk) = ok,P (
√
N).

Moreover,

dε(m
k,nk) =

1

N

M∑
a=1

F ′ε,%ε(ĥ
k) + ok,P (1) = dε + ok,P (1),

for dε defined below Lemma 2.4.2. So

∇mFεTAP(mk,nk) = −th−1
ε (mk) +

G>nk√
N

+ ε1/2ġ − dεmk +

(
1 +
‖G‖op√

N

)
ok,P (

√
N).

Since ‖G‖op ≤ C
√
N w.h.p.,

∇mFεTAP(mk,nk) = −ḣ
k

+
G>nk√

N
+ ε1/2ġ − dεmk + ok,P (

√
N)

= ḣ
k+1
− ḣ

k
+ ok,P (

√
N) = ok,P (

√
N),

proving item (b).

Proof of Proposition 2.4.8(a)(b)(d), under Pm,n
ε,Pl . Suppose first (m,n) ∈ Sε,oN (1), and let ḣ = th−1

ε (m),

ĥ = F−1
ε,%ε(n). The above argument, using Proposition 2.5.3 in place of Proposition 2.5.2, shows items (a)

and (b) hold with high probability under Pm,n
ε,Pl . Proposition 2.5.3 also yields

lim
k→∞

p-lim
N→∞

1

N
‖ḣ

k
− ḣ‖2 = lim

k→∞
p-lim
N→∞

1

N
‖ĥ

k
− ĥ‖2 = 0.

Thus item (d) holds with high probability under Pm,n
ε,Pl . Finally, we show this remains true for (m,n) ∈ Sε,υ,

for suitably small υ. Let (m,n) ∈ Sε,oN (1) be such that 1
N ‖m −m‖

2, 1
N ‖n − n‖

2 = oυ(1). We will show

there is a coupling of (G, ġ, ĝ) ∼ Pm,n
ε,Pl and (G, ġ, ĝ) ∼ Pm,n

ε,Pl such that

‖G−G‖op, ‖ġ − ġ‖, ‖ĝ − ĝ‖ ≤ oυ(1)
√
N. (2.48)

If (mk,nk) are the AMP iterates under Pm,n
ε,Pl and (mk,nk) are the AMP iterates under Pm,n

ε,Pl , this implies

‖mk−mk‖, ‖nk−nk‖ ≤ oυ(1)
√
N (this uses crucially that υ is set small depending on k). This implies (a)

and (d) continue to hold, and similar approximation arguments to above show (b) continues to hold.

We now prove (2.48). Let ḣ = th−1
ε (m) and ĥ = F−1

ε,ρε(q(m))(n). Another approximation argument shows

‖ḣ − ḣ‖, ‖ĥ − ĥ‖ ≤ oυ(1)
√
N . The conditional means of G,G are given by (2.38), and an approximation

argument shows ∥∥∥Em,n
ε,Pl [G]− Em,n

ε,Pl [G]
∥∥∥
op
≤ oυ(1)

√
N.

We couple the random parts G̃, G̃ as follows. Let ė1, ê1 (resp. ḣ1, ĥ1) be the the unit vectors parallel to

m,n (resp. m,n). Let Ṫ , T̂ be rotation operators on RN ,RM with Ṫ ė1 = ḣ1 and T̂ ê1 = ĥ1. These can be

set so ‖Ṫ − IN‖op, ‖T̂ − IM‖op ≤ oυ(1). By (2.40), we can couple G̃, G̃ such that G̃ = T̂ G̃Ṫ−1. Since, for

some absolute constant C, ‖G̃‖op ≤ C
√
N with high probability, on this event

‖G̃− G̃‖op ≤ ‖G̃‖op(‖Ṫ − IN‖op + ‖T̂ − IM‖op) = oυ(1)
√
N.

Thus ‖G −G‖op ≤ oυ(1)
√
N . The stationary equations (2.36), (2.37) then imply ‖ġ − ġ‖op, ‖ĝ − ĝ‖op ≤

oυ(1)
√
N . This proves (2.48).
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2.6 Local concavity of perturbed TAP free energy

In this section, we prove Lemmas 2.3.5 and 2.4.9 and Proposition 2.4.8(c).

2.6.1 Description of spectral gap bound

We first define a quantity λε, which is a perturbed analog of the value λ0 = infz>−1 λ(z) defined in Condi-
tion 2.3.4. We will see that λε upper bounds the maximum eigenvalue of ∇2

�FεTAP near late AMP iterates.
To define λε, we introduce ε-perturbed variants of quantities appearing in Condition 2.3.4 and Lemma 2.3.5.
Let

ḟε(x) =
ch2x

1 + εch2(x)
, f̂ε(x) = −

F ′ε,%ε(x)

1 + %εF ′ε,%ε(x)
.

We extend these definitions to ε = 0 by defining ḟ0(x) = ch2(x) and f̂0 as in Condition 2.3.4; this extension
will be used solely in Lemma 2.6.1 and the proof of Lemma 2.3.5 below.

Note that ḟε and f̂ε are positive, the latter because Fact 2.4.22 implies F ′ε,%ε(x) < 0 and 1 + %εF
′
ε,%ε(x) >

0, and ḟε(x) has minimum ḟε(0) = 1
1+ε . The function f̂0 is also positive, as Lemma 2.4.21(b) implies

F ′1−q0(x) < 0 and 1 + (1 − q0)F ′1−q0(x) > 0. In the below, it will be convenient to abbreviate q̃ε = qε + ε,

ψ̃ε = ψε + ε.

Lemma 2.6.1. For any ε ≥ 0 (including ε = 0), the functions mε, θε : (− 1
1+ε ,+∞)→ (0,+∞) defined by

mε(z) = E[(z + ḟε(ψ̃
1/2
ε Z))−1],

θε(z) = E[(z + ḟε(ψ̃
1/2
ε Z))−2]E

( f̂ε(q̃
1/2
ε Z)

1 +mε(z)f̂ε(q̃
1/2
ε Z)

)2


are continuous and strictly decreasing, with

lim
z↓−(1+ε)−1

mε(z) = lim
z↓−(1+ε)−1

θε(z) = +∞, lim
z↑+∞

mε(z) = lim
z↑+∞

θε(z) = 0.

In particular θε has a well-defined inverse θ−1
ε : (0,+∞)→ (− 1

1+ε ,+∞).

Proof of Lemma 2.6.1. Note that mε(z) is clearly decreasing on (− 1
1+ε ,+∞) with limz↑+∞mε(z) = 0. To

show the other limit, let

ġε(x) = ḟε(x)− 1

1 + ε
=

sh2(x)

(1 + ε)(1 + εch2(x))
.

For z = − 1
1+ε + ι, with ι > 0 small,

mε(z) = E[(ι+ ġε(ψ̃
1/2
ε Z))−1] ≥ E[1{|Z| ≤ ι1/2}(ι+ ġε(ψ̃

1/2
ε Z))−1] ≥ Ω(ι−1/2).

Thus limz↓−(1+ε)−1 mε(z) = +∞. We can write θε(z) as

θε(z) =
E[(z + ḟε(ψ̃

1/2
ε Z))−2]

E[(z + ḟε(ψ̃
1/2
ε Z))−1]2

E

[
(mε(z)f̂ε(q̃

1/2
ε Z))2

(1 +mε(z)f̂εq̃
1/2
ε Z))2

]
. (2.49)

Since mε(z) is decreasing and f̂ε is positive, the second factor of (2.49) is manifestly decreasing. The
z-derivative of the first is

−E[(z + ḟε(ψ̃
1/2
ε Z))−1]E[(z + ḟε(ψ̃

1/2
ε Z))−3] + E[(z + ḟε(ψ̃

1/2
ε Z))−2]2

E[(z + ḟε(ψ̃
1/2
ε Z))−1]3

< 0
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by Cauchy–Schwarz. Thus θε is decreasing on (− 1
1+ε ,+∞). We now calculate its limits as z ↓ − 1

1+ε and

z ↑ +∞. Consider first z = − 1
1+ε + ι for ι small. Then the first factor of (2.49) is

E[(ι+ ġε(ψ̃
1/2
ε Z))−2]

E[(ι+ ġε(ψ̃
1/2
ε Z))−1]2

≥ E[1{|Z| ≤ ι1/2}(ι+ ġε(ψ̃
1/2
ε Z))−2]

E[1{|Z| ≤ ι1/3}(ι+ ġε(ψ̃
1/2
ε Z))−1 +O(ι−2/3)]2

=
Ω(ι−3/2)

O(ι−4/3)
,

which diverges as ι ↓ 0. The second factor of (2.49) tends to 1 in this limit by dominated convergence. Thus
limz↓−(1+ε)−1 θε(z) = +∞. We can write the first factor of (2.49) as

E[(1 + z−1ḟε(ψ̃
1/2
ε Z))−2]

E[(1 + z−1ḟε(ψ̃
1/2
ε Z))−1]2

,

which tends to 1 as z ↑ +∞ by dominated convergence. In this limit, the second factor of (2.49) tends to 0
by dominated convergence, so limz↑+∞ θε(z) = 0. This completes the proof.

Proof of Lemma 2.3.5. Note that

m′(z) = −E[(z + ch2(ψ
1/2
0 Z))−2].

Thus, differentiating λ yields

λ′(z) = 1 + α?m
′(z)E

( f̂0(q
1/2
0 Z)

1 +m(z)f̂0(q
1/2
0 Z)

)2
 = 1− α?θ(z).

The assertions about θ follow from Lemma 2.6.1, with ε = 0. Since θ is strictly decreasing on (−1,+∞),
λ′ is strictly increasing on this interval, and therefore λ is strictly convex on this interval. Since θ−1 :
(0,+∞) → (−1,+∞) is well-defined, we may define z0 = θ−1(α−1

? ). This point satisfies the stationarity
condition λ′(z0) = 0 and is thus the unique minimizer of λ on (−1,+∞).

Recall from below Lemma 2.4.2 that dε = α? E[F ′ε,%ε(q̃
1/2
ε Z)]. We now define the threshold λε.

Definition 2.6.2. Let zε = θ−1
ε (α−1

? ) and

λε ≡ zε − α? E

[
f̂ε(q̃

1/2
ε Z)

1 +mε(zε)f̂ε(q̃
1/2
ε Z)

]
− dε. (2.50)

Lemma 2.6.3. As ε ↓ 0, λε → λ0 (defined in Condition 2.3.4).

Proof. By Proposition 2.4.1, as ε ↓ 0, (q̃ε, ψ̃ε) → (q0, ψ0). Thus, for ḟ0(x) = ch2(x), the push-forwards

(ḟε)#N (0, ψ̃ε) and (f̂ε)#N (0, q̃ε) converge weakly to (ḟ0)#N (0, ψ0) and (f̂0)#N (0, q0).
For any z > −1 and small ε, the integrand ofmε(z) is bounded independently of ε, and thus limε↓0mε(z) =

m(z) by dominated convergence. Similarly, all three integrands in (2.49) are bounded, so limε↓0 θε(z) = θ(z).
Moreover, one easily checks that on any compact subset of (−1,+∞), the derivatives of mε, θε are bounded
independently of ε. Thus mε → m, θε → θ uniformly on compact subsets of (−1,+∞).

By Lemma 2.3.5, limz↓−1 θ(z) = +∞, so z0 = θ−1(α−1
? ) is bounded away from −1. The above uniform

convergence then implies zε → z0 and mε(zε)→ m(z0). Since the below integrands are bounded,

E

[
f̂ε(q̃

1/2
ε Z)

1 +mε(zε)f̂ε(q̃
1/2
ε Z)

]
→ E

[
f̂0(q

1/2
0 Z)

1 +m(z0)f̂0(q
1/2
0 Z)

]
.

Finally, as F ′ε,%ε is bounded (by Fact 2.4.22) and limits to the bounded function F ′1−q0 , we have dε → d0.
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2.6.2 Hessian estimate

We next prove the following upper bound on ∇2
�FεTAP.

Lemma 2.6.4. Suppose (m,n) ∈ Sε,r0 , and ‖G‖op, ‖ĝ‖ ≤ C
√
N for some absolute constant C (i.e. in-

dependent of all parameters in Subsection 2.4.1). Let ḣ ∈ RN , h́ ∈ RM be defined (as in Lemma 2.4.16)
by

ḣ = th−1
ε (m), h́ =

Gm√
N

+ ε1/2ĝ − ρε(q(m))n,

and

D1 = diag(ḟε(ḣ)), D2 = diag(f̂ε(h́)).

Then,

∇2
�FεTAP(m,n) � P⊥m

(
−D1 −

1

N
G>D2G− dεIN

)
P⊥m +

λεmm
>

‖m‖2
+ (oCcvx(1) + or0(1))IN .

(Recall the meaning of oCcvx(1), or0(1) discussed in Subsection 2.4.1.)

Fact 2.6.5 (Proved in Appendix 2.A). Let m ∈ RN , n ∈ RM , and let h́, ḣ be as above. Let F = Fε,ρε(q(m))

and

D3 = diag
(
F ′(h́)

)
, D4 = IM + ρε(q(m))D3.

Then,

∇2
m,mFεTAP(m,n) = −D1 +

G>D3G

N
+ ρ′ε(q(m))dε(m,n)IN

+ ρ′ε(q(m)) · G
>(F ′′(h́) + 2D3(F (h́)− n))m> +m(F ′′(h́) + 2D3(F (h́)− n))>G

N3/2

+

{
ρ′′ε (q(m))dε(m,n) +

ρ′ε(q(m))2

N

M∑
a=1

(
2F ′(h́a)2 + F (3)(h́a)

)}mm>
N

∇2
m,nFεTAP(m,n) = −ρε(q(m))√

N
G>D3 − ρ′ε(q(m))

m(ρε(q(m))F ′′(h́) + 2D4(F (h́)− n))>

N

∇2
n,nFεTAP(m,n) = ρε(q(m))D4,

Furthermore, for

D̃2 = −D3 + ρε(q(m))D2
3D
−1
4 = diag

(
− F ′(h́)

1 + ρε(q(m))F ′(h́)

)
,

we have

∇2
�FεTAP(m,n) = −D1 −

G>D̃2G

N
+ ρ′ε(q(m))dε(m,n)IN

+ ρ′ε(q(m)) · G
>D−1

4 F ′′(h́)m> +mF ′′(h́)>D−1
4 G

N3/2

+

{
ρ′′ε (q(m))dε(m,n) +

ρ′ε(q(m))2

N

M∑
a=1

(
2F ′(h́a)2 + F (3)(h́a)

− (ρε(q(m))F ′′(h́a) + 2(F (h́a)− na)(1 + ρε(q(m))F ′(h́a)))2

ρε(q(m))(1 + ρε(q(m))F ′(h́a))

)}
mm>

N
.
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Lemma 2.6.6 (Proved in Appendix 2.A). Suppose (m,n) ∈ Sε,r0 and ‖G‖op, ‖ĝ‖ ≤ C
√
N for an absolute

constant C. The following estimates hold for sufficiently small r0 (depending on ε, Ccvx, Cbd, η).

(a) Up to additive or0(1) error, q(m) ≈ qε, ψ(n) ≈ ψε, and dε(m,n) ≈ dε, ρε(q(m)) ≈ %ε, ρ
′
ε(q(m)) ≈

−1, ρ′′ε (q(m)) ≈ Ccvx.

(b) ‖D̃2 −D2‖op = or0(1).

(c) 1
N

∑M
a=1(2F ′(h́a)2 + F (3)(h́a)) is bounded by an absolute constant.

(d) 1√
N
‖D−1

4 F ′′(h́)‖ is bounded, with bound depending only on ε.

Proof of Lemma 2.6.4. By Fact 2.6.5 and Lemma 2.6.6,

∇2
�FεTAP(m,n) � −D1 −

G>D̃2G

N
− dεIN +

G>v1m
> +mv>1 G

N
+ (Ccvxdε + C1)

mm>

N
+ or0(1)IN ,

for C1 ∈ R, v1 ∈ RN with |C1|, ‖v1‖ bounded depending only on ε. By the assumption on ‖G‖op, 1√
N
‖G>v1‖

is also bounded depending only on ε. Note that

−D1 � −P⊥mD1P
⊥
m − (P⊥mD1Pm + PmD1P

⊥
m) = −P⊥mD1P

⊥
m −

(P⊥mD1m)m> +m(P⊥mD1m)

q(m)N

and similarly

− 1

N
G>D2G � −P⊥mG

>D2GP
⊥
m −

(P⊥mG
>D2Gm)m> +m(P⊥mG

>D2Gm)>

q(m)N2
.

Moreover ‖D1‖op, ‖D2‖op ≤ O(ε−1), the latter by (2.42). So, there exists C2 ∈ R, v2 ∈ RN with |C2|, ‖v2‖
bounded depending only on ε, such that

∇2
�FεTAP(m,n) � P⊥m

(
−D1 −

G>D̃2G

N

)
P⊥m − dεIN +

v2m
> +mv>2
N1/2

+ (Ccvxdε + C2)
mm>

N
+ or0(1)IN .

Note that dε < 0, because F ′ε,%ε < 0 by Fact 2.4.22. So, for large Ccvx,

(Ccvxdε + C2)
mm>

N
+
v2m

> +mv>2
N1/2

� (λε + dε)mm
>

‖m‖2
+

v2v
>
2

Ccvx|dε| − C2 + (λε + dε)/q(m)
.

The final term has operator norm oCcvx(1).

2.6.3 Null model: post-AMP Gordon’s inequality

We turn to the proof of Proposition 2.4.8(c), first under the measure P. In light of Lemma 2.6.4, we define

R(m,n) = P⊥m

(
−D1 −

1

N
G>D2G

)
P⊥m, (2.51)

where, as in that lemma, D1 = diag(ḟε(ḣ)), D2 = diag(f̂ε(h́(m,n,G))) for ḣ = th−1
ε (m) and

h́(m,n,G) =
Gm√
N

+ ε1/2ĝ − ρε(q(m))n.

Proposition 2.6.7. With high probability under P, R(m,n) � (λε+dε+or0(1)+ok(1))P⊥m for all ‖(m,n)−
(mk,nk)‖ ≤ r0

√
N .
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For zε defined in Definition 2.6.2, let

r2
ε = E[(zε + ḟε(ψ̃

1/2
ε Z))−2]−1.

Define the AMP iterates m0,n0, . . . ,mk,nk and ĥ
0
, ḣ

1
, ĥ

1
, . . . , ḣ

k
, ĥ

k
as in (2.20), (2.21), and

DATA = (ġ, ḣ
1
, . . . , ḣ

k
, ĝ, ĥ

0
, . . . , ĥ

k
).

Let U(r0) = {(m,n) : ‖(m,n)− (mk,nk)‖ ≤ r0

√
N}. Let h́

k
≡ h́(mk,nk,G), and note that

h́
k

= ĥ
k

+ %εn
k−1 − ρε(q(mk))nk (2.52)

is DATA-measurable. Let U ′(r0) = {h́ : ‖h́− h́
k
‖ ≤ Cr0

√
N}, for a suitably large absolute constant C. Since

‖G‖op = O(
√
N) with high probability, on this event h́(m,n,G) ∈ U ′(r0) for all (m,n) ∈ U(r0).

Below, we will write D2(h́) = diag(f̂ε(h́)) for a varying h́ which is not necessarily h́(m,n,G). On
the other hand D1 always refers to the function of m defined above. The starting point of our proof of
Proposition 2.6.7 is to recast the maximum eigenvalue as a minimax program, as follows:

sup
(m,n)∈U(r0)

sup
‖v̇‖=1
v̇⊥m

v̇>
(
−D1 −

1

N
G>D2(h́(m,n,G))G

)
v̇

= sup
(m,n)∈U(r0)

sup
‖v̇‖=1
v̇⊥m

inf
v̂∈RM

{
−〈D1v̇, v̇〉+ 〈D2(h́(m,n,G))−1v̂, v̂〉+

2√
N
〈Gv̇, v̂〉

}
.

Here we used that D1,D2 are positive definite, by positivity of ḟε, f̂ε. On the high probability event that
‖G‖op = O(

√
N), this is bounded by

sup
(m,n)∈U(r0)

h́∈U ′(r0)

sup
‖v̇‖=1
v̇⊥m

inf
‖v̂‖=rε
v̂⊥n

{
−〈D1v̇, v̇〉+ 〈D2(h́)−1v̂, v̂〉+

2√
N
〈Gv̇, v̂〉

}
. (2.53)

We will control (2.53) by applying Gordon’s minimax inequality conditional on the AMP iterates; we explain
this next. Let

µ̇AMP =
1

N

N∑
i=1

δ(ε1/2ġ, ḣ1
i , . . . , ḣ

k
i ), µ̂AMP =

1

M

M∑
a=1

δ(ε1/2ĝ, ĥ0
a, . . . , ĥ

k
a).

Further let (Σ̇+
i,j)i,j≥0 and (Σ̂+

i,j)i,j≥−1 be augmented versions of (Σ̇i,j)i,j≥1, (Σ̂i,j)i,j≥0 where we add a row

and column of zeros, i.e. Σ̇+
0,i = Σ̇+

i,0 = Σ̂+
−1,i = Σ̂+

i,−1 = 0.

Lemma 2.6.8. For any υ > 0, with high probability,

W2(µ̇AMP,N (0, Σ̇+
≤k + ε11>)),W2(µ̂AMP,N (0, Σ̂+

≤k + ε11>)) ≤ υ. (2.54)

Proof. Follows from AMP state evolution, identically to Proposition 2.5.2.

We now let υ be sufficiently small depending on r0, k and condition on a realization of DATA such that

(2.54) holds. (Note that (2.54) is DATA-measurable.) Define h̄
i

= ḣ
i
− ε1/2ġ, h̆

i
= ĥ

i
− ε1/2ĝ, and

M (k) = (m0, . . . ,mk) ∈ RN×(k+1), N (k) = (n0, . . . ,nk−1) ∈ RM×k,

H̄(k) = (h̄
1
, . . . , h̄

k
) ∈ RN×k, H̆(k) = (h̆

0
, . . . , h̆

k
) ∈ RM×(k+1).
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Note that on event (2.54),

1

N
M>

(k)M (k) = Σ̂≤k + oυ(1),
1

N
N>(k)N (k) = Σ̇≤k + oυ(1), (2.55)

1

N
H̄
>
(k)H̄(k) = Σ̇≤k + oυ(1),

1

M
H̆
>
(k)H̆(k) = Σ̂≤k + oυ(1), (2.56)

where oυ(1) denotes an additive error of operator norm oυ(1). That is, {n0, . . . ,nk−1} and {h̄1
, . . . , h̄

k}
span k-dimensional subspaces of RM and RN , and the linear mapping between them that sends ni to h̄

i+1
is

an approximate isometry. The same is true, after scaling by a factor α?, for {m0, . . . ,mk} and {h̆
0
, . . . , h̆

k
}.

Define the linear maps

Ṫ = H̄(k)(N
>
(k)N (k))

−1N>(k), T̂ = H̆(k)(M
>
(k)M (k))

−1M>
(k).

(The inverses are well-defined because the matrices are full-rank, by (2.55).) That is, Ṫ (resp. T̂ ) projects
onto the span of {n0, . . . ,nk−1} (resp. {m0, . . . ,mk}) and then applies the linear map that sends ni to

ḣ
i+1

(resp. mi to ĥ
i
).

Lemma 2.6.9 (Post-AMP Gordon’s inequality). Conditional on any realization of DATA satisfying event

(2.54), the following holds. Let ξ̇ ∼ N (0, IN ), ξ̂ ∼ N (0, IM ), Z ∼ N (0, 1) be independent of everything else
and

ġ′AMP(v̂) =
√
N Ṫ v̂ + ‖P⊥N(k)

v̂‖P⊥M(k)
ξ̇, ĝ′AMP(v̇) =

√
N T̂ v̇ + ‖P⊥M(k)

v̇‖P⊥N(k)
ξ̂.

For any continuous f : RN × RM × RN × (RM )2 × RN×(k+1) × RM×(k+2) → R,

sup
(m,n)∈U(r0)

h́∈U ′(r0)

sup
‖v̇‖=1
v̇⊥m

inf
‖v̂‖=rε,
v̂⊥n

{
f(v̇, v̂;m,n, h́,DATA) +

2√
N
〈Gv̇, v̂〉+

2‖P⊥N(k)
v̂‖‖P⊥M(k)

v̇‖
√
N

Z

}

is stochastically dominated by

sup
(m,n)∈U(r0)

h́∈U ′(r0)

sup
‖v̇‖=1

v̇⊥mk

inf
‖v̂‖=rε,
v̂⊥nk

{
f(v̇, v̂;m,n, h́,DATA) +

2√
N
〈v̇, ġ′AMP(v̂)〉+

2√
N
〈v̂, ĝ′AMP(v̇)〉

}
+ oυ(1).

Proof. We will first show that conditional on DATA,

1√
N
G

d
= Ṫ

>
+ T̂ + oυ(1) +

PN⊥
(k)
GP⊥M(k)√
N

, (2.57)

where oυ(1) is a deterministic error of operator norm oυ(1) and G is an i.i.d. copy of G. Conditioning on
DATA amounts to conditioning on the linear relations

1√
N
Gmi = h̆

i
+ %εn

i−1,
1√
N
G>ni = h̄

i+1
+ dεm

i (2.58)

for 0 ≤ i ≤ k and 0 ≤ i ≤ k − 1. So, P⊥N(k)
GP⊥M(k)

is independent of DATA and G − P⊥N(k)
GP⊥M(k)

is

DATA-measurable. It suffies to show the latter part is Ṫ
>

+ T̂ , up to oυ(1) additive operator norm error.
Recall from (2.55) that the condition number of 1

NM
>
(k)M (k) and 1

NN
>
(k)N (k) is bounded depending on k.

So it suffices to show∥∥∥∥ 1√
N
GM (k) − (Ṫ

>
+ T̂ )M (k)

∥∥∥∥
op

= oυ(1)
√
N,

∥∥∥∥ 1√
N
G>N (k) − (Ṫ + T̂

>
)N (k)

∥∥∥∥
op

= oυ(1)
√
N. (2.59)
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By (2.58) and the definition of Ṫ , T̂ ,

1√
N
GM (k) = H̆(k) + %ε[0,N (k)],

1√
N
G>N (k) = H̄(k) + dεM (k−1),

T̂M (k) = H̆(k), ṪN (k) = H̄(k).

For all i, j ≥ 1, we have by gaussian integration by parts

1

N
〈h̄i,mj〉 =

1

N
〈h̄i, thε(h̄

j
+ ε1/2ġ)〉

= E[(ψ
1/2

i∧jZ + (ψε + ε− ψi∧j)Z ′)thε(ψ
1/2

i∧jZ + (ψε + ε− ψi∧j)1/2Z ′′)] + oυ(1)

= %εψi∧j + oυ(1).

Moreover 1
N 〈h̄

i
,m0〉 = oυ(1). Thus,

Ṫ
>
M (k) = N (k)

(
1

N
N>(k)N (k)

)−1(
1

N
H̄
>
(k)M (k)

)
= N (k)

(
Σ̇≤k + oυ(1)

)−1 (
[0, %εΣ̇≤k] + oυ(1)

)
= %ε[0,N (k)] + oυ(1)

√
N,

where the errors are all in operator norm. A similar calculation shows

T̂
>
N (k) = dεM (k−1) + oυ(1)

√
N.

Combining proves (2.59) and thus (2.57). So, conditional on DATA,

1√
N
〈Gv̇, v̂〉 d= 〈v̇, Ṫ v̂〉+ 〈v̂, T̂ v̇〉+ oυ(1) +

1√
N
〈GP⊥M(k)

v̇, P⊥N(k)
v̂〉

By Gordon’s inequality applied to G,

sup
(m,n)∈U(r0)

h́∈U ′(r0)

sup
‖v̇‖=1
v̇⊥m

inf
‖v̂‖=rε,
v̂⊥n

{
f(v̇, v̂;m,n, h́,DATA) + 2〈v̇, Ṫ v̂〉+ 2〈v̂, T̂ v̇〉

+
2√
N
〈GP⊥M(k)

v̇, P⊥N(k)
v̂〉+

2‖P⊥N(k)
v̂‖‖P⊥M(k)

v̇‖
√
N

Z

}
is stochastically dominated by

sup
(m,n)∈U(r0)

h́∈U ′(r0)

sup
‖v̇‖=1
v̇⊥m

inf
‖v̂‖=rε,
v̂⊥n

{
f(v̇, v̂;m,n, h́,DATA) + 2〈v̇, Ṫ v̂〉+ 2〈v̂, T̂ v̇〉

+
2‖P⊥N(k)

v̂‖
√
N

〈v̇, P⊥M(k)
ξ̇〉+

2‖P⊥M(k)
v̇‖

√
N

〈v̂, P⊥N(k)
ξ̂〉
}
.

The quantity inside the sup-inf is precisely f(v̇, v̂,DATA) + 2√
N
〈v̇, ġ′AMP(v̂)〉+ 2√

N
〈v̂, ĝ′AMP(v̇)〉.

Define

ġAMP(v̂) =
√
N Ṫ v̂ + ‖P⊥N(k)

v̂‖ξ̇, ĝAMP(v̇) =
√
N T̂ v̇ + ‖P⊥M(k)

v̇‖ξ̂.

Note that

1√
N
‖ġAMP(v̂)− ġ′AMP(v̂)‖ ≤ rε√

N
‖PM(k)

ξ̇‖, 1√
N
‖ĝAMP(v̇)− ġ′AMP(v̇)‖ ≤ 1√

N
‖PN(k)

ξ̂‖,
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are both bounded by υ with high probability, and similarly |Z|/
√
N ≤ υ with high probability. Below, let

err denote an error term of order or0(1) + ok(1) + oυ(1). By (2.53), Lemma 2.6.9, and these observations, it
suffices to show that with high probability,

sup
(m,n)∈U(r0)

h́∈U ′(r0)

sup
‖v̇‖=1
v̇⊥m

inf
‖v̂‖=rε,
v̂⊥n

{
− 〈D1v̇, v̇〉+ 〈D2(h́)−1v̂, v̂〉

+
2√
N
〈v̇, ġAMP(v̂)〉+

2√
N
〈v̂, ĝAMP(v̇)〉

}
≤ λε + dε + err. (2.60)

Lemma 2.6.10. Let

µ̇′AMP =
1

N

N∑
i=1

δ(ξ̇i, h̄
1
i , . . . , h̄

k
i ), µ̂′AMP =

1

M

M∑
a=1

δ(ξ̂a, h̆
0
a, . . . , h̆

k
a).

Conditional on a realization of DATA such that (2.54) holds, with high probability,

W2(µ̇′AMP,N (0, 1)×N (0, Σ̇≤k)),W2(µ̂′AMP,N (0, 1)×N (0, Σ̂≤k)) ≤ 2υ. (2.61)

Proof. Under event (2.54), the W2-distance of the marginal of µ̇′AMP on all but the first coordinate to

N (0, Σ̇≤k)) is deterministically at most υ. Since ξ̇ is independent of DATA, it follows that W2(µ̇′AMP,N (0, 1)×
N (0, Σ̇≤k)) ≤ 2υ with high probability. The estimate for µ̂′AMP is analogous.

Fact 2.6.11 (Proved in Appendix 2.A). Let µ, µ′ ∈ P2(R3), and suppose the marginals of µ have fourth
moments. Suppose f1, f2, f3 are L-Lipschitz functions, and f3 is bounded by L. Then there exists C = C(µ,L)
such that

|E(x,y,z)∼µf1(x)f2(y)f3(z)− E(x′,y′,z′)∼µ′f1(x′)f2(y′)f3(z′)| ≤ C max(W2(µ, µ′),W2(µ, µ′)2). (2.62)

Lemma 2.6.12. Suppose (2.61) holds. Uniformly over (m,n) ∈ U(r0), h́ ∈ U ′(r0), v̇ ∈ {‖v̇‖ = 1, v̇ ⊥m},

W2

(
1

M

M∑
a=1

δ(ĥka, h́a, na, ĝAMP(v̇)a), (q̃1/2
ε Z, q̃1/2

ε Z,Fε,%ε(q̃
1/2
ε Z), Z ′)

)
≤ err. (2.63)

Similarly, uniformly over (m,n) ∈ U(r0), v̂ ∈ {‖v̂‖ = rε, v̂ ⊥ n},

W2

(
1

N

N∑
i=1

δ(ḣki ,mi, ġAMP(v̂)i), (ψ̃
1/2
ε Z, thε(ψ̃

1/2
ε Z), rεZ

′)

)
≤ err. (2.64)

Proof. We first show that for any v̇′ ∈ {‖v̇′‖ = 1, v̇′ ⊥m},

W2

(
1

M

M∑
a=1

δ(ĥka, ĝAMP(v̇′)a), (q̃1/2
ε Z,Z ′)

)
= oυ(1). (2.65)

Indeed, let v̇′ = 1√
N
M (k)~̇v + P⊥M(k)

v̇′ for some ~̇v ∈ Rk+1, so that ĝAMP(v̇′) = H̆(k)~̇v + ‖P⊥M(k)
v̇′‖ξ̂. By

the approximate isometry (2.55), (2.56), since 1√
N
M (k)~̇v ⊥mk, we have 1

N 〈h̆
k
, H̆(k)~̇v〉 = oυ(1). (Since υ is

small depending on k, we may take it much smaller than the condition number of Σ̂≤k.) By this isometry,

W2

(
1

M

M∑
a=1

δ(ĥka, (H̆(k)~̇v)a), (q̃1/2
ε Z, ‖PM(k)

v̇′‖Z ′)

)
= oυ(1).

Then (2.61) implies (2.65). Now consider (m,n) ∈ U(r0) and let T be a rotation operator mapping m/‖m‖
to mk/‖mk‖. Note that ‖T − I‖op = or0(1). Consider any v̇ ∈ {‖v̇‖ = 1, v̇ ⊥m}, and let v̇′ = T v̇. Then,

‖ĝAMP(v̇′)− ĝAMP(v̇)‖ ≤ (
√
N‖T̂ ‖op + ‖ξ̂‖)‖v̇′ − v̇‖ ≤

√
N(‖T̂ ‖op +O(1))or0(1).
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Note that

‖T̂ ‖op = sup
~̇v∈Rk+1

‖T̂M (k)~̇v‖
‖M (k)~̇v‖

= sup
~̇v∈Rk+1

‖H̆~̇v‖
‖M (k)~̇v‖

= sup
~̇v∈Rk+1

√√√√ 〈 1
N H̆

>
H̆, ~̇v

⊗2
〉

〈 1
NM

>M , ~̇v
⊗2
〉

is bounded by an absolute constant by (2.55), (2.56). Thus ‖ĝAMP(v̇′)− ĝAMP(v̇)‖ ≤ or0(1)
√
N . By (2.52)

and definition of U ′(r0),

‖ĥ
k
− h́‖ ≤ ‖ĥ

k
− h́

k
‖+ ‖h́

k
− h́‖ ≤ (ok(1) + or0(1))

√
N. (2.66)

Similarly,

‖Fε,%ε(ĥ
k
)− n‖ = ‖nk − n‖ ≤ or0(1)

√
N. (2.67)

Combining these bounds with (2.65) proves (2.63). (2.64) is proved similarly.

Proposition 2.6.13. If (2.61) holds, uniformly over (m,n) ∈ U(r0), h́ ∈ U ′(r0), v̇ ∈ {‖v̇‖ = 1, v̇ ⊥m},

inf
‖v̂‖=rε,
v̂⊥n

〈D2(h́)−1v̂, v̂〉+
2√
N
〈v̂, ĝAMP(v̇)〉 ≤ −α? E

[
f̂ε(q̃

1/2
ε Z)

1 +mε(zε)f̂ε(q̃
1/2
ε Z)

]
−mε(zε)r

2
ε + err.

Proof. Let

v̂′ = − 1√
N

(
D2(h́)−1 +mε(zε)I

)−1

ĝAMP(v̇).

Note the identity

α? E

( f̂ε(q̃
1/2
ε Z)

1 +mε(zε)f̂ε(q̃
1/2
ε Z)

)2
 =

α?θε(zε)

E[(zε + ḟε(ψ̃
1/2
ε Z))−2]

= r2
ε . (2.68)

Then,

‖v̂′‖2 =
1

N
ĝAMP(v̇)>

(
D̃2(h́)−1 +mε(zε)I

)−2

ĝAMP(v̇)

=
α?
M

M∑
a=1

(
f̂ε(h́a)

1 +mε(zε)f̂ε(h́a)

)2

ĝAMP(v̇)2
a

= α? E

( f̂ε(q̃
1/2
ε Z)

1 +mε(zε)f̂ε(q̃
1/2
ε Z)

)2

(Z ′)2

+ err = r2
ε + err.

In the last line we used Lemma 2.6.12 and Fact 2.6.11, with f1(x) = f2(x) = x, f3(x) = ( f̂ε(x)

1+mε(zε)f̂ε(x)
)2.

(Note that we have not shown the coordinate empirical measure in (2.63) has bounded fourth moments, but
it suffices for Fact 2.6.11 that the gaussian approximating it does.) Similarly,

1√
N
〈v̂′,n〉 = −α?

M

M∑
a=1

(
f̂ε(h́a)

1 +mε(zε)f̂ε(h́a)

)
naĝAMP(v̇)a

= −α? E

[(
f̂ε(q̃

1/2
ε Z)

1 +mε(zε)f̂ε(q̃
1/2
ε Z)

)
Fε,%ε(q̃

1/2
ε Z)Z ′

]
+ err = err.

Likewise,

〈(D2(h́)−1 +mε(zε)IM )v̂′, v̂′〉 = − 1√
N
〈v̂′, ĝAMP(v̇)〉 =

α?
M

M∑
a=1

(
f̂ε(h́a)

1 +mε(zε)f̂ε(h́a)

)
ĝAMP(v̇)2

a

= α? E

[
f̂ε(q̃

1/2
ε Z)

1 +mε(zε)f̂ε(q̃
1/2
ε Z)

]
+ err.
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From this, it follows that

〈D2(h́)−1v̂′, v̂′〉+
2√
N
〈v̂′, ĝAMP(v̇)〉 = −α? E

[
f̂ε(q̃

1/2
ε Z)

1 +mε(zε)f̂ε(q̃
1/2
ε Z)

]
−mε(zε)r

2
ε + err.

By the above estimates on ‖v̂′‖2 and 1√
N
〈v̂′,n〉, we can find v̂ such that ‖v̂‖ = rε, v̂ ⊥ n, and ‖v̂− v̂′‖ ≤ err.

Since D2(h́)−1 has operator norm bounded independently of r0, k, υ,

|〈D2(h́)−1v̂, v̂〉 − 〈D−1
2 v̂′, v̂′〉| ≤ 2‖D−1

2 (h́)‖op‖v̂ − v̂′‖ ≤ err.

By Cauchy–Schwarz,

2√
N
|〈v̂, ĝAMP(v̇)〉 − 〈v̂′, ĝAMP(v̇)〉| ≤ 2√

N
‖ĝAMP(v̇)‖‖v̂ − v̂′‖ ≤ err.

This completes the proof.

Proposition 2.6.14. If (2.61) holds, uniformly over (m,n) ∈ U(r0), v̂ ∈ {‖v̂‖ = rε, v̂ ⊥ n}, we have

sup
‖v̇‖=1
v̇⊥m

−〈D1v̇, v̇〉+
2√
N
〈v̇, ġAMP(v̂)〉 ≤ zε +mε(zε)r

2
ε + err.

Proof. Fix any (m,n) and v̂ satisfying the stated conditions. We estimate

sup
‖v̇‖=1
v̇⊥m

−〈D1v̇, v̇〉+
2√
N
〈v̇, ġAMP(v̂)〉 ≤ sup

v̇⊥m
−〈D1v̇, v̇〉+

2√
N
〈v̇, ġAMP(v̂)〉 − zε

(
‖v̇‖2 − 1

)
. (2.69)

Note that −D1 − zεIN is negative definite, as zε > − 1
1+ε = maxx∈R{−ḟ(x)}. So, the supremum on the

right-hand side of (2.69) is maximized by v̇ solving the stationarity condition (in span(m)⊥):

v̇ =
1√
N
P⊥m(D1 + zεIN )−1P⊥mġAMP(v̂).

Let

v̇′ =
1√
N

(D1 + zεIN )−1ġAMP(v̂).

Note that, by Fact 2.6.11 and Lemma 2.6.12,

〈(D1 + zεIN )v̇′, v̇′〉 =
1√
N
〈v̇′, ġAMP(v̂)〉 =

1

N

N∑
i=1

ġAMP(v̂)2
i (ḟε(ḣi) + zε)

−1

= r2
ε E
[
(ḟε(ψ̃εZ) + zε)

−1
]

+ err

= mε(zε)r
2
ε + err.

Thus

−〈D1v̇
′, v̇′〉+

2√
N
〈v̇′, ġAMP(v̂)〉 − zε

(
‖v̇′‖2 − 1

)
= zε +mε(zε)r

2
ε + err.

We now estimate ‖v̇ − v̇′‖. Note that

‖v̇ − v̇′‖ ≤ ‖(D1 + zεIN )−1‖op‖PmġAMP(v̂)‖+ ‖Pm(D1 + zεIN )−1ġAMP(v̂)‖,

and by Fact 2.6.11 and Lemma 2.6.12, both terms on the right-hand side are bounded by err. SinceD1+zεIN
has bounded operator norm,

|〈(D1 + zεIN )v̇, v̇〉 − 〈(D1 + zεIN )v̇′, v̇′〉| ≤ 2‖D1 + zεIN‖op‖v̇ − v̇′‖ ≤ err.

By Cauchy–Schwarz,

2√
N
|〈v̇′, ġAMP(v̂)〉 − 〈v̇, ġAMP(v̂)〉| ≤ 2√

N
‖ġAMP(v̂)‖‖v̇ − v̇′‖ ≤ err.

Combining completes the proof.
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Proof of Proposition 2.6.7. By Propositions 2.6.13 and 2.6.14, on the high probability event (2.61), the left-
hand side of (2.60) is bounded by

zε − α? E

[
f̂ε(q̃

1/2
ε Z)

1 +mε(zε)f̂ε(q̃
1/2
ε Z)

]
+ err = λε + dε + err.

This proves (2.60), and by the discussion leading to (2.60) the proposition follows.

Proof of Proposition 2.4.8(c), under P. By Proposition 2.4.8(a), with high probability, (mk,nk) ∈ Sε,υ0 .
Recall that thε, Fε,%ε are O(1)-Lipschitz, with Oε(1)-Lipschitz inverses (i.e. Lipschitz constant depending
only on ε). On this event, for υ0 small depending on r0 and some Cε = Oε(1),

U(r0) ⊆ Sε,υ0+Cεr0 ⊆ Sε,2Cεr0 . (2.70)

Since ‖G‖op, ‖ĝ‖ ≤ C
√
N holds with high probability under P, Lemma 2.6.4 applies. Applying this lemma

with 2Cεr0 in place of r0 shows that for all (m,n) ∈ U(r0),

∇2
�FεTAP(m,n) � R(m,n) + λεPm + (oCcvx(1) + or0(1))IN .

Combined with Proposition 2.6.7, this gives that with high probability,

∇2
�F(m,n) � (λε + oCcvx(1) + or0(1) + ok(1))IN .

By Lemma 2.6.3,
∇2
�F(m,n) � (λ0 + oε(1) + oCcvx(1) + or0(1) + ok(1))IN .

Under Condition 2.3.4, λ0 < 0. The conclusion follows by setting the parameters so the error term in the
last display is bounded by |λ0|/2.

Remark 2.6.15. The bound λε + dε in Proposition 2.6.7 is tight. One way to see this is to calculate the
upper edge of the limiting spectral measure of

A = P⊥M(k)
(−D1 −W )P⊥M(k)

, where W =
1

N
G>P⊥

N(k)D2P
⊥
N(k)G,

using free probability [Voi91]. We now outline this calculation. Note that conditional on DATA, −D1 and
−W are orthogonally invariant as quadratic forms on span(m0, . . . ,mk)⊥. The inverse Cauchy transform
of −D1 is approximated within err by m−1

ε (t). By e.g. [BS98, Equation 1.2], the inverse Cauchy transform
of −W is approximated within err by

1

t
− α? E

[
f̂ε(q̃

1/2
ε Z)

1 + tf̂ε(q̃
1/2
ε Z)

]
,

Since R-transforms add under free additive convolution, A has limiting inverse Cauchy transform

ϑε(t) = m−1
ε (t)− α? E

[
f̂ε(q̃

1/2
ε Z)

1 + tf̂ε(q̃
1/2
ε Z)

]
.

One calculates that

ϑ′ε(t) = −E[(m−1
ε (t) + ḟε(ψ̃

1/2
ε Z))−2]−1 + E

( f̂ε(q̃
1/2
ε Z)

1 + tf̂ε(q̃
1/2
ε Z)

)2


has the same sign as θε(m
−1
ε (t))−α−1

? . Thus ϑε(t) is decreasing on (0,mε(zε)] and increasing [mε(zε),+∞).
It follows that the limiting spectral measure of A has upper edge ϑε(mε(zε)) = λε + dε. By the Weyl
inequalities the same is true for R(m,n), so Proposition 2.6.7 is tight.
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2.6.4 Planted model

The proof of Proposition 2.4.8(c) in the planted model is only simpler, as we will be able to apply Gordon’s
inequality directly rather than conditional on AMP iterates. The main step is the following proposition. Let
υ be sufficiently small depending on r0, k.

Proposition 2.6.16. Suppose (m′,n′) ∈ Sε,υ. With high probability under Pm
′,n′

ε,Pl , R(m,n) � (λε + dε +

err)P⊥m for all ‖(m,n)− (m′,n′)‖ ≤ 2r0

√
N .

Let ḣ
′

= th−1
ε (m′), ĥ

′
= F−1

ε,ρε(q(m))(n
′). By Lemma 2.4.16, under Pm,n′

ε,Pl we have h́(m′,n′,G) = ĥ
′
.

For this subsection, let U(r0) = {(m,n) : ‖(m,n)− (m′,n′)‖ ≤ 2r0

√
N} and U ′(r0) = {h́ : ‖h́− ĥ

′
‖ ≤

Cr0

√
N}, for suitably large constant C. Identically to the discussion above (2.53), to prove Proposition 2.6.16

it suffices to show, with high probability,

sup
(m,n)∈U(r0)

sup
‖v̇‖=1
v̇⊥m

inf
‖v̂‖=rε,
v̂⊥n

{
−〈D1v̇, v̇〉+ 〈D2(h́)−1v̂, v̂〉+

2√
N
〈Gv̇, v̂〉

}
≤ λε + dε + err.

Lemma 2.6.17. Let ξ̇, ξ̇
′
∼ N (0, IN ), ξ̂, ξ̂

′
∼ N (0, IM ), Z,Z ′ ∼ N (0, 1) be independent of everything else

and

ġ′Pl(v̂) =
‖Pn′ v̂‖(ḣ

′
+ ε1/2P⊥m′ ξ̇

′
)

ψ̃
1/2
ε

+ ‖P⊥n′ v̂‖P⊥m′ ξ̇, ĝ′Pl(v̇) =
‖Pm′ v̇‖(ĥ

′
+ ε1/2P⊥n′ ξ̂

′
)

q̃
1/2
ε

+ ‖P⊥m′ v̇‖P⊥n′ ξ̂.

For any continuous f : RN × RM × (RN )2 × (RM )3 → R,

sup
(m,n)∈U(r0)

h́∈U ′(r0)

sup
‖v̇‖=1
v̇⊥m

inf
‖v̂‖=rε,
v̂⊥n

{
f(v̇, v̂;m′,m,n′,n, h́) +

2√
N
〈Gv̇, v̂〉+

2‖P⊥n′ v̂‖‖P⊥m′ v̇‖√
N

Z

}

is stochastically dominated by

sup
(m,n)∈U(r0)

h́∈U ′(r0)

sup
‖v̇‖=1
v̇⊥m

inf
‖v̂‖=rε,
v̂⊥n

{
f(v̇, v̂;m′,m,n′,n, h́) +

2√
N
〈v̇, ġ′Pl(v̂)〉+

2√
N
〈v̂, ĝ′Pl(v̇)〉

+
2ε1/2‖Pn′ v̂‖‖Pm′ v̇‖
(qε + ψε + ε)1/2

√
N
Z ′
}

+ oυ(1).

Proof. By Corollary 2.4.18, the gaussian process (v̇, v̂) 7→ 1√
N
〈Gv̇, v̂〉 has the form

1√
N
〈Gv̇, v̂〉 d= 〈ḣ

′
, v̇〉〈n′, v̂〉
Nψ̃ε

+
〈m′, v̇〉〈ĥ

′
, v̂〉

Nq̃ε
+ oυ(1) +

1√
N
〈G̃v̇, v̂〉

=
‖Pn′ v̂‖〈ḣ

′
, v̇〉

ψ̃
1/2
ε

√
N

+
‖Pm′ v̇‖〈ĥ

′
, v̂〉

q̃
1/2
ε

√
N

+ oυ(1) +
1√
N
〈G̃v̇, v̂〉.

Here the oυ(1) is uniform over bounded ‖v̇‖, ‖v̂‖. Moreover, by (2.40), the random part 〈G̃v̇, v̂〉 expands as

〈G̃v̇, v̂〉 = 〈G̃P⊥m′ v̇, P⊥n′ v̂〉+ 〈G̃P⊥m′ v̇, Pn′ v̂〉+ 〈G̃Pm′ v̇, P⊥n′ v̂〉+ 〈G̃Pm′ v̇, Pn′ v̂〉

d
= 〈G̃P⊥m′ v̇, P⊥n′ v̂〉+

ε1/2

ψ̃
1/2
ε

‖Pn′ v̂‖〈P⊥m′ ξ̇
′
, v̇〉+

ε1/2

q̃
1/2
ε

‖Pm′ v̇‖〈P⊥n′ ξ̂
′
, v̂〉+

ε1/2‖Pn′ v̂‖‖Pm′ v̇‖
(qε + ψε + ε)1/2

Z ′.
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Thus, (as processes)

1√
N
〈Gv̇, v̂〉+

‖P⊥n′ v̂‖‖P⊥m′ v̇‖√
N

Z
d
=

1√
N
〈G̃P⊥m′ v̇, P⊥n′ v̂〉+

‖P⊥n′ v̂‖‖P⊥m′ v̇‖√
N

Z

+
‖Pn′ v̂‖〈ḣ

′
+ ε1/2P⊥m′ ξ̇

′
, v̇〉

ψ̃
1/2
ε

√
N

+
‖Pm′ v̇‖〈ĥ

′
+ ε1/2P⊥n′ ξ̂

′
, v̂〉

q̃
1/2
ε

√
N

+
ε1/2‖Pn′ v̂‖‖Pm′ v̇‖
(qε + ψε + ε)1/2

√
N
Z ′ + oυ(1).

The result now follows by using Gordon’s inequality to compare 1√
N
〈G̃P⊥m′ v̇, P⊥n′ v̂〉 +

‖P⊥
n′ v̂‖‖P

⊥
m′ v̇‖√

N
Z to

1√
N
‖P⊥n′ v̂‖〈v̇, P⊥m′ ξ̇〉+ 1√

N
‖P⊥m′ v̇‖〈v̂, P⊥n′ ξ̂〉.

Let

ġPl(v̂) =
‖Pn′ v̂‖(ḣ

′
+ ε1/2ξ̇

′
)

ψ̃
1/2
ε

+ ‖P⊥n′ v̂‖ξ̇, ĝPl(v̇) =
‖Pm′ v̇‖(ĥ

′
+ ε1/2ξ̂

′
)

q̃
1/2
ε

+ ‖P⊥m′ v̇‖ξ̂.

As argued above (2.60), with high probability,

1√
N
|Z|, 1√

N
|Z ′|, 1√

N
sup
‖v̂‖=rε

‖ġPl(v̂)− ġ′Pl(v̂)‖, 1√
N

sup
‖v̇‖=1

‖ĝPl(v̇)− ĝ′Pl(v̇)‖ ≤ υ.

So it suffices to show that with high probability,

sup
(m,n)∈U(r0)

h́∈U ′(r0)

sup
‖v̇‖=1
v̇⊥m

inf
‖v̂‖=rε,
v̂⊥n

{
− 〈D1v̇, v̇〉+ 〈D2(h́)−1v̂, v̂〉

+
2√
N
〈v̇, ġPl(v̂)〉+

2√
N
〈v̂, ĝPl(v̇)〉

}
≤ λε + dε + err. (2.71)

Lemma 2.6.18. For all (m′,n′) ∈ Sε,υ, the following holds with high probability. Uniformly over (m,n) ∈
U(r0), h́ ∈ U ′(r0), v̇ ∈ {‖v̇‖ = 1, v̇ ⊥m},

W2

(
1

M

M∑
a=1

δ(ĥ′a, h́a, n
′
a, ĝPl(v̇)a), (q̃1/2

ε Z, q̃1/2
ε Z,Fε,%ε(q̃

1/2
ε Z), Z ′)

)
≤ err. (2.72)

Similarly, uniformly over (m′,n′) ∈ Sε,υ, (m,n) ∈ U(r0), v̂ ∈ {‖v̂‖ = rε, v̂ ⊥ n},

W2

(
1

N

N∑
i=1

δ(ḣ′i,m
′
i, ġPl(v̂)i), (ψ̃

1/2
ε Z, thε(ψ̃

1/2
ε Z), rεZ

′)

)
≤ err. (2.73)

Proof. Let ĥ
′′

= F−1
ε,%ε(n

′). Consider first v̇′ ∈ {‖v̇′‖ = 1, v̇′ ⊥m}, Then ĝPl(v̇
′) = ξ̂, so clearly

W2

(
1

M

M∑
a=1

δ(ĥ′′a, ĝPl(v̇
′)a), (q̃1/2

ε Z,Z ′)

)
= oυ(1).

For (m,n) ∈ U(r0), let T be a rotation operator mappingm/‖m‖ tom′/‖m′‖. Note that ‖T−I‖op = or0(1).
Consider any v̇ ∈ {‖v̇‖ = 1, v̇ ⊥m}, and let v̇′ = T v̇, so ‖v̇ − v̇′‖ = or0(1). Then

‖ĝPl(v̇′)− ĝPl(v̇)‖ ≤ O(1)
(
‖ĥ
′
‖+ ‖ξ̂

′
‖+ ‖ξ̂‖

)
‖v̇ − v̇′‖.

With high probability over ξ̂, ξ̂
′
, this is bounded by or0(1)

√
N . Thus

W2

(
1

M

M∑
a=1

δ(ĥ′′a, ĝPl(v̇)a), (q̃1/2
ε Z,Z ′)

)
= or0(1) + oυ(1). (2.74)
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Note that
‖ĥ
′
− ĥ

′′
‖ = ‖F−1

ε,ρε(q(m))(n
′)− F−1

ε,%ε(n
′)‖ ≤ err

√
N.

Identically to (2.66) and (2.67), we can show

‖ĥ
′
− h́‖, ‖Fε,%ε(ĥ

′′
)− n‖ ≤ err

√
N.

Combined with (2.74), this proves (2.72). The proof of (2.73) is analogous.

The following two propositions are proved identically to Propositions 2.6.13 and 2.6.14, with ĝPl, ġPl, and
Lemma 2.6.18 playing the roles of ĝAMP, ġAMP, and Lemma 2.6.12.

Proposition 2.6.19. For all (m′,n′) ∈ Sε,υ, the following holds with high probability. Uniformly over

(m,n) ∈ U(r0), h́ ∈ U ′(r0), v̇ ∈ {‖v̇‖ = 1, v̇ ⊥m}, we have

inf
‖v̂‖=rε,
v̂⊥n

〈D2(h́)−1v̂, v̂〉+
2√
N
〈v̂, ĝPl(v̇)〉 ≤ −α? E

[
f̂ε(q̃

1/2
ε Z)

1 +mε(zε)f̂ε(q̃
1/2
ε Z)

]
−mε(zε)r

2
ε + err.

Proposition 2.6.20. For all (m′,n′) ∈ Sε,υ, the following holds with high probability. Uniformly over
(m,n) ∈ U(r0), v̂ ∈ {‖v̂‖ = rε, v̂ ⊥ n}, we have

sup
‖v̇‖=1
v̇⊥m

−〈D1v̇, v̇〉+
2√
N
〈v̇, ġPl(v̂)〉 ≤ zε +mε(zε)r

2
ε + err.

Proof of Proposition 2.6.16. Adding Propositions 2.6.19 and 2.6.20 shows that (2.71) holds with high prob-
ability. The result follows from the discussion leading to (2.71).

Proof of Proposition 2.4.8(c), under Pm,n
ε,Pl . By Proposition 2.4.8(d), ‖(mk,nk) − (m,n)‖ = υ0

√
N with

high probability. We set υ0 < r0. Since we defined

U(r0) = {(m,n) : ‖(m,n)− (m′,n′)‖ ≤ 2r0

√
N} ⊇ {(m,n) : ‖(m,n)− (mk,nk)‖ ≤ r0

√
N},

the conclusion of Proposition 2.6.16 holds for all ‖(m,n) − (mk,nk)‖ ≤ r0

√
N . Identically to (2.70), we

have
{(m,n) : ‖(m,n)− (mk,nk)‖ ≤ r0

√
N} ⊆ Sε,2Cεr0

for some Cε = Oε(1). Since ‖G‖op, ‖ĝ‖ ≤ C
√
N holds with high probability under Pm,n

ε,Pl , Lemma 2.6.4 holds.

Applying this lemma (with 2Cεr0 in place of r0) gives that for all ‖(m,n)− (mk,nk)‖ ≤ r0

√
N ,

∇2
�FεTAP(m,n) � R(m,n) + λεPm + (oCcvx(1) + or0(1))IN

� (λε + oCcvx(1) + or0(1) + ok(1))IN

� (λ0 + oε(1) + oCcvx(1) + or0(1) + ok(1))IN .

Under Condition 2.3.4, λ0 < 0, and the result follows by setting the error terms small.

2.6.5 Determinant concentration

In this subsection, we prove Lemma 2.4.9. We fix some (m,n) ∈ Sε,υ and work under the measure Pm,n
ε,Pl .

Define, as in Lemma 2.4.16,

ḣ = th−1
ε (m), ĥ = F−1

ε,ρε(m)(n), h́ =
Gm√
N

+ ε1/2ĝ − ρε(q(m))n.

Recall from Lemma 2.4.16 that under Pm,n
ε,Pl , we have h́ = ĥ deterministically. We computed ∇2FTAP(m,n)

in Fact 2.6.5, and under Pm,n
ε,Pl the matrices D1, D̃2,D3,D4 therein are all nonrandom. By Schur’s lemma,

|det∇2FTAP(m,n)| = |det∇2
n,nFTAP(m,n)||det∇2

�FTAP(m,n)|, (2.75)
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and ∇2
n,nFTAP(m,n) is nonrandom. By Fact 2.6.5,

∇2
�FTAP(m,n) = −D1 −

1

N
G>D̃2G+ ρ′ε(q(m))dε(m,n)IN +

C

N
mm> +

1

N
(G>vm> +mv>G)

for some nonrandom C ∈ R, v ∈ RM depending on (m,n). By Lemma 2.6.6, |C|, ‖v‖ are uniformly bounded
over (m,n) ∈ Sε,υ, with bound depending on ε, Ccvx. Define for convenience the nonrandom matrix

A = D1 − ρ′ε(q(m))dε(m,n)IN −
C

N
mm>

and note that ‖A‖op is uniformly bounded (depending on ε, Ccvx) over (m,n) ∈ Sε,υ. Then let

X =

 A 1√
N
mv> 1√

N
G>

1√
N
vm> D̃2 IM

1√
N
G IM 0

 ∈ R(N+2M)×(N+2M). (2.76)

Lemma 2.6.21. We have |det∇2
�FTAP(m,n)| = |detX|.

Proof. Let Y =
[
D̃2 IM
IM 0

]
. Note that |detY | = 1 and Y −1 =

[
0 IM
IM −D̃2

]
. By Schur’s lemma,

|detX| =
∣∣∣∣det

(
A− 1

N

[
mv> G>

]
Y −1

[
vm>

G

])∣∣∣∣ = |det∇2
�FTAP(m,n)|.

It therefore suffices to study |detX|. This formulation has the benefit that the only randomness in X is
from G, and by Lemma 2.4.17 (in a suitable orthonormal basis) G is a matrix of independent (noncentered)
gaussians. This structure will enable us to prove Lemma 2.4.9 using the spectral concentration results of
[GZ00]. Before carrying out this argument, we first prove a preliminary lemma.

Lemma 2.6.22. There exists τ > 0 depending on ε, Ccvx such that, for all (m,n) ∈ Sε,υ, X has no
eigenvalues in [−τ, τ ] with high probability under Pm,n

ε,Pl .

Proof. We will show that det(zIN+2M −X) has no zeros in [−τ, τ ]. By Schur’s lemma, for any z 6= 0,

|det(zI2M − Y )| = |det(zIM − D̃2)||det(zIM − (zIM − D̃2)−1)| = |det(z(zIM − D̃2)− IM )|

Let τ1 be the smallest positive solution to τ1|max(f̂ε) + τ | ≤ 1
2 . Note that τ1 depends only on ε, and the

above determinant is nonzero for any |z| ≤ τ1. Further, note that

(zI2M − Y )−1 =

[
−z(IM − z(zIM − D̃2))−1 (IM − z(zIM − D̃2))−1

(IM − z(zIM − D̃2))−1 −(zIM − D̃2)(IM − z(zIM − D̃2))−1

]
.

From this, we see that there exists Cε > 0 such that for all |z| ≤ τ1,

‖(zI2M − Y )−1 + Y −1‖op ≤ Cε|z|.

By Schur’s lemma, for all |z| ≤ τ1,

|det(zIN+2M −X)| = |det(zI2M − Y )||detB(z)|,

for

B(z) = zIN −A−
1

N

[
mv> G>

]
(zI2M − Y )−1

[
vm>

G

]
.

It follows that for all |z| ≤ τ1,

‖B(z)−∇2
�FεTAP(m,n)‖op ≤ |z|+ Cε|z|

(
‖vm>‖op√

N
+
‖G‖op√

N

)2

.

As shown in Proposition 2.4.8(c), ∇2
�FεTAP(m,n) � −CspecIN with high probability under Pm,n

ε,Pl . Fur-

thermore,
‖vm>‖op√

N
= 1√

N
‖v‖‖m‖ is bounded, with bound depending on ε, Ccvx, and with high probabil-

ity,
‖G‖op√
N

is bounded by an absolute constant. It follows that for |z| small enough depending on ε, Ccvx,

B(z) � −CspecIN/2, and thus |detB(z)| 6= 0.
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The core of the proof of Lemma 2.4.9 is the following spectral concentration inequality, which adapts
[GZ00, Theorem 1.1(b)]. For any f : R→ R, let

trf(X) =

N+2M∑
i=1

f(λi(X)),

where λ1(X), . . . , λN+2M (X) are the eigenvalues of X.

Lemma 2.6.23. If f is L-Lipschitz, then for any t ≥ 0,

Pm,n
ε,Pl (|trf(X)− Em,n

ε,Pl trf(X)| ≥ t) ≤ 2e−t
2/8L2

.

Proof. Let {ωa,i : a ∈ [M ], i ∈ [N ]} be i.i.d. standard gaussians, and let ė1, . . . , ėN and ê1, . . . , êM be

orthonormal bases of RN and RM as in Lemma 2.4.17. By (2.40), we can sample G̃ by

G̃ =

M∑
a=1

N∑
i=1

wa,iωa,iêaė
>
i , wa,i =


√
ε/(q(m) + ψ(n) + ε) i = j = 1,√
ε/(q(m) + ε) i = 1, j 6= 1,√
ε/(ψ(n) + ε) i 6= 1, j = 1,

1 i 6= 1, j 6= 1.

By [GZ00, Lemma 1.2(b)], the map {ωa,i : a ∈ [M ], i ∈ [N ]} 7→ trf(X) is 2L-Lipschitz. The result follows
from the gaussian concentration inequality.

Proof of Lemma 2.4.9. Define f(x) = log max(|x|, τ), which is τ−1-Lipschitz. Lemma 2.6.23 implies that

Pm,n
ε,Pl (|trf(X)− Em,n

ε,Pl trf(X)| ≥ t) ≤ 2e−τ
2t2/8. (2.77)

Let d̃et(X) = exp trf(X). Also let

Espec(X) = {spec(X) ∩ [−τ, τ ] = ∅} ,

so that P(Espec) ≥ 1− ι for some ι = oN (1) by Lemma 2.6.22. Note that |det(X)| ≤ d̃et(X) for all X, with
equality for all X ∈ Espec. Thus

Em,n
ε,Pl [|det(X)|2] ≤ Em,n

ε,Pl [d̃et(X)2], Em,n
ε,Pl [|det(X)|] ≥ Em,n

ε,Pl [d̃et(X)1{Espec}]. (2.78)

By the concentration (2.77), there exists C depending on ε, Ccvx such that

Em,n
ε,Pl [d̃et(X)2] ≤ C exp(2Em,n

ε,Pl trf(X)).

Furthermore, by Jensen’s inequality Em,n
ε,Pl [d̃et(X)] ≥ exp(Em,n

ε,Pl trf(X)). Thus,

Em,n
ε,Pl [d̃et(X)2] ≤ CEm,n

ε,Pl [d̃et(X)]2. (2.79)

By Cauchy–Schwarz,

Em,n
ε,Pl [d̃et(X)1{Ecspec}] ≤ Em,n

ε,Pl [d̃et(X)2]1/2Pm,n
ε,Pl (Ecspec)1/2 ≤ C1/2ι1/2Em,n

ε,Pl [d̃et(X)].

It follows that
Em,n
ε,Pl [d̃et(X)1{Espec}] ≥ (1− C1/2ι1/2)Em,n

ε,Pl [d̃et(X)].

Combining with (2.78), (2.79) shows that

Em,n
ε,Pl [|det(X)|2]1/2 ≤ C1/2(1− C1/2ι1/2)−1Em,n

ε,Pl [|det(X)|],

which implies the result after adjusting C.
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2.7 First moment in planted model

In this section, we prove Proposition 2.3.9, bounding the first moment of ZN (G) in the planted model. The
proof is structured as follows. In Subsection 2.7.1, we show this moment is bounded by a optimization problem
over Λ : R → R encoding subsets of ΣN with a certain coordinate profile (heuristically described in (2.9)).
Subsection 2.7.2 reduces this optimization to two dimensions by showing the maximizer is attained in a two-
parameter family. For technical reasons, the functional in this optimization problem is not the S? defined in
(2.8), but a variant S smax

? where s is minimized over [0, smax] instead of [0,+∞) see (2.80). Subsection 2.7.3
and Subsection 2.7.4 show that we recover the optimization of S? when smax →∞, completing the proof of
Proposition 2.3.9. Subsection 2.7.5 proves Lemma 2.2.5, on the local behavior of the first moment functional
S?(λ1, λ2) near (1, 0).

2.7.1 Reduction to functional optimization

Recall that (q0, ψ0) are given by Condition 2.3.1. Let Ḣ ∼ N (0, ψ0), M = th(Ḣ), and Ĥ ∼ N (0, q0),

N = F1−q0(Ĥ), for F1−q0 given by (2.13). Let L = L2(R,N (0, ψ0)) denote the space of measurable
functions Λ : R→ R, equipped with the inner product

〈Λ1,Λ2〉 = E[Λ1(Ḣ)Λ2(Ḣ)]

and square-integrable w.r.t. the associated norm. Let K ⊆ L denote the set of functions with image in
[−1, 1]. For smax > 0, define

S smax
? (Λ) = inf

0≤s≤smax

S?(Λ, s), (2.80)

where S? : K × [0,+∞) → R is defined by (2.7). The following proposition bounds the first moment
by the maximum of an optimization problem over functions Λ, and is the starting point of the proof of
Proposition 2.3.9.

Proposition 2.7.1. For any smax > 0, (m,n) ∈ Sε,υ, we have 1
N logEm,n

ε,Pl [ZN (G)] ≤ supΛ∈K S smax
? (Λ) +

oε,υ(1).

Here oε,υ(1) denotes a term vanishing as ε, υ → 0, which can depend on smax; we send smax → ∞ after
ε, υ → 0 in the end.

Before proving Proposition 2.7.1, we state a few facts that will be useful below. Lemma 2.7.2 ensures
that the denominator of S?(Λ, s) is well-behaved, while Lemmas 2.7.3 and 2.7.4 are useful in approximation
arguments.

Lemma 2.7.2. There exists ι > 0 such that E[MΛ(Ḣ)]2 < (1− ι)q0 for all Λ ∈ K .

Proof. Since |Λ(Ḣ)| ≤ 1, by Cauchy–Schwarz,

E[MΛ(Ḣ)]2 ≤ E[|M |]2 < E[M2].

The inequality is strict because |M | has nonzero variance. Since E[M2] = P (ψ0) = q0 (recall Condi-
tion 2.3.1), the result follows.

Lemma 2.7.3. The function log Ψ(x) is (2, 1)-pseudo-Lipschitz (recall Definition 2.4.19).

Proof. Note that (log Ψ)′(x) = −E(x). Recall from Lemma 2.4.21(a) that 0 ≤ E(x) ≤ 1 + |x|. Thus,

| log Ψ(x)− log Ψ(y)| =
∣∣∣∣∫ y

x

E(s) ds

∣∣∣∣ ≤ |x− y|(1 + |x|+ |y|).

Lemma 2.7.4 (Proved in Appendix 2.A). There exists C > 0 such that for all a1, a2, b1, b2, c1, c2 > 0,∣∣∣∣∣E log Ψ

{
κ− a1Ĥ − b1N

c1

}
− log Ψ

{
κ− a2Ĥ − b2N

c2

}∣∣∣∣∣
≤ C max(a1, a2, b1, b2, c1, c2, 1)3

min(c1, c2)2
(|a1 − a2|+ |b1 − b2|+ |c1 − c2|) .
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We turn to the proof of Proposition 2.7.1. The main step will be Proposition 2.7.5 below, where we show
the bound in Proposition 2.7.1 holds for piecewise-constant Λ with finitely many parts. This case follows
from a direct moment calculation, and Proposition 2.7.1 follows by approximation.

For any ~r = (r1, . . . , rn−1) with −∞ < r1 < r2 < · · · < rn−1 < +∞, let Kelt(~r) ⊆ K denote the set
of right-continuous functions which are constant on each interval [rk−1, rk), 1 ≤ k ≤ n. Here we take as
convention r0 = −∞, rn = +∞. Define the quantiles ~p = (p0, . . . , pn) by pk = P(Ḣ < rk), and let

mesh(~p) = min
1≤k≤n

(pk − pk−1).

Let oε,υ,~p(1) denote a term vanishing as ε, υ,mesh(~p)→ 0, where (like before) this limit is taken after N →∞
for fixed smax. We will show the following.

Proposition 2.7.5. Suppose smax > 0, (m,n) ∈ Sε,υ, and ~r = (r1, . . . , rn−1) is as above. We have that
1
N logEm,n

ε,Pl [ZN (G)] ≤ supΛ∈Kelt(~r)
S smax
? (Λ) + oε,υ,~p(1).

For the rest of this subsection, fix smax, ε, υ, ~r and (m,n) as in Proposition 2.7.5. Let ḣ = th−1
ε (m) and

ĥ = F−1
ε,%ε(n), so that (ḣ, ĥ) ∈ Tε,υ. Fix a partition [N ] = I1 ∪ · · · ∪ In satisfying

|Ik| = bpkNc − bpk−1Nc, ∀1 ≤ k ≤ n,
max{ḣi : i ∈ Ik} ≤ min{ḣi : i ∈ Ik+1}, ∀1 ≤ k ≤ n− 1.

(In words, Ik is the set of coordinates i ∈ [N ] such that the quantile of ḣi among the entries of ḣ, breaking
ties in an arbitrary but fixed order, lies in [pk−1, pk).) Then, partition ΣN into sets

ΣN (~a) =

{
x ∈ ΣN :

∑
i∈Ik

xi = ak, ∀1 ≤ k ≤ n

}
. (2.81)

indexed by ~a = (a1, . . . , an) ∈ Zn. Let J be the set of ~a such that ΣN (~a) is nonempty, and note that
|J | ≤ Nn. Thus

1

N
logEm,n

ε,Pl [ZN (G)] =
1

N
log
∑
~a∈J

∑
x∈ΣN (~a)

Pm,n
ε,Pl

(
Gx√
N
≥ κ

)

= sup
~a∈J

{
1

N
log |ΣN (~a)|+ sup

x∈ΣN (~a)

1

N
logPm,n

ε,Pl

(
Gx√
N
≥ κ

)}
+ oN (1). (2.82)

Associate to each ~a ∈ J a function Λ~a ∈ Kelt(r1, . . . , rn−1) defined by

Λ~a(x) =
ak
|Ik|

, x ∈ [rk−1, rk), 1 ≤ k ≤ n.

Recall the function ent : K → R defined in (2.6).

Lemma 2.7.6. We have 1
N log |ΣN (~a)| = ent(Λ~a) + oN (1) for an error oN (1) uniform over ~a ∈ J .

Proof. By direct counting,

|ΣN (~a)| =
n∏
k=1

(
|Ik|

1
2 (|Ik|+ ak)

)
.

Stirling’s approximation yields

1

N
log |ΣN (~a)| =

n∑
k=1

{
(pk − pk−1)H

(
1 + ak

(pk−pk−1)N

2

)}
+ oN (1) = EH

(
1 + Λ~a(Ḣ)

2

)
+ oN (1),

where the last equality holds because P(Ḣ ∈ [rk−1, rk)) = pk − pk−1.
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Lemma 2.7.7. For all ~a ∈ J and x ∈ ΣN (~a),

1

N
〈ḣ,x〉 = E[ḢΛ~a(Ḣ)] + oε,υ,~p(1),

1

N
〈m,x〉 = E[MΛ~a(Ḣ)] + oε,υ,~p(1),

for error terms oε,υ,~p(1) uniform over ~a,x.

Proof. We will only show the proof for 1
N 〈ḣ,x〉, as the other estimate is analogous. Let x ∈ ΣN (~a) be fixed,

and let y ∈ [−1, 1]N be defined by yi = ak
|Ik| for all i ∈ Ik. We write (Ḣ

′
,X,Y ,K) for the random variable

with value (ḣi, xi, yi, k), where i ∼ unif([N ]) and k ∈ [n] is the index of the set Ik containing i. Recall that
Ḣ ∼ N (0, ψ0). Note that

W2(L(Ḣ
′
),L(Ḣ)) ≤W2(µḣ,N (0, ψε + ε)) + W2(N (0, ψε + ε),N (0, ψ0)) = oε,υ(1),

where the latter two distances are bounded by definition of Tυ and Proposition 2.4.1, respectively. We couple

(Ḣ
′
, Ḣ) monotonically (which is the W2-optimal coupling) and write

1

N
〈ḣ,x〉 = E[Ḣ

′
X] = E[ḢY ] + E[(Ḣ

′ − Ḣ)X] + E[Ḣ(X − Y )].

We now estimate each of these terms. Because (Ḣ
′
, Ḣ) are coupled monotonically, K = k if and only if the

quantile of Ḣ lies in [p′k−1, p
′
k), where p′k = 1

N bpkNc = pk + O(N−1). Thus, on an event with probability

1−O(N−1), K = k if and only if Ḣ ∈ [rk−1, rk). On this event, Y = Λ~a(Ḣ). Thus

E[ḢY ] = E[ḢΛ~a(Ḣ)] + oN (1).

Moreover,

|E[(Ḣ
′ − Ḣ)X]| ≤ E[(Ḣ

′ − Ḣ)2]1/2 = W2(L(Ḣ
′
),L(Ḣ)) = oε,υ(1).

Finally, note that Y = E[X|K], so

E[E[Ḣ|K](X − Y )] = E[E[Ḣ|K]E[X − Y |K]] = 0.

Thus
|E[Ḣ(X − Y )]| = |E[(Ḣ − E[Ḣ|K])(X − Y )]| ≤ E[(Ḣ − E[Ḣ|K])2]1/2.

Recall from the above discussion that conditioning onK reveals the interval [p′k−1, p
′
k) containing the quantile

of Ḣ. It follows that E[(Ḣ − E[Ḣ|K])2] = oε,υ,~p(1).

Lemma 2.7.8. For all ~a ∈ J , x ∈ ΣN (~a), and s ∈ [0, smax],

1

N
logPm,n

ε,Pl

(
Gx√
N
≥ κ

)
≤ 1

2
s2ψ0 + α? E log Ψ

κ−
E[MΛ~a(Ḣ)]

q0
Ĥ − E[ḢΛ~a(Ḣ)]

ψ0
N√

1− E[MΛ~a(Ḣ)]2

q0

+ sN

+ oε,υ,~p(1),

where the oε,υ,~p(1) is uniform over ~a,x, s (but can depend on smax).

Proof. Let G̃ be defined in Corollary 2.4.18. By Corollary 2.4.18 and Lemma 2.7.7,

Gx√
N

d
=

(
(1 + oε,υ(1))

q0
ĥ+ oε,υ(1)n

)
1

N
〈m,x〉+

(1 + oε,υ(1))

ψ0
n · 1

N
〈ḣ,x〉+

G̃x√
N

=
E[MΛ~a(Ḣ)] + oε,υ,~p(1)

q0
ĥ+

E[ḢΛ~a(Ḣ)] + oε,υ,~p(1)

ψ0
n+

G̃x√
N
.

Let n̂ = n/‖n‖. By inspecting (2.40), we see that for independent g̃ ∼ N (0, P⊥n ) and Z ∼ N (0, 1),

G̃x√
N

d
=

(
‖P⊥m(x)‖2

N
+ oε(1)

)1/2

g̃ + oε(1)Zn̂ = t1/2g̃ + ι
1/2
1 Zn̂,
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where t = 1− E[MΛ~a(Ḣ)]2

q0
+ ι2 and ι1, ι2 = oε,υ,~p(1). For Z ′ ∼ N (0, 1) independent of g̃, Z, let

ĝ = g̃ + Z ′n̂+ sn

so that ĝ ∼ N (sn, IN ). Then, for any measurable S ⊆ RN ,

P(t1/2g̃ + ι
1/2
1 Zn̂ ∈ S)

P(t1/2ĝ ∈ S)
≤ sup
T⊆R

P(ι
1/2
1 Z ∈ T )

P(st1/2‖n‖+ t1/2Z ′ ∈ T )

≤ sup
x∈R

ι
−1/2
1 exp(− 1

2ι1
x2)

t−1/2 exp(− 1
2t (x− st1/2‖n‖)2)

=

√
t

ι1
exp

(
s2‖n‖2

2(1− ι1/t)

)
.

Thus,

1

N
logPm,n

ε,Pl

(
Gx√
N
≥ κ

)
≤ s2ψ(n)

2(1− ι1/t)
+ oN (1)

+
1

N
logP

{
E[MΛ~a(Ḣ)] + oε,υ,~p(1)

q0
ĥ+

E[ḢΛ~a(Ḣ)] + oε,υ,~p(1)

ψ0
n+ t1/2ĝ ≥ κ

}
. (2.83)

By Lemma 2.7.2, t is bounded away from 0. Since ψ(n) = ψ0 + oε(1), we have

s2ψ(n)

2(1− ι1/t)
= (1 + oε,υ,~p(1))

1

2
s2ψ0 =

1

2
s2ψ0 + oε,υ,~p(1).

The last estimate holds uniformly over s ∈ [0, smax]. The last term of (2.83) equals

1

N

M∑
a=1

log Ψ

κ−
E[MΛ~a(Ḣ)]+oε,υ,~p(1)

q0
ĥa − E[ḢΛ~a(Ḣ)]+oε,υ,~p(1)

ψ0
na√

1− E[MΛ~a(Ḣ)]2

q0
+ oε,υ,~p(1)

+ sna

+ oN (1).

By Lemma 2.7.3, log Ψ is (2, 1)-pseudo-Lipschitz. By Fact 2.4.20 and Lemma 2.7.4 (using again that the
denominator is bounded away from 0), the last display equals

α? E log Ψ

κ−
E[MΛ~a(Ḣ)]

q0
Ĥ − E[ḢΛ~a(Ḣ)]

ψ0
N√

1− E[MΛ~a(Ḣ)]2

q0

+ sN

+ oε,υ,~p(1).

Combining the above concludes the proof.

Proof of Proposition 2.7.5. Follows from equation (2.82) and Lemmas 2.7.6 and 2.7.8.

Proof of Proposition 2.7.1. Set ~r such that mesh(~p) is suitably small depending on (ε, υ). Then

1

N
logEm,n

ε,Pl [ZN (G)] ≤ sup
Λ∈Kelt(~r)

S smax
? (Λ) + oε,υ(1) ≤ sup

Λ∈K
S smax
? (Λ) + oε,υ(1).

2.7.2 Reduction to two parameters

Let K∗ ⊆ K denote the set of functions of the form Λλ1,λ2
defined above (2.8). Let K ∗ denote the closure

of this set in the topology of L . We next prove the following, which reduces the functional optimization
problem in Proposition 2.7.1 to an optimization over K ∗.

Proposition 2.7.9. For any smax > 0, we have supΛ∈K S smax
? (Λ) = supΛ∈K ∗

S smax
? (Λ). Similarly,

supΛ∈K S?(Λ) = supΛ∈K ∗
S?(Λ) for S?(Λ) defined in (2.8).

70



Lemma 2.7.10. Let a1, a2 ∈ R be such that there exists Λ ∈ K with E[ḢΛ(Ḣ)] = a1, E[MΛ(Ḣ)] = a2.
Then, the concave optimization problem

maximize ent(Λ) subject to Λ ∈ K , E[ḢΛ(Ḣ))] = a1, E[MΛ(Ḣ))] = a2

has a maximizer in K ∗.

Proof. Introduce Lagrange multipliers λ1, λ2 ∈ R. The Lagrangian is

L(Λ;λ1, λ2) = E

{
H

(
1 + Λ(Ḣ)

2

)
+ λ1ḢΛ(Ḣ) + λ2MΛ(Ḣ)

}
− λ1a1 − λ2a2.

The quantity inside the expectation is concave in Λ(Ḣ), with derivative

−th−1(Λ(Ḣ)) + λ1Ḣ + λ2M .

This is pointwise maximized by Λ(Ḣ) = th(λ1Ḣ + λ2M), i.e. Λ = Λλ1,λ2
.

Proof of Proposition 2.7.9. Note that S smax
? (Λ) is the sum of ent(Λ) and a term depending on Λ only

through E[ḢΛ(Ḣ)] and E[MΛ(Ḣ)]. Let Λ ∈ K be arbitrary. By Lemma 2.7.10, the maximum of ent(Λ̃)

subject to Λ̃ ∈ K , E[ḢΛ̃(Ḣ)] = E[ḢΛ(Ḣ)], E[MΛ̃(Ḣ)] = E[MΛ(Ḣ)] is attained by some Λ̃ ∈ K ∗.

Thus S smax
? (Λ) ≤ S smax

? (Λ̃), which implies the conclusion for S smax . The proof for S? is identical.

2.7.3 The smax →∞ limit

In this subsection, we prove the following proposition, which shows that the optimization problem derived in
Proposition 2.7.9 has a well-behaved limit when we take smax →∞. This allows us to remove the parameter
smax, replacing the constrained optimization S smax

? defined in (2.80) with the S? defined in (2.8).

Proposition 2.7.11. We have limsmax→∞ supΛ∈K ∗
S smax
? (Λ) = supΛ∈K ∗

S?(Λ), and moreover S? attains

its supremum on K ∗.

Lemma 2.7.12. The function S? : K × R→ R (recall (2.7)) is continuous.

Proof. Note that s 7→ 1
2s

2ψ0 is manifestly continuous. By concavity of H, |H(x)−H(y)| ≤ H(|x− y|) for all
x, y ∈ [0, 1]. By concavity of x 7→ H(

√
x/2) and Jensen’s inequality,

|ent(Λ)− ent(Λ′)| ≤ E

∣∣∣∣∣H
(

1 + Λ(Ḣ)

2

)
−H

(
1 + Λ′(Ḣ)

2

)∣∣∣∣∣ ≤ E

∣∣∣∣∣H
(
|Λ(Ḣ)−Λ′(Ḣ)|

2

)∣∣∣∣∣
≤ H

(
E[|Λ(Ḣ)−Λ′(Ḣ)|2]1/2

2

)
= H

(
‖Λ−Λ′‖

2

)
.

Thus ent is continuous. By Cauchy–Schwarz,

|E[ḢΛ]− E[ḢΛ′]| ≤ E[Ḣ
2
]1/2‖Λ−Λ′‖ = ψ

1/2
0 ‖Λ−Λ′‖

and similarly |E[MΛ] − E[MΛ′]| ≤ q
1/2
0 ‖Λ −Λ′‖. Since the denominator 1 − E[MΛ(Ḣ)]2

q0
is bounded away

from 0 by Lemma 2.7.2, the final term of S? is continuous by Lemma 2.7.4. Thus S? is continous.

We will need the following analytical lemma, which is a simple adaptation of Dini’s Theorem [Rud76,
Theorem 7.13]. We provide a proof for completeness.

Lemma 2.7.13. Suppose f1, f2, . . . : K → R are a decreasing sequence of continuous functions on a compact
space K. Let f : K → R∪{−∞} denote their (not necessarily continuous) pointwise limit, which we assume
is not −∞ everywhere. Then limn→∞ sup fn = sup f , and furthermore f attains its supremum.
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Proof. Without loss of generality assume sup f = 0. For ι > 0, let En = {x ∈ K : fn(x) < ι}. Then En is
open and En ⊆ En+1. Since the fn converge pointwise to f , ∪nEn = K. By compactness of K, En = K for
some finite n, and thus sup fn < ι. As this holds for any ι, limn→∞ sup fn = 0. Finally, f , as the decreasing
limit of (upper-semi)continuous functions, is upper-semicontinuous. Therefore f attains its supremum.

To apply Lemma 2.7.13, we verify that S? is not −∞ everywhere by calculating its value at Λ1,0(x) =
th(x) in Lemma 2.7.15 below. Recalling Subsection 2.2.6, we expect this to be the maximizer of S?.

Lemma 2.7.14. For any Λ ∈ K , s ≥ 0, we have ∂2

∂s2 S?(Λ, s) > 0.

Proof. Since (log Ψ)′ = −E , we have

∂2

∂s2
S?(Λ, s) = ψ0 − α? E

E ′
κ− E[MΛ(Ḣ)]

q0
Ĥ − E[ḢΛ(Ḣ)]

ψ0
N√

1− E[MΛ(Ḣ)]2

q0

+ sN

N2


Lem. 2.4.21(b)

> ψ0 − α? E[N2] = 0.

Lemma 2.7.15. We have S?(Λ1,0) = S?(Λ1,0,
√

1− q0) = 0.

Proof. Let Λ = Λ1,0. Note that Λ(Ḣ) = th(Ḣ) = M . Thus E[MΛ(Ḣ)] = q0 and, by gaussian integration

by parts, E[ḢΛ(Ḣ)] = (1− q0)ψ0. So

κ− E[MΛ(Ḣ)]
q0

Ĥ − E[ḢΛ(Ḣ)]
ψ0

N√
1− E[MΛ(Ḣ)]2

q0

+
√

1− q0N =
κ− Ĥ√
1− q0

.

By the identity H( 1+thx
2 ) = log(2chx)− xthx,

EH
(

1 + Λ

2

)
= E log(2chḢ)− E[ḢΛ] = E log(2chḢ)− (1− q0)ψ0.

Thus

S?(Λ,
√

1− q0) = −1

2
(1− q0)ψ0 + E log(2chḢ) + αE log Ψ

(
κ− Ĥ√
1− q0

)
= G (α?, q0, ψ0),

which equals 0 by definition of α?. Furthermore,

∂

∂s
S?(Λ, s)

∣∣
s=
√

1−q0
=
√

1− q0ψ0 − α? E

{
E

(
κ− Ĥ√
1− q0

)
N

}
=
√

1− q0

(
ψ0 − α? E[N2]

)
= 0.

By Lemma 2.7.14, this implies s =
√

1− q0 minimizes S?(Λ, s), and thus S?(Λ) = S?(Λ,
√

1− q0).

Proof of Proposition 2.7.11. The set K ∗ is compact in the topology of L . The functions S smax
? : K ∗ → R

are continuous by Lemma 2.7.12 and compactness of [0, smax]. On any sequence of smax tending to ∞,
the sequence of S smax

? is decreasing with pointwise limit S?. Since Lemma 2.7.15 implies S? is not −∞
everywhere, the result follows from Lemma 2.7.13.
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2.7.4 No boundary maximizers and conclusion

The results proved so far imply that the exponential order of Em,n
ε,Pl ZN (G) is bounded up to vanishing error

by supΛ∈K ∗
S?(Λ). Condition 2.1.3 provides a bound on supΛ∈K∗ S?(Λ). Since S? (unlike S smax

? ) is not
a priori continuous, to complete the proof we verify in the following proposition that it is not maximized on
the boundary.

Proposition 2.7.16. The maximum of S?(Λ) on K ∗ (which exists by Proposition 2.7.11) is not attained
on K ∗ \K∗.

Lemma 2.7.17. Let d0 = α? E[F ′1−q0(q
1/2
0 Z)], and

O =
{

Λ ∈ K : d0 E[MΛ(Ḣ)] + E[ḢΛ(Ḣ)] > α?κ
}
.

Then, for Λ ∈ K ,

lim
s→+∞

S?(Λ, s) =

{
+∞ Λ ∈ O,

−∞ Λ 6∈ O.

Proof. A well-known gaussian tail bound gives ϕ(x)
x < Ψ(x) < xϕ(x)

1+x2 for all x > 0. Thus, for large x,

log Ψ(x) = −1

2
x2 − log x+O(1). (2.84)

Let s be large and define

ξ(x) = −1

2
x2 − 1{s1/2 ≤ x ≤ s2} log x, U =

κ− E[MΛ(Ḣ)]
q0

Ĥ − E[ḢΛ(Ḣ)]
ψ0

N√
1− E[MΛ(Ḣ)]2

q0

, V = U + sN .

Note that

|E log Ψ(V )− E ξ(V )| ≤ |E1{V ≤ log log s}(log Ψ(V )− ξ(V ))|

+
∣∣∣E1{log log s ≤ V ≤ s1/2}(log Ψ(V )− ξ(V ))

∣∣∣
+
∣∣∣E1{s1/2 ≤ V ≤ s2}(log Ψ(V )− ξ(V ))

∣∣∣
+
∣∣E1{V ≥ s2}(log Ψ(V )− ξ(V ))

∣∣ .
We will show each of these terms is o(log s). Let V + = max(V , 0), V − = −min(V , 0), and let C > 0 be a
constant varying from line to line. Then,

|E1{V ≤ log log s}(log Ψ(V )− ξ(V ))|
≤ E1{V ≤ log log s}| log Ψ(V )|+ E1{V ≤ log log s}V 2

+ + EV 2
−

≤ C(log log s)2 + EU2
− ≤ C(log log s)2.

In the last line we used that N > 0 almost surely, and thus U− ≥ V −. By the estimate (2.84), if
log log s ≤ V < s1/2, then | log Ψ(V )− ξ(V )| ≤ C log s. Thus∣∣E1{log log s ≤ V < s1/2}(log Ψ(V )− ξ(V ))

∣∣ ≤ (C log s)P(V ≤ s1/2)

≤ (C log s)
(
P(U ≤ −s1/2) + P(sN ≤ 2s1/2)

)
= o(log s).

The estimate (2.84) directly implies∣∣∣E1{s1/2 ≤ V ≤ s2}(log Ψ(V )− ξ(V ))
∣∣∣ = O(1).
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Finally, Lemma 2.4.21(a) gives 0 ≤ E(x) ≤ |x|+ 1. Thus

|V | ≤ |U |+ s√
1− q0

E

(
κ− Ĥ√
1− q0

)
≤ Cs(|Ĥ|+ 1).

It follows that for t ≥ s2, we have P(|V | ≥ t) ≤ exp(−t2/Cs2). So, crudely∣∣E1{V ≥ s2}(log Ψ(V )− ξ(V ))
∣∣ ≤ C ′ E1{V ≥ s2}V 2

≤ C ′
(
s2 exp(−s2/C) +

∫ ∞
s2

2t exp(−t2/Cs2) dt

)
≤ C ′s2 exp(−s2/C).

Thus |E log Ψ(V )− E ξ(V )| = o(log s). So,

S?(Λ, s) =
1

2
s2ψ0 + α? E ξ(V ) + o(log s).

We now evaluate α? E ξ(V ). First,

1

2
α? EV 2 =

1

2
α?s

2 E[N2] + α?sE[UN ] +O(1)

=
1

2
s2ψ0 +

s
(
α?κ− d0 E[MΛ(Ḣ)]− E[ḢΛ(Ḣ)]

)
√

1− E[MΛ(Ḣ)]2

q0

+O(1).

Thus

S?(Λ, s) =
s
(
d0 E[MΛ(Ḣ)] + E[ḢΛ(Ḣ)]− α?κ

)
√

1− E[MΛ(Ḣ)]2

q0

− E1{s1/2 ≤ V ≤ s2} logV + o(log s).

The logarithmic term clearly has magnitude O(log s). So, lims→+∞S?(Λ, s) = +∞ if Λ ∈ O, and −∞ if Λ
is in the interior of K \ O. Finally, we have shown above that P(V < s1/2),P(V > s2) = os(1), so

E1{s1/2 ≤ V ≤ s2} logV ≥ 1

2
(1− os(1)) log s.

Thus lims→+∞S?(Λ, s) = −∞ for Λ on the boundary of K \ O.

Proof of Proposition 2.7.16. Suppose for contradiction that Λ ∈ K ∗ \ K∗ maximizes S?(Λ) in K ∗. By
Proposition 2.7.9, Λ is also a maximizer of S?(Λ) in K .

By Lemma 2.7.17, if Λ 6∈ O, then S?(Λ) = −∞ is not a maximizer (recall Lemma 2.7.15). Thus Λ ∈ O.
Let Λt = (1− t)Λ. Since O is open, Λt ∈ O for t ∈ [0, t+), for sufficiently small t+.

By Lemma 2.7.17, for t ∈ [0, t+), the infimum of S (Λt, s) is attained at some s(Λt) ∈ [0,+∞). Note
that

∂

∂s
S?(Λ

t, s)

∣∣∣∣∣
s=0

= −α? E

E
κ− E[MΛt(Ḣ)]

q0
Ĥ − E[ḢΛt(Ḣ)]

ψ0
N√

1− E[MΛt(Ḣ)]2

q0

+ sN

N
 < 0

because N > 0 almost surely and the image of E is positive. Combined with Lemma 2.7.14, this implies
s(Λt) is the unique solution to ∂

∂sS?(Λ, s) = 0, and s(Λt) > 0.

Note that ∂
∂sS?(Λ

t, s) is differentiable in t, as the denominator
√

1− E[MΛt(Ḣ)]2

q0
is bounded away from

0 by Lemma 2.7.2. By Lemma 2.7.14 and the implicit function theorem, s(Λt) is differentiable in t for all
t ∈ [0, t+). It follows that

d

dt

1

2
s(Λt)2ψ0 + α? E log Ψ

κ− E[MΛt(Ḣ)]
q0

Ĥ − E[ḢΛt(Ḣ)]
ψ0

N√
1− E[MΛt(Ḣ)]2

q0

+ s(Λt)N


∣∣∣∣∣
t=0
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exists and is finite. However, since Λ ∈ K ∗ \K∗, we have Λ(Ḣ) ∈ {−1, 1} Ḣ-almost surely. Thus

d

dt
ent(Λt)

∣∣
t=0

=
d

dt
H(t/2)

∣∣
t=0

= +∞.

Hence d
dtS?(Λ

t)
∣∣
t=0

= +∞, and Λ is not a maximizer of S?(Λ) in K .

Proof of Proposition 2.3.9. By Propositions 2.7.1, 2.7.9, for any smax > 0,

1

N
logEm,n

ε,Pl [ZN (G)] ≤ sup
Λ∈K

S smax
? (Λ) + oε,υ(1) = sup

Λ∈K ∗

S smax
? (Λ) + oε,υ(1). (2.85)

By Propositions 2.7.11 and 2.7.16 and Condition 2.1.3,

lim
smax→∞

sup
Λ∈K ∗

S smax
? (Λ) = sup

Λ∈K ∗

S?(Λ) = sup
Λ∈K∗

S?(Λ) = sup
λ1,λ2∈R

S?(λ1, λ2) ≤ 0.

Thus, taking the limit ε, υ → 0 followed by smax →∞ in (2.85) implies the result.

2.7.5 Local analysis of first moment functional at (1, 0)

We now prove Lemma 2.2.5. Note that part (a) follows from Proposition 2.7.16, and part (b) was already
proved in Lemma 2.7.15. We turn to the proofs of the remaining parts.

Proof of Lemma 2.2.5(c). Let S?(λ1, λ2, s) = S?(Λλ1,λ2 , s), and let s(λ1, λ2) minimize S?(λ1, λ2, s). Lemma 2.7.15
shows s(1, 0) =

√
1− q0, and the proof of Proposition 2.7.16 shows that for (λ1, λ2) in a neighborhood of

(1, 0), s(λ1, λ2) is the unique solution to ∂sS?(λ1, λ2, s) = 0. By Lemma 2.7.14 and the implicit function
theorem, s(λ1, λ2) is differentiable in this neighborhood. So,

∇S?(λ1, λ2) = ∇λ1,λ2
S?(λ1, λ2, s(λ1, λ2)) + ∂sS?(λ1, λ2, s(λ1, λ2))∇s(λ1, λ2)

= ∇λ1,λ2
S?(λ1, λ2, s(λ1, λ2)), (2.86)

and in particular ∇S?(1, 0) = ∇S ?(1, 0). To calculate the latter gradient, let u1, u2 ∈ R be arbitrary and

∆ ≡ (u1∂λ1
+ u2∂λ2

)Λ = (1−Λ2)(u1Ḣ + u2M).

Then

〈∇S ?(λ1, λ2), (u1, u2)〉 = −E[th−1(Λ)∆]− α? E

{
E

κ− E[MΛ]
q0

Ĥ − E[ḢΛ]
ψ0

N√
1− E[MΛ]2

q0

+
√

1− q0N

 (2.87)

×

−E[M∆]
q0

Ĥ − E[Ḣ∆]
ψ0

N√
1− E[MΛ]2

q0

+
κ− E[MΛ]

q0
Ĥ − E[ḢΛ]

ψ0
N(

1− E[MΛ]2

q0

)3/2
· E[MΛ]E[M∆]

q0

}.
Specializing to (λ1, λ2) = (1, 0),

〈∇S ?(1, 0), (u1, u2)〉

= −E[th−1(M)∆]− α? E

E
(
κ− Ĥ√
1− q0

)−E[M∆]
q0

Ĥ − E[Ḣ∆]
ψ0

N
√

1− q0
+
κ− Ĥ − (1− q0)N

(1− q0)3/2
E[M∆]


= −E[Ḣ∆]− α? E

{
F1−q0(Ĥ)

(
−E[M∆]

q0
Ĥ − E[Ḣ∆]

ψ0
N +

κ− Ĥ − (1− q0)N

1− q0
E[M∆]

)}

= −E[Ḣ∆] +
α? E[N2]

ψ0
E[Ḣ∆] + α?

(
E[NĤ]

q0
+ E

[
N

(
N − κ− Ĥ

1− q0

)])
E[M∆].
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The first two terms cancel because α? E[N2] = ψ0. Finally, note the identity

F ′1−q0(x) = −F1−q0(x)

(
F1−q0(x)− x

1− q0

)
.

By gaussian integration by parts,

E[NĤ] = E[ĤF1−q0(Ĥ)] = E[Ĥ
2
]E[F ′1−q0(Ĥ)] = −q0 E

[
N

(
N − κ− Ĥ

1− q0

)]
.

It follows that 〈∇S?(1, 0), (u1, u2)〉 = 0. Since u1, u2 were arbitrary, ∇S?(1, 0) = 0.

Proof of Lemma 2.2.5(d). Differentiating (2.86) and applying the implicit function theorem yields

∇2S?(λ1, λ2) = ∇2
λ1,λ2

S?(λ1, λ2, s(λ1, λ2)) +∇λ1,λ2
∂sS?(λ1, λ2, s(λ1, λ2))(∇s(λ1, λ2))>

= ∇2
λ1,λ2

S?(λ1, λ2, s(λ1, λ2))− (∇λ1,λ2
∂sS?(λ1, λ2, s(λ1, λ2)))⊗2

∂2
sS?(λ1, λ2, s(λ1, λ2))

� ∇2
λ1,λ2

S?(λ1, λ2, s(λ1, λ2)).

Specializing to (λ1, λ2) = (1, 0) yields the result.
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Appendix

2.A Deferred proofs

In this appendix, we provide proofs of various results deferred from the paper.

2.A.1 Well definedness and ε ↓ 0 limit of (qε, ψε, %ε)

Proof of Proposition 2.4.1. Let ι0 be small enough that [q0 − 3ι0, q0 + 3ι0] ⊆ [0, 1]. Note that ζ0(ψ) =
(Rα? ◦ P )(ψ). By Condition 2.3.1, ζ0(ψ0) = ψ0 and

ζ ′0(ψ0) = R′α?(q0)P ′(ψ0) = (P ◦Rα?)′(q0) < 1.

By continuity of ζ0 and ζ ′0, we can find ι > 0 such that for all ψ ∈ [ψ0 − ι, ψ0 + ι], P (ψ) ∈ [q0 − ι0, q0 + ι0]
and ζ ′0(ψ) < 1. Set ι1 small enough that

ζ0(ψ0 − ι) ≥ ψ0 − ι+ 2ι1, ζ0(ψ0 + ι) ≤ ψ0 + ι− 2ι1, sup
ψ∈[ψ0−ι,ψ0+ι]

ζ ′0(ψ) ≤ 1− 2ι1.

We will show that for sufficiently small ε,

sup
ψ∈[ψ0−ι,ψ0+ι]

|ζε(ψ)− ζ0(ψ)|, sup
ψ∈[ψ0−ι,ψ0+ι]

|ζ ′ε(ψ)− ζ ′0(ψ)| = oε(1). (2.88)

We first explain why this implies the result. First, (2.88) implies that for sufficiently small ε,

ζε(ψ0 − ι) ≥ ψ0 − ι+ ι1, ζε(ψ0 + ι) ≤ ψ0 + ι− ι1, sup
ψ∈[ψ0−ι,ψ0+ι]

ζ ′ε(ψ) ≤ 1− ι1.

This implies that ζε has a unique fixed point ψε in [ψ0−ι, ψ0+ι]. Furthermore, it implies |ζε(ψ0)−ψ0| = oε(1),
which combined with the above derivative estimate gives

|ψε − ψ0| ≤ |ζε(ψ0)− ψ0|/ι1 = oε(1).

Continuity considerations then imply (qε, ψε, %ε) → (q0, ψ0, 1 − q0) as ε ↓ 0. We now turn to the proof of
(2.88). Let ψ ∈ [ψ0− ι, ψ0 + ι]. Below, oε(1) is an error uniform over ψ. Let q = P ε(ψ) and q̃ = P (ψ). Note
that

|q − q̃| ≤ E
[
|(th((ψ + ε)1/2Z) + ε(ψ + ε)1/2Z)2 − th2(ψ1/2Z)|

]
≤ oε(1).

Let % = %ε(q, ψ), and note that
|%− (1− q)| = oε(1).

Thus
% ≥ (1− q̃)− |q̃ − q| − |%− (1− q)| ≥ 2ι0 − oε(1) ≥ ι0,

so % is bounded away from 0. By Cauchy-Schwarz,

|ζε(ψ)− ζ0(ψ)| = |Rε(q, ψ)−Rα?(q̃)|

= α? E
[
|Fε,%((q + ε)1/2Z)− F1−q0(q1/2Z)||Fε,%((q + ε)1/2Z) + F1−q0(q1/2Z)|

]
≤ α? E

[
(Fε,%((q + ε)1/2Z)− F1−q̃(q̃

1/2Z))2
]1/2

E
[
(Fε,%((q + ε)1/2Z) + F1−q̃(q̃

1/2Z))2
]1/2

.
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Expanding Fε,% using (2.19) shows the first expectation is oε(1), while the second is bounded by Lemma 2.4.21(a).
Thus |ζε(ψ)− ζ0(ψ)| = oε(1) uniformly in ψ ∈ [ψ0 − ι, ψ0 + ι]. Furthermore,

ζ ′ε(ψ) =
∂Rε

∂q
(q, ψ)(P ε)′(ψ) +

∂Rε

∂ψ
(q, ψ), ζ ′0(ψ) = R′α?(q̃)P ′(ψ).

Similar computations to above show∣∣∣∣∂Rε∂q
(q, ψ)−R′α?(q̃)

∣∣∣∣ , |(P ε)′(ψ)− P ′(ψ)|,
∣∣∣∣∂Rε∂ψ

(q, ψ)

∣∣∣∣ = oε(1),

and thus |ζ ′ε(ψ)− ζ ′0(ψ)| = oε(1) uniformly in ψ. This proves (2.88).

2.A.2 Approximation for (pseudo)-Lipschitz functions

Proof of Fact 2.4.20. Let (x, y) be a sample from the optimal coupling of (µ, µ′). Then

|Eµ[f ]− Eµ′ [f ]| ≤ E |f(x)− f(y)| ≤ LE [|x− y|(|x|+ |y|+ 1)]

≤ LE[|x− y|2]1/2 E[3(|x|2 + |y|2 + 1)]1/2

≤ LE[|x− y|2]1/2 E[3(3|x|2 + 2|x− y|2 + 1)]1/2

≤ 3LW2(µ, µ′)(µ2 + W2(µ, µ′) + 1),

where we have used the estimate |y|2 ≤ 2|x|2 + 2|x− y|2.

Proof of Fact 2.6.11. Couple (x, y, z) ∼ µ and (x′, y′, z′) ∼ µ′ in the W2-optimal way. Then, the left-hand
side of (2.62) is bounded by the sum of:

E|f1(x)||f2(y)||f3(z)− f3(z′)| ≤ L(Ef1(x)4)1/4(Ef2(y)4)1/4(E|z − z′|2)1/2

≤ L(Ef1(x)4)1/4(Ef2(y)4)1/4W2(µ, µ′),

E|f1(x)||f3(z′)||f2(y)− f2(y′)| ≤ L2(Ef1(x)2)1/2(E|y − y′|2)1/2 ≤ L2(Ef1(x)2)1/2W2(µ, µ′)

E|f2(y′)||f3(z′)||f1(x)− f1(x′)| ≤ L2(Ef2(y′)2)1/2(E|x− x′|2)1/2 ≤ L2(Ef2(y′)2)1/2W2(µ, µ′).

Finally, by Fact 2.4.20,

Ef2(y′)2 ≤ Ef2(y)2 + 3W2(µ, µ′)(Ef2(y)2 + W2(µ, µ′) + 1).

Combining gives the conclusion.

2.A.3 Gradient and Hessian formulas for F εTAP, and regularity estimates

Proof of Lemma 2.4.16. By standard properties of convex duals,

(V ∗ε )′(m) = − arg min
ḣ

{
−mḣ+ Vε(ḣ)

}
= −th−1

ε (m).

We differentiate the interaction term in FεTAP by gaussian integration by parts. For each i ∈ [N ], a ∈ [M ],

∂

∂mi
F ε,ρε(q(m))

(
〈ga,m〉√

N
+ ε1/2ĝa − ρε(q(m))na

)
=

∂

∂mi
logEχε

(
〈ga,m〉√

N
+ ε1/2ĝa − ρε(q(m))na + ρε(q(m))1/2Z

)

=
Eχ′ε

(
〈ga,m〉√

N
+ ε1/2ĝa − ρε(q(m))na + ρε(q(m))1/2Z

)(
gai√
N
− ρ′ε(q(m)) 2mina

N +
ρ′ε(q(m))

ρε(q(m))1/2
mi
N Z

)
Eχ′ε

(
〈ga,m〉√

N
+ ε1/2ĝa − ρε(q(m))na + ρε(q(m))1/2Z

)
= Fε,ρε(q(m))(h́a)

(
gai√
N
− ρ′ε(q(m))

2mina
N

)
+

Eχ′′ε (h́a + ρε(q(m))1/2Z)

Eχε(h́a + ρε(q(m))1/2Z)
· ρ
′
ε(q(m))mi

N
.

=
gai√
N
Fε,ρε(q(m))(h́a) +

ρ′ε(q(m))mi

N

(
−2Fε,ρε(q(m))(h́a)na + Fε,ρε(q(m))(h́a)2 + F ′ε,ρε(q(m))(h́a)

)
.
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Thus

∂

∂mi
FεTAP(m,n) = −th−1

ε (mi) + ε1/2ġi +
(G>Fε,ρε(q(m))(h́a))i√

N

+
ρ′ε(q(m))mi

N

M∑
a=1

(
(na − Fε,ρε(q(m))(h́a))2 + F ′ε,ρε(q(m))(h́a)

)
,

which implies (2.34). The formula (2.35) follows by directly differentiating FεTAP. Setting (2.35) to zero shows

that ∇nFεTAP(m,n) = 0 if and only if h́ = ĥ, which rearranges to (2.36). This implies Fε,ρε(q(m))(h́) = n,
so setting (2.34) to zero yields (2.37).

Proof of Fact 2.6.5. Note that

∂

∂mi
th−1
ε (mi) =

1

th′ε(ḣi)
=

1

1 + ε− th2(ḣi)
=

ch2(ḣi)

1 + εch2(ḣi)
.

The functions Fε,%, F
′
ε,% can be differentated in % as follows. By gaussian integration by parts (or Itô’s

formula),
d

d%
Eχε(x+ %1/2Z) =

1

2
Eχ′′ε (x+ %1/2Z),

and similarly for χ′ε. Thus, abbreviating χε,%(x) = Eχε(x+ %1/2Z),

d

d%
Fε,%(x) =

d

d%

χε,%(x)

χ′ε,%(x)
=

1

2

(
χ

(3)
ε,%(x)

χε,%(x)
−
χ′ε,%(x)χ′′ε,%(x)

χε,%(x)2

)
.

We also have

F ′ε,%(x) =
χ′′ε,%(x)

χε,%(x)
−

(χ′ε,%(x))2

χε,%(x)2
, F ′′ε,%(x) =

χ′′′ε,%(x)

χε,%(x)
−

3(χ′ε,%(x))(χ′′ε,%(x))

χε,%(x)2
+

2(χ′ε,%(x))3

χε,%(x)3
.

Thus
d

d%
Fε,%(x) =

1

2

(
2Fε,%(x)F ′ε,%(x) + F ′′ε,%(x)

)
.

A similar calculation shows

d

d%
F ′ε,%(x) =

1

2

(
2Fε,%(x)F ′′ε,%(x) + 2F ′ε,%(x)2 + F (3)

ε,% (x)
)
.

The result follows by directly differentiating (2.34) and (2.35) using the above formulas.

Proof of Lemma 2.6.6. As (m,n) ∈ Sε,r0 , approximation arguments identical to the proof of Corollary 2.4.18
show the estimates for q(m), ψ(n), dε(m,n) in part (a). The regularity estimate (2.23) of ρε and its deriva-
tives proves the rest of part (a). Differentiating (2.19) yields

F ′ε,%(x) = − ε

1 + ε%
− 1

(%+ ε(1 + ε%))(1 + ε%)
E ′
(

κ(1 + ε%)− x√
(%+ ε(1 + ε%))(1 + ε%)

,

)
.

By Lemma 2.4.21, we see that for % in a neighborhood of %ε, supx∈R

∣∣∣ d
d%F

′
ε,%(x)

∣∣∣ is bounded by an absolute

constant. Note that

sup
x∈R

∣∣∣∣ dd% F ′ε,%(x)

1 + %F ′ε,%(x)

∣∣∣∣ ≤ sup
x∈R

∣∣∣∣ F ′ε,%(x)

(1 + %F ′ε,%(x))2

∣∣∣∣+ sup
x∈R

∣∣∣∣ 1

(1 + %F ′ε,%(x))2

∣∣∣∣ · sup
x∈R

∣∣∣∣ dd%F ′ε,%(x)

∣∣∣∣ . (2.89)

By (2.42),
1

1 + %F ′ε,%(x)
≥ %+ ε(1 + ε%)

ε
,
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which for % in a neighborhood of %ε is bounded depending only on ε. It follows that (2.89) is is bounded
depending only on ε. So,

‖D2 − D̃2‖op ≤

∣∣∣∣∣ F ′ε,%ε(x)

1 + %εF ′ε,%ε(x)
−

F ′ε,ρε(q(m))(x)

1 + ρε(q(m))F ′ε,ρε(q(m))(x)

∣∣∣∣∣ = or0(1).

This proves part (b). Part (c) follows from Fact 2.4.22, as (for ρε(q(m)) in a neighborhood of %ε > 0) the

images of F ′ε,ρε(q(m)) and F
(3)
ε,ρε(q(m)) are bounded. Similarly,

1√
N
‖D−1

4 F ′′(h́)‖ ≤ ‖D−1
4 ‖op‖F ′′(h́)‖∞

(2.42)

≤ ρε(q(m)) + ε(1 + ερε(q(m)))

ε
‖F ′′(h́)‖∞.

Since the image of F ′′ε,ρε(q(m)) is bounded by Fact 2.4.22, this proves part (d).

Proof of Proposition 2.4.7. We will show that the matrices ∇2
m,mFεTAP, ∇2

m,nFεTAP, ∇2
n,nFεTAP in Fact 2.6.5

have bounded operator norm (with bound depending on ε, Ccvx, Cbd, D). Throughout this proof, C is a
constant depending on ε, Ccvx, Cbd, D, which may change from line to line.

Under P, we have ‖G‖op, ‖ĝ‖ ≤ C
√
N with high probability. Under Pm

′,n′

ε,Pl , we may writeG = Em
′,n′

ε,Pl G+

G̃ for G̃ as in Lemma 2.4.17. Then ‖G̃‖op ≤ C
√
N with high probability, and by Lemma 2.4.17, ‖Em

′,n′

ε,Pl G‖ ≤
C
√
N . On this event, ‖G‖op ≤ C

√
N . Since ρε(q(m

′)) ∈ [C−1
bd , Cbd], ĥ

′
= F−1

ε,ρε(q(m′))
(n) satisfies ‖ĥ

′
‖ ≤

C
√
N . Then, (2.37) implies ‖ĝ‖ ≤ C

√
N . So, under both P and Pm

′,n′

ε,Pl , we have ‖G‖op, ‖ĝ‖ ≤ C
√
N with

high probability. For the remainder of this proof, we assume this event holds.
Consider any ‖m‖2, ‖n‖2 ≤ DN . The above bounds on ‖G‖op, ‖ĝ‖ imply ‖h́‖ ≤ C

√
N . By (2.23),

C−1
bd ≤ ρε(q(m)) ≤ Cbd and |ρ′ε(q(m))|, |ρ′′ε (q(m))| ≤ Cbd. Abbreviate F = Fε,ρε(q(m)) as above. By

Fact 2.4.22,
sup
x∈R
|F ′(x)|, sup

x∈R
|F ′′(x)|, sup

x∈R
|F (3)(x)| ≤ C. (2.90)

Thus F is C-Lipschitz. By (2.19),

F (0) =
1√

(ρε(q(m)) + ε(1 + ερε(q(m))))(1 + ερε(q(m)))
E

(
κ
√

1 + ερε(q(m))√
ρε(q(m)) + ε(1 + ερε(q(m)))

)

is bounded, and thus
‖F (h́)‖ ≤ ‖F (0)‖+ C‖h́‖ ≤ C

√
N.

By (2.90) we also have ‖F ′(h́)‖, ‖F ′′(h́)‖, ‖F (3)(h́)‖ ≤ C
√
N . This also implies dε(m,n) ≤ C.

Since ḟε is bounded, ‖D1‖op ≤ C. Since F ′ is bounded, ‖D3‖op, ‖D4‖op ≤ C. The estimate (2.42) also im-

plies ‖D̃2‖op, ‖D−1
4 ‖op ≤ C. Combining these estimates shows ‖∇2

m,mFεTAP(m,n)‖op, ‖∇2
m,nFεTAP(m,n)‖op,

‖∇2
n,nFεTAP(m,n)‖op ≤ C.

2.A.4 Analysis of AMP iteration in planted model

Proof of Proposition 2.5.4. The state evolution [BMN20, Theorem 1] implies that

1

N

N∑
i=1

δ(ḣi, ξ̇i, ḣ
(1),1
i , . . . , ḣ

(1),k
i )

W2→ N (0, Σ̇
(1)
≤k),

1

M

M∑
a=1

δ(ĥa, ξ̂a, ĥ
(1),0
a , . . . , ĥ(1),k

a )
W2→ N (0, Σ̂

(1)
≤k),

for the following arrays Σ̇(1), Σ̂(1). First, Σ̂(1) agrees with Σ̂+ on indices (i, j) where {(i, j)} ∩ {�, ./} 6= ∅,
and Σ̇(1) agrees with Σ̇+ on (i, j) where {(i, j)} ∩ {�, ./, 0} 6= ∅. The remaining entries are defined by the

following recursion. For (Ḣ, Ξ̇, Ḣ1, . . . , Ḣk) ∼ N (0, Σ̇
(1)
≤k) and 0 ≤ i ≤ k,

Σ̂
(1)
i,k = E

[(
thε(Ḣi)−

qi
qε

thε(Ḣ)

)(
thε(Ḣk)− qk

qε
thε(Ḣ)

)]
+
ε(qε − qi)(qε − qk)

qε(qε + ε)
+

(qi + ε)(qk + ε)

qε + ε
. (2.91)

80



For (Ĥ, Ξ̂, Ĥ0, . . . , Ĥk) ∼ N (0, Σ̂
(1)
≤k) and 0 ≤ i ≤ k, we have

Σ̇
(1)
i+1,k+1 = α? E

[(
Fε,%ε(Ĥi)−

ψi+1

ψε
Fε,%ε(Ĥ)

)(
Fε,%ε(Ĥk)−

ψk+1

ψε
Fε,%ε(Ĥ)

)]

+
ε(ψε − ψi+1)(ψε − ψk+1)

ψε(ψε + ε)
+

(ψi+1 + ε)(ψk+1 + ε)

ψε + ε
. (2.92)

We now verify by induction that Σ̂(1) and Σ̇(1) coincide with Σ̂+ and Σ̇+. Suppose Σ̇
(1)
≤k = Σ̇+

≤k. Then,

E[thε(Ḣi)thε(Ḣk)] = Σ̇i,k, E[thε(Ḣi)thε(Ḣ)] = qi, E[thε(Ḣ)2] = qε,

so the right-hand side of (2.91) simplifies as

Σ̇i,k −
qiqk
qε

+
ε(qε − qi)(qε − qk)

qε(qε + ε)
+

(qi + ε)(qk + ε)

qε + ε
= Σ̇i,k + ε = Σ̇+

i,k.

Now, suppose Σ̂
(1)
≤k = Σ̂+

≤k. Then,

α? E[Fε,%ε(Ĥi)Fε,%ε(Ĥk)] = Σ̂i+1,k+1, α? E[Fε,%ε(Ĥi)Fε,%ε(Ĥ)] = ψi+1, α? E[Fε,%ε(Ĥ)2] = ψε,

so the right-hand side of (2.92) simplifies as

Σ̂i+1,k+1 −
ψi+1ψk+1

ψε
+
ε(ψε − ψi+1)(ψε − ψk+1)

ψε(ψε + ε)
+

(ψi+1 + ε)(ψk+1 + ε)

ψε + ε
= Σ̂i+1,k+1 + ε = Σ̂+

i+1,k+1.

This completes the induction.

To prove Proposition 2.5.5, we introduce two additional auxiliary AMP iterations. They are initialized

at n(2),−1 = n(3),−1 = 0, m(2),0 = m(3),0 = q
1/2
ε 1, with iteration

m(i),k = thε(ḣ
(i),k

), n(i),k = Fε,%ε(ĥ
(i),k

),

for i ∈ {2, 3} and ḣ
(i),k

, ĥ
(i),k

as follows. Recall that G is the matrix (2.44), and ψ0 = 0. Then,

ĥ
(2),k

=
1√
N
G

(
m(2),k − qk

qε
m

)
+

√
ε(qε − qk)√
qε(qε + ε)

ξ̂ +
qk + ε

qε + ε
ĥ− %ε

(
n(2),k−1 − ψk

ψε
n

)
(2.93)

ḣ
(2),k+1

=
1√
N
G
>
(
n(2),k −

ψk+1

ψε
n

)
+

√
ε(ψε − ψk+1)√
ψε(ψε + ε)

ξ̇ +
ψk+1 + ε

ψε + ε
ḣ− dε

(
m(2),k − qk

qε
m

)
ĥ

(3),k
=

1√
N
G̃
(
m(3),k −m

)
+
qk + ε

qε + ε
ĥ− %ε

(
n(3),k−1 − ψk + 1{k ≥ 1}ε

ψε + ε
n

)
(2.94)

ḣ
(3),k+1

=
1√
N
G̃
> (
n(3),k − n

)
+
ψk+1 + ε

ψε + ε
ḣ− dε

(
m(3),k − qk + ε

qε + ε
m

)
.

The following proposition shows that all these AMP iterations approximate each other.

Proposition 2.A.1. For any k ≥ 0, as N → ∞ we have the following convergences in probability under
Pm,n
ε,Pl .

(a) ‖ĥ
(1),k
− ĥ

(2),k
‖/
√
N → 0, and if k ≥ 1, ‖ḣ

(1),k
− ḣ

(2),k
‖/
√
N → 0.

(b) ‖ĥ
(2),k
− ĥ

(3),k
‖/
√
N → 0, and if k ≥ 1, ‖ḣ

(2),k
− ḣ

(3),k
‖/
√
N → 0.

(c) ‖ĥ
(3),k
− ĥ

k
‖/
√
N → 0, and if k ≥ 1, ‖ḣ

(3),k
− ḣ

k
‖/
√
N → 0.
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Proof of Proposition 2.A.1(a). Similarly to (2.45), we can sample Z ′ ∼ N (0, 1), ξ̇
′
∼ N (0, IN ), ξ̂

′
∼

N (0, IM ) coupled to Ĝ such that

Ĝ+ ∆′ = G− ξ̂
′
m>

‖m‖
− n(ξ̇

′
)>

‖n‖
, ∆′ =

nm>

‖n‖‖m‖
Z ′ (2.95)

Note that ‖∆′‖op = o(
√
N) with high probability. Let ' denote equality up to additive oN (1). By Proposi-

tion 2.5.4, for (Ḣ, Ξ̇, Ḣ1, . . . , Ḣk) ∼ N (0, Σ̇
(1)
≤k) and (Ĥ, Ξ̂, Ĥ0, . . . , Ĥk) ∼ N (0, Σ̂

(1)
≤k),

1

N
〈m, ḣ

(1),k
〉 ' E[thε(Ḣ)Ḣk] = %ε(ψk + ε),

1

N
〈n, ĥ

(1),k
〉 ' α? E[Fε,%ε(Ĥ)Ĥk] = dε(qk + ε),

1

N
〈m, ḣ〉 ' E[thε(Ĥ)Ĥ] = %ε(ψε + ε),

1

N
〈n, ĥ〉 ' α? E[Fε,%ε(Ĥ)Ĥ] = dε(qε + ε).

Also,

1

N

〈
m,m(1),k − qk

qε
m

〉
' qk −

qk
qε
· qε = 0,

1

N

〈
n,n(1),k−1 − ψk

ψε
n

〉
' ψk −

ψk
ψε
· ψε = 0. (2.96)

Finally 1
N 〈ξ̇,m〉 '

1
N 〈ξ̂,n〉 ' 0. Considering the inner product of (2.47) with n shows

0 ' 1

N

〈
n,

1√
N
Ĝ

(
m(1),k − qk

qε
m

)〉
.

We can expand Ĝ using (2.95). Since n>G = 0, 1
N 〈n, ξ̂

′
〉 ' 0 in probability, and ‖∆′‖op = o(

√
N),

0 ' 1

N

〈
n,

1√
N

(
G− ξ̂

′
m>

‖m‖
− n(ξ̇

′
)>

‖n‖
−∆′

)(
m(1),k − qk

qε
m

)〉
' ‖n‖
N3/2

〈
ξ̇
′
,m(1),k − qk

qε
m

〉
.

Thus,
1

N

〈
ξ̇
′
,m(1),k − qk

qε
m

〉
' 0 (2.97)

in probability for all k. An analogous computation shows

1

N

〈
ξ̂
′
,n(1),k−1 − ψk

ψε
n

〉
' 0.

By (2.95),

1√
N

(Ĝ−G)

(
m(1),k − qk

qε
m

)
=

ξ̂
′

√
N‖m‖

〈
m>,m(1),k − qk

qε
m

〉
+

n√
N‖n‖

〈
ξ̇
′
,m(1),k − qk

qε
m

〉
− 1√

N
∆′
(
m(1),k − qk

qε
m

)
,

and this has norm o(
√
N) by (2.96), (2.97). Subtracting (2.47) and (2.93) yields

ĥ
(1),k
− ĥ

(2),k
=

1√
N

(Ĝ−G)

(
m(1),k − qk

qε
m

)
+

1√
N
G(m(1),k −m(2),k)− %ε(n(1),k−1 − n(2),k−1)

=
1√
N
G(m(1),k −m(2),k)− %ε(n(1),k−1 − n(2),k−1) + o(

√
N),

where o(
√
N) denotes a vector with this norm. Analogously,

ḣ
(1),k+1

− ḣ
(2),k+1

=
1√
N
G
>

(n(1),k − n(2),k)− dε(m(1),k −m(2),k) + o(
√
N).
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On the high probability event that ‖G‖op = O(
√
N), we have

‖ĥ
(1),k
− ĥ

(2),k
‖ ≤ O(1)‖m(1),k −m(2),k‖+ %ε‖n(1),k−1 − n(2),k−1‖+ o(

√
N),

‖ḣ
(1),k+1

− ḣ
(2),k+1

‖ ≤ O(1)‖n(1),k − n(2),k‖+ |dε|‖m(1),k −m(2),k‖+ o(
√
N).

The claim now follows by induction on k: ‖m(1),0 −m(2),0‖ = ‖n(1),−1 −n(2),−1‖ = 0 by initialization, and
because thε and Fε,%ε are O(1)-Lipschitz,

‖m(1),k −m(2),k‖ ≤ O(1)‖ḣ
(1),k
− ḣ

(2),k
‖, ‖n(1),k − n(2),k‖ ≤ O(1)‖ĥ

(1),k
− ĥ

(2),k
‖,

for all k ≥ 1, k ≥ 0 respectively.

Proof of Proposition 2.A.1(b). Note that ∆ defined in (2.46) w.h.p. satisfies ‖∆‖op = o(
√
N). We write

(2.94) as

ĥ
(3),k

=
1√
N
G̃(m(2),k −m) +

qk + ε

qε + ε
ĥ− %ε

(
n(2),k−1 − ψk + 1{k ≥ 1}ε

ψε + ε
n

)
+

1√
N
G̃(m(3),k −m(2),k)− %ε(n(3),k−1 − n(2),k−1).

By Proposition 2.A.1(a), W2(µ
ḣ

(2),k , µ
ḣ

(1),k) = oN (1). So, Fact 2.4.20 and Proposition 2.5.4 imply

1

N
〈m,m(2),k〉 ' 1

N
〈m,m(1),k〉 ' qk, (2.98)

1

N
〈ξ̇,m(2),k〉 ' 1

N
〈ξ̇,m(1),k〉 ' 1{k ≥ 1}%ε

√
ε(ψε − ψk)√
ψε(ψε + ε)

.

By (2.45),

1√
N
G̃(m(2),k −m) =

1√
N

(
G−

√
ε

q(m) + ε
· ξ̂m

>

‖m‖
−
√

ε

ψ(n) + ε
· nξ̇

>

‖n‖
−∆

)
(m(2),k −m)

=
1√
N
G(m(2),k −m) +

√
ε(qε − qk)√
qε(qε + ε)

ξ̂ − 1{k ≥ 1}%ε
ε(ψε − ψk)

ψε(ψε + ε)
n+ o(

√
N).

Since Gm = 0, we have G(m(2),k −m) = G(m(2),k − qk
qε
m). Moreover,

ψk + 1{k ≥ 1}ε
ψε + ε

− 1{k ≥ 1}ε(ψε − ψk)

ψε(ψε + ε)
=
ψk
ψε
.

Combining the above and comparing with (2.93) shows

ĥ
(3),k

= ĥ
(2),k

+
1√
N
G̃(m(3),k −m(2),k)− %ε(n(3),k−1 − n(2),k−1) + o(

√
N).

Similarly,

ḣ
(3),k+1

= ĥ
(2),k+1

+
1√
N
G̃
>

(n(3),k − n(2),k)− dε(m(3),k −m(2),k) + o(
√
N).

On the high-probability event that ‖G̃‖op = O(
√
N), this implies

‖ĥ
(3),k
− ĥ

(2),k
‖ ≤ O(1)‖m(3),k −m(2),k‖+ %ε‖n(3),k−1 − n(2),k−1‖+ o(

√
N),

‖ḣ
(3),k+1

− ĥ
(2),k+1

‖ ≤ O(1)‖n(3),k − n(2),k‖+ |dε|‖m(3),k −m(2),k‖+ o(
√
N).

The result follows by induction on k, like above.
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Proof of Proposition 2.A.1(c). By Corollary 2.4.18, we have

G√
N

d
=

(1 + oN (1))ĥm>

N(qε + ε)
+

(1 + oN (1))nḣ
>

N(ψε + ε)
+
oN (1)nm>

N
+

G̃√
N

=
ĥm>

N(qε + ε)
+

nḣ
>

N(ψε + ε)
+

G̃√
N

+ oN (1), (2.99)

for G̃ as above and oN (1) a matrix with this operator norm. Since q(m) ' qε, ψ(n) ' ψε, and under Pm,n
ε,Pl

we have a.s. h́ = F−1
ε,ρε(q(m))(n), the following terms appearing in (2.36), (2.37) satisfy

ρε(q(m)) ' %ε, ρ′ε(q(m)) ' −1, dε(m,n) ' dε.

Combining the AMP iteration (2.20) with (2.37) yields

ĥ
k

=
1√
N
G(mk −m) + ĥ+ %ε(n− nk−1)

=
1√
N
G(m(3),k −m) + ĥ− %ε(n(3),k−1 − n) +

1√
N
G(mk −m(3),k)− %ε(nk−1 − n(3),k−1).

By Proposition 2.A.1(a)(b), W2(µ
ḣ

(3),k , µ
ḣ

(1),k) = oN (1). So, Fact 2.4.20 and Proposition 2.5.4 imply
1
N 〈m,m(3),k〉 ' qk (similarly to (2.98)) and

1

N
〈ḣ,m(3),k〉 ' 1

N
〈ḣ,m(1),k〉 ' (ψk + 1{k ≥ 1}ε)%ε.

Expanding G using (2.99) then yields

ĥ
k

=
1√
N
G̃(m(3),k −m) +

qk + ε

qε + ε
ĥ− %ε

(
n(3),k−1 − ψk + ε

ψε + ε
n

)
+

1√
N
G(mk −m(3),k)− %ε(nk−1 − n(3),k−1) + o(

√
N)

= ĥ
(3),k

+
1√
N
G(mk −m(3),k)− %ε(nk−1 − n(3),k−1) + o(

√
N).

Analogously,

ḣ
k+1

= ḣ
(3),k+1

+
1√
N
G>(nk − n(3),k)− dε(mk−1 −m(3),k−1) + o(

√
N).

So, on the high probability event that ‖G‖op = O(
√
N),

‖ĥ
k
− ĥ

(3),k
‖ = O(1)‖mk −m(3),k‖+ %ε‖nk−1 − n(3),k−1‖+ o(

√
N),

‖ḣ
k+1
− ḣ

(3),k+1
‖ = O(1)‖nk − n(3),k‖+ |dε|‖mk −m(3),k‖+ o(

√
N).

The result follows by induction on k, like above.

Proof of Proposition 2.5.5. Immediate from Proposition 2.A.1.

2.A.5 Continuity of first moment functional term

Proof of Lemma 2.7.4. Let C denote an absolute constant, which may change from line by line. By Lemma 2.7.3,
log Ψ is (2, 1)-pseudo-Lipschitz. By Cauchy–Schwarz (similarly to the proof of Fact 2.4.20),∣∣∣∣∣E log Ψ

{
κ− a1Ĥ − b1N

c1

}
− log Ψ

{
κ− a2Ĥ − b2N

c2

}∣∣∣∣∣ ≤ C√T1T2,
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where

T1 = E

(κ− a1Ĥ − b1N
c1

− κ− a2Ĥ − b2N
c2

)2


≤ C
(

max(a1, a2, b1, b2, c1, c2, 1)(|a1 − a2|+ |b1 − b2|+ |c1 − c2|)
min(c1, c2)2

)2

and

T2 = E

(κ− a1Ĥ − b1N
c1

)2

+

(
κ− a2Ĥ − b2N

c2

)2

+ 1

 ≤ C (max(a1, a2, b1, b2, c1, c2, 1)

min(c1, c2)

)4

.

2.B Verification of numerical conditions for κ = 0

In this appendix, we use rigorous interval arithmetic (implemented in the accompanying Python 3 file using
python-flint) to verify the conditions in Theorem 2.3.6, other than Condition 2.1.3, at κ = 0. This proves
Theorem 2.1.2. We also verify Claim 2.2.6 using interval arithmetic.

Throughout this section we take κ = 0, α? = α?(0), q0 = q?(α?, 0), and ψ0 = ψ?(α?, 0). We will use
Claims to denote statements whose proofs require interval arithmetic.

2.B.1 Numerical estimates of parameters and special functions

By [DS18, §7], the following are lower and upper bounds for α?, q0, ψ0:

αlb = 0.833078599, qlb = 0.56394907949, ψlb = 2.5763513100,

αub = 0.833078600, qub = 0.56394908030, ψub = 2.5763513224.

Let γ0 = q0
1−q0 , γlb = qlb

1−qlb and γub = qub

1−qub . Note that Condition 2.3.4 only requires us to exhibit a value

of z > −1 such that λ(z) < 0. In the verification below we will use the value

ẑ = −0.669316.

For k ∈ {2, 4}, define

pk(ψ) = E[th(ψ1/2Z)k], rk(γ) = E[E(γ1/2Z)k].

Note that the fixed-point condition in Condition 2.3.1 defining (q0, ψ0) implies (for κ = 0)

p2(ψ0) = q0, r2(γ0) =
(1− q0)ψ0

α?
. (2.100)

Let
m(z, ψ) = E[(z + ch2(ψ1/2Z))−1]. (2.101)

Finally, define

g(m, q, γ) = E
{

E ′(γ1/2Z)

(1− q)(1− E ′(γ1/2Z)) +mE ′(γ1/2Z)

}
. (2.102)

We now collect the main estimates in the verification whose proofs require computer assistance. The proofs
of these claims are deferred to Appendix 2.B.4, with computer-assisted parts carried out in the accompanying
Python file.

Claim 2.B.1. We have p4(ψ0) ∈ [p4,lb, p4,ub] ≡ [0.4405902310, 0.4405902320].
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Claim 2.B.2. We have r4(γ0) ∈ [r4,lb, r4,ub] ≡ [5.297, 5.317].

Claim 2.B.3. We have m(ẑ) ≤ mub ≡ 0.9309695, where m(z) = m(z, ψ0) is defined in Condition 2.3.4.

Claim 2.B.4. We have g(m(ẑ), q0, γ0) ≥ glb ≡ 0.7739.

We conclude this preparatory subsection with a few useful lemmas. First, we reduce several integrals
that will appear below to the functions p2, p4, r2, r4.

Lemma 2.B.5. The following identities hold.

t(ψ) ≡ E[th′(ψ
1/2
0 Z)2] = 1− 2p2(ψ) + p4(ψ), (2.103)

s1(γ) ≡ E
{
E ′(γ1/2Z)

}
=
r2(γ)

1 + γ
, (2.104)

s2(γ) ≡ E
{
E(γ1/2Z)2E ′(γ1/2Z)

}
=

r4(γ)

1 + 3γ
, (2.105)

s3(γ) ≡ E
{
γ1/2ZE(γ1/2Z)E ′(γ1/2Z)

}
= − γ

1 + 2γ
r2(γ) +

3γ

(1 + 2γ)(1 + 3γ)
r4(γ), (2.106)

s4(γ) ≡ E
{

(γ1/2Z)2E ′(γ1/2Z)
}

= − γ(4γ2 + γ − 1)

(1 + γ)2(1 + 2γ)
r2(γ) +

6γ2

(1 + γ)(1 + 2γ)(1 + 3γ)
r4(γ), (2.107)

s5(γ) ≡ E
{
E ′(γ1/2Z)2

}
=

γ

1 + 2γ
r2(γ) +

1− γ
(1 + 2γ)(1 + 3γ)

r4(γ). (2.108)

Proof. Equation (2.103) follows directly from the identity

th′(x)2 = (1− th2(x))2 = 1− 2th2(x) + th4(x).

For the remaining parts, we apply the identity E ′(x) = E(x)(E(x)− x) (Lemma 2.4.21(b)) and integrate by
parts. First,

s1(γ) = E
{
E(γ1/2Z)2

}
− E

{
E(γ1/2Z)γ1/2Z

}
= E

{
E(γ1/2Z)2

}
− γ E

{
E ′(γ1/2Z)

}
= r2(γ)− γs1(γ),

which proves (2.104). Similarly,

s2(γ) = E
{
E(γ1/2Z)4

}
− E

{
E(γ1/2Z)3γ1/2Z

}
= r4(γ)− 3γs2(γ),

which proves (2.105). Then,

s3(γ) = E
{
γ1/2ZE(γ1/2Z)3

}
− E

{
(γ1/2Z)2E(γ1/2Z)2

}
= 3γ E

{
E(γ1/2Z)2E ′(γ1/2Z)

}
− γ E

{
E(γ1/2Z)2

}
− 2γ E

{
(γ1/2Z)E(γ1/2Z)E ′(γ1/2Z)

}
= 3γs2(γ)− γr2(γ)− 2γs3(γ).

Rearranging proves (2.106). Further,

s4(γ) = E
{

(γ1/2Z)2E(γ1/2Z)2
}
− E

{
(γ1/2Z)3E(γ1/2Z)

}
= γ E

{
E(γ1/2Z)2

}
+ 2γ E

{
(γ1/2Z)E(γ1/2Z)E ′(γ1/2Z)

}
− 2γ E

{
(γ1/2Z)E(γ1/2Z)

}
− γ E

{
(γ1/2Z)2E ′(γ1/2Z)

}
.

Integrating by parts again yields

E
{

(γ1/2Z)E(γ1/2Z)
}

= γ E
{
E ′(γ1/2Z)

}
= γs1(γ).
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So
s4(γ) = γr2(γ) + 2γs3(γ)− 2γ2s1(γ)− γs4(γ).

Rearranging proves (2.107). Finally,

s5(γ) = E
{
E(γ1/2Z)4

}
− 2E

{
(γ1/2Z)E(γ1/2Z)3

}
+ E

{
(γ1/2Z)2E(γ1/2Z)2

}
= E

{
E(γ1/2Z)4

}
− 6γ E

{
E(γ1/2Z)2E ′(γ1/2Z)

}
+ γ E

{
E(γ1/2Z)2

}
+ 2γ E

{
(γ1/2Z)E(γ1/2Z)E ′(γ1/2Z)

}
= r4(γ)− 6γs2(γ) + γr2(γ) + 2γs3(γ).

Rearranging proves (2.108).

Recall from Condition 2.3.4 that d0 = α? E[F ′1−q0(q
1/2
0 Z)]. As a consequence of (2.100) and (2.104), we have

d0 = − α?
1− q0

s1(γ0) = − α?
1− q0

· r2(γ0)

1 + γ0
= −(1− q0)ψ0, (2.109)

where we have used that (1− q0)(1 + γ0) = 1.

Lemma 2.B.6. The functions p4 and r4 are increasing. Moreover, for any z > −1, and m defined in
(2.101), the function ψ 7→ m(z, ψ) is decreasing.

Proof. The function p4 is increasing simply because the maps ψ 7→ th(ψ1/2x)4 are pointwise increasing for
all x ∈ R. Similarly, since the maps ψ 7→ (z + ch2(ψ1/2x))−1 are pointwise increasing for all x ∈ R, z > −1,
the function ψ 7→ m(z, ψ) is decreasing. Finally,

r′4(γ) = E
{

6E(γ1/2Z)2E ′(γ1/2Z)2 + 2E(γ1/2Z)3E ′′(γ1/2Z)
}
≥ 0,

as Lemma 2.4.21(c) implies E ′′ > 0. Thus r4 is increasing.

2.B.2 Verification of numerical conditions in Theorem 2.3.6

Condition 2.3.1 was proved in [DS18, Proposition 1.3] (recorded as Proposition 2.3.2). We now verify
Conditions 2.3.3 and 2.3.4 by proving the following.

Claim 2.B.7. Condition 2.3.3 holds for κ = 0, with α? E[th′(ψ
1/2
0 Z)2]E[F ′1−q0(q

1/2
0 Z)2] ≤ aub ≡ 0.5446.

Proof. We calculate:

α? E[th′(ψ
1/2
0 Z)2]E[F ′1−q0(q

1/2
0 Z)2] =

α?
(1− q0)2

t(ψ0)s5(γ0)

Lem. 2.B.5
=

α?
(1− q0)2

(1− 2p2(ψ) + p4(ψ))

(
γ0

1 + 2γ0
r2(γ0) +

1− γ0

(1 + 2γ0)(1 + 3γ0)
r4(γ0)

)
(2.100)

=
α?

(1− q0)2
(1− 2q0 + p4(ψ))

(
γ0

1 + 2γ0
· (1− q0)ψ0

α?
+

1− γ0

(1 + 2γ0)(1 + 3γ0)
r4(γ0)

)
= (1− 2q0 + p4(ψ))

(
γ0ψ0

1 + q0
+

α?(1− γ0)

(1 + q0)(1 + 2q0)
r4(γ0)

)
≤ (1− 2qlb + p4,ub)

(
γubψub

1 + qlb
+

αlb(1− γlb)

(1 + qub)(1 + 2qub)
r4,lb

)
(∗)
≤ aub.

The estimate (∗) is verified in the accompanying Python file. We note that this is a simple arithmetic
comparison, as all terms are explicitly defined decimal numbers.

Claim 2.B.8. Condition 2.3.4 holds for κ = 0, with λ(ẑ) ≤ λub ≡ −0.1906.
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Proof. Note that for g defined in (2.102),

λ(ẑ) = ẑ − α?g(m(ẑ), q0, γ0)− d0
(2.109)

= ẑ − α?g(m(ẑ), q0, γ0) + (1− q0)ψ0

≤ ẑ − αlbglb + (1− qlb)ψub

(∗)
≤ λub.

The step (∗) is verified in the accompanying Python file, and is a simple arithmetic comparison of explicitly
defined decimal numbers.

Proof of Theorem 2.1.2. Follows from Theorem 2.3.6, Proposition 2.3.2, and Claims 2.B.7 and 2.B.8.

2.B.3 Local maximality of first moment functional at (1, 0)

We next verify Claim 2.2.6.

Lemma 2.B.9. For κ = 0, we have

〈∇2S ?(1, 0), (u1, u2)⊗2〉 = −E[(1−M2)(u1Ḣ + u2M)2] + C1 E[(1−M2)(u1Ḣ + u2M)Ḣ]2

+ C2 E[(1−M2)(u1Ḣ + u2M)M ]E[(1−M2)(u1Ḣ + u2M)Ḣ]

+ C3 E[(1−M2)(u1Ḣ + u2M)M ]2,

where

C1 =
α?
ψ2

0

E
{
F ′1−q0(Ĥ)N2

}
, C2 =

2α?
ψ0

E
{
F ′1−q0(Ĥ)

(
1

q0(1− q0)
Ĥ +N

)
N

}
+

2

1− q0
,

C3 = α? E

{
F ′1−q0(Ĥ)

(
1

q0(1− q0)
Ĥ +N

)2
}

+
ψ0

q0
.

Proof. Analogously to the proof of Lemma 2.2.5(c), define ∆2 = (u1∂λ1 + u2∂λ2)2Λ. Also abbreviate

V =
κ− E[MΛ]

q0
Ĥ − E[ḢΛ]

ψ0
N√

1− E[MΛ]2

q0

+
√

1− q0N .

We differentiate (2.87) to obtain

〈S ?(λ1, λ2), (u1, u2)⊗2〉 = −E[(u1Ḣ + u2M)∆]

− α? E

E ′(V )

−E[M∆]
q0

Ĥ − E[Ḣ∆]
ψ0

N√
1− E[MΛ]2

q0

+
κ− E[MΛ]

q0
Ĥ − E[ḢΛ]

ψ0
N(

1− E[MΛ]2

q0

)3/2
· E[MΛ]E[M∆]

q0


2

− α? E

{
E(V )

(
− 2E[M∆]

q0
Ĥ − 2E[Ḣ∆]

ψ0
N(

1− E[MΛ]2

q0

)3/2
· E[MΛ]E[M∆]

q0

+
κ− E[MΛ]

q0
Ĥ − E[ḢΛ]

ψ0
N(

1− E[MΛ]2

q0

)5/2
· 3E[MΛ]2 E[M∆]2

q2
0

+
κ− E[MΛ]

q0
Ĥ − E[ḢΛ]

ψ0
N(

1− E[MΛ]2

q0

)3/2
· E[M∆]2

q0

)}
+ f(∆2),

where f(∆2) is (2.87) with ∆ replaced by ∆2. We now specialize to (λ1, λ2) = (1, 0). As argued in the
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proof of Lemma 2.2.5(c), at (λ1, λ2) = (1, 0) we have f(∆2) = 0. So,

〈S ?(1, 0), (u1, u2)⊗2〉 = −E[(u1Ḣ + u2M)∆]

+ α? E

F ′1−q0(Ĥ)

(
−E[M∆]

q0
Ĥ − E[Ḣ∆]

ψ0
N +

κ− Ĥ − (1− q0)N

1− q0
· E[M∆]

)2


− α? E

{
F1−q0(Ĥ)

(
− 2E[M∆]

q0
Ĥ − 2E[Ḣ∆]

ψ0
N

1− q0
· E[M∆]

+
κ− Ĥ − (1− q0)N

(1− q0)2
· 3E[M∆]2 +

κ− Ĥ − (1− q0)N

1− q0
· E[M∆]2

q0

)}
.

Specializing further to κ = 0 (which was not used up to here),

〈S ?(1, 0), (u1, u2)⊗2〉

= −E[(u1Ḣ + u2M)∆] + α? E

{
F ′1−q0(Ĥ)

((
1

q0(1− q0)
Ĥ +N

)
E[M∆] +

N

ψ0
E[Ḣ∆]

)2
}

+ α? E
{
N

((
3

q0(1− q0)2
Ĥ +

1 + 2q0

q0(1− q0)
N

)
E[M∆]2 +

2

ψ0(1− q0)
N E[M∆]E[Ḣ∆]

)}
Finally, as α? E[NĤ] = q0d0 = −q0(1− q0)ψ0 (by (2.109)) and α? E[N2] = ψ0, the last term simplifies to

ψ0

q0
E[M∆]2 +

2

1− q0
E[M∆]E[Ḣ∆].

Expanding ∆ = (1−M2)(u1Ḣ + u2M) concludes the proof.

Claim 2.B.10. The following estimates hold.

(a) C1 ∈ [C1,lb, C1,ub] ≡ [−0.7193,−0.7165].

(b) C2 ∈ [C2,lb, C2,ub] ≡ [5.0439, 5.0568].

(c) C3 ∈ [C3,lb, C3,ub] ≡ [1.1345, 1.1526].

Proof. We compute using Lemma 2.B.5 and (2.100):

C1 =
α?
ψ2

0

· −s2(γ0)

(1− q0)2
= − α?r4(γ0)

ψ2
0(1− q0)2(1 + 3γ0)

= − α?r4(γ0)

ψ2
0(1− q0)(1 + 2q0)

,

C2 =
2α?

ψ0(1− q0)2

(
−s2(γ0) +

s3(γ0)

q0

)
+

2

1− q0

=
2α?

ψ0(1− q0)2

(
(2− q0)(1− q0)r4(γ0)

(1 + q0)(1 + 2q0)
− r2(γ0)

1 + q0

)
+

2

1− q0
=

2(2− q0)α?r4(γ0)

ψ0(1− q2
0)(1 + 2q0)

+
2q0

1− q2
0

,

C3 = − α?
(1− q0)2

(
s2(γ0)− 2s3(γ0)

q0
+

s4(γ0)

q2
0

)
+
ψ0

q0

= − α?
(1− q0)2

(
1− q0

1 + 2q0
r4(γ0)− 2q0 − 1

q0
r2(γ0)

)
+
ψ0

q0
= − α?r4(γ0)

(1− q0)(1 + 2q0)
+

ψ0

1− q0
.

So

C1,lb

(∗)
≤ − αubr4,ub

ψ2
lb(1− qub)(1 + 2qlb)

≤ C1 ≤ −
αlbr4,lb

ψ2
ub(1− qlb)(1 + 2qub)

(∗)
≤ C1,ub,

C2,lb

(∗)
≤ 2(2− qub)αlbr4,lb

ψub(1− q2
lb)(1 + 2qub)

+
2qlb

1− q2
lb

≤ C2 ≤
2(2− qlb)αubr4,ub

ψlb(1− q2
ub)(1 + 2qlb)

+
2qub

1− q2
ub

(∗)
≤ C2,ub,

C3,lb

(∗)
≤ − αubr4,ub

(1− qub)(1 + 2qlb)
+

ψlb

1− qlb
≤ C3 ≤ −

αlbr4,lb

(1− qlb)(1 + 2qub)
+

ψub

1− qub

(∗)
≤ C3,ub.
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The steps marked (∗) are verified in the accompanying Python file, and are simple arithmetic comparisons
of explicitly defined decimal numbers.

Claim 2.B.11. Define I1 = E[(1−M2)Ḣ
2
], I2 = E[(1−M2)ḢM ], I3 = E[(1−M2)M2]. Then,

(a) I1 ∈ [I1,lb, I1,ub] ≡ [0.24759912, 0.24759923].

(b) I2 ∈ [I2,lb, I2,ub] ≡ [0.16997315, 0.16997318].

(c) I3 ∈ [I3,lb, I3,ub] ≡ [0.12335884, 0.12335885].

Proof. By repeated integration by parts and (2.100):

I1 = ψ0(1− q0)− 2ψ2
0(1− 4q0 + 3p4(ψ0)), I2 = ψ0(1− 4q0 + 3p4(ψ0)), I3 = q0 − p4(ψ0).

Thus

I1,lb
(∗)
≤ ψlb(1− qub)− 2ψ2

ub(1− 4qlb + 3p4,ub) ≤ I1 ≤ ψub(1− qlb)− 2ψ2
lb(1− 4qub + 3p4,lb)

(∗)
≤ I1,ub,

I2,lb
(∗)
≤ ψlb(1− 4qub + 3p4,lb) ≤ I2 ≤ ψub(1− 4qlb + 3p4,ub)

(∗)
≤ I2,ub,

I3,lb
(∗)
≤ qlb − p4,ub ≤ I3 ≤ qub − p4,lb

(∗)
≤ I3,ub.

The steps marked (∗) are verified in the accompanying Python file, and are simple arithmetic comparisons
of explicitly defined decimal numbers.

Claim 2.B.12. Let M = ∇2S ?(1, 0). The following estimates hold.

(a) M1,1 ≤M1,1,ub ≡ −0.045408.

(b) M2,2 ≤M2,2,ub ≡ −0.020490.

(c) M1,2 ∈ [M1,2,lb,M1,2,ub] ≡ [−0.025685,−0.026567].

(d) det(M) ≥Mdet,lb ≡ 0.0002246.

Proof. By Lemma 2.B.9,

M1,1 = −I1 + C1I
2
1 + C2I1I2 + C3I

2
2 ,

M1,2 = −I2 + C1I1I2 +
1

2
C2(I2

2 + I1I3) + C3I2I3,

M2,2 = −I3 + C1I
2
2 + C2I2I3 + C3I

2
3 .

Estimating with Claims 2.B.10 and 2.B.11, we find

M1,1 ≤ −I1,lb + C1,ubI
2
1,lb + C2,ubI1,ubI2,ub + C3,ubI

2
2,ub

(∗)
≤ M1,1,ub,

M2,2 ≤ −I3,lb + C1,ubI
2
2,lb + C2,ubI2,ubI3,ub + C3,ubI

2
3,ub

(∗)
≤ M2,2,ub,

M1,2 ≤ −I2,lb + C1,ubI1,lbI2,lb +
1

2
C2,ub(I2

2,ub + I1,ubI3,ub) + C3,ubI2,ubI3,ub

(∗)
≤ M1,2,ub,

M1,2 ≥ −I2,ub + C1,lbI1,ubI2,ub +
1

2
C2,lb(I2

2,lb + I1,lbI3,lb) + C3,lbI2,lbI3,lb
(∗)
≥ M1,2,lb.

The steps marked (∗) are verified in the accompanying Python file, and are simple arithmetic comparisons
of explicitly defined decimal numbers. This proves parts (a), (b), and (c). Finally,

det(M) = M1,1M2,2 −M2
1,2 ≥M1,1,ubM2,2,ub −M2

1,2,lb

(∗)
≥ Mdet,lb,

where the step (∗) is verified in the accompanying Python file. This proves part (d).

Proof of Claim 2.2.6. Follows from Claim 2.B.12, which implies M1,1,M2,2 < 0 and det(M) > 0.
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2.B.4 Interval arithmetic estimates

We now describe the computer-assisted proofs of Claims 2.B.1, 2.B.2, 2.B.3, and 2.B.4. We begin with the
more straightforward Claims 2.B.1 and 2.B.3.

Proof of Claim 2.B.1. We first show the upper bound. Set L = 10. Since th4 takes values in [0, 1],

p4(ψ0)
Lem. 2.B.6
≤ p4(ψub) ≤ E[th4(ψ

1/2
ub Z)1{|Z| ≤ L}] + P[|Z| ≥ L]

≤
∫ L

−L
th4(ψ

1/2
ub x)ϕ(x) dx+ 2e−L

2/2
(∗)
≤ p4,ub,

where the step (∗) is verified in the accompanying Python file. Similarly,

p4(ψ0)
Lem. 2.B.6
≥ p4(ψlb) ≥ E[th4(ψ

1/2
lb Z)1{|Z| ≤ L}] =

∫ L

−L
th4(ψ

1/2
lb x)ϕ(x) dx

(∗)
≥ p4,lb,

where the step (∗) is verified in the accompanying Python file.

Proof of Claim 2.B.3. Let L = 10. Note that for any x ∈ R, (ẑ + ch2(x))−1 ≤ (1 + ẑ)−1. Then,

m(ẑ) = m(ẑ, ψ0)
Lem. 2.B.6
≤ m(ẑ, ψlb) ≤ E[(ẑ + ch2(ψ

1/2
lb Z))−11{|Z| ≤ L}] + (1 + ẑ)−1 P[|Z| ≥ L]

≤
∫ L

−L
(ẑ + ch2(ψ

1/2
lb x))−1ϕ(x) dx+ 2(1 + ẑ)−1e−L

2/2
(∗)
≤ mub,

where the step (∗) is verified in the accompanying Python file.

Claims 2.B.2 and 2.B.4 will involve integrating functions that involve E against the gaussian measure.
This is more challenging because E is itself defined in terms of an integral, which makes these claims less
amenable to numerical integration. We take a cruder approach of discretizing these integrals into small
intervals, and bounding the integral on each small interval using monotonicity properties of E and E ′.

Proof of Claim 2.B.2. Let L = 8, δ = 10−3, and J = L/δ. For integer j ∈ [−J, J ], let xj = jδ. Then,

r4(γ0)
Lem. 2.B.6
≤ r4(γub) =

J−1∑
j=−J

E
{
E(γ

1/2
ub Z)41{Z ∈ [xj , xj+1]}

}
+ E

{
E(γ

1/2
ub Z)41{|Z| ≥ L}

}
.

These terms can be bounded as follows. Since E is nonnegative and increasing (by Lemma 2.4.21(a)(b)),

E
{
E(γ

1/2
ub Z)41{Z ∈ [xj , xj+1]}

}
≤ E(γ

1/2
ub xj+1)4 P[Z ∈ [xj , xj+1]],

and this probability is bounded above by δϕ(xj+1) if j ≤ −1 and δϕ(xj) if j ≥ 0. We estimate the tail term
using Cauchy–Schwarz:

E
{
E(γ

1/2
ub Z)41{|Z| ≥ L}

}
≤ E

{
E(γ

1/2
ub Z)8

}1/2

P[|Z| ≥ L]1/2.

The probability is bounded by 2e−L
2/2. For the remaining expectation, recall from Lemma 2.4.21(a) that

0 ≤ E(x) ≤ |x|+ 1. So,

E
{
E(γ

1/2
ub Z)8

}
≤ E

{
(1 + γ

1/2
ub |Z|)

8
}
≤ 27 E

{
1 + γ4

ubZ
8
}

= 27(1 + 105γ2
ub).

Combining these estimates yields

E
{
E(γ

1/2
ub Z)41{|Z| ≥ L}

}
≤ 24(1 + 105γ2

ub)1/2e−L
2/4 ≤ 24(1 + 11γub)e−L

2/4.
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All in all,

r4(γ0) ≤ δ
−1∑

j=−J
E(γ

1/2
ub xj+1)4ϕ(xj+1) + δ

J−1∑
j=0

E(γ
1/2
ub xj+1)4ϕ(xj) + 24(1 + 11γub)e−L

2/4
(∗)
≤ r4,ub,

where the step (∗) is verified in the accompanying Python file. (See Remark 2.B.13 below for how the
function E is evaluated numerically). For the lower bound, we similarly have

r4(γ0)
Lem. 2.B.6
≥ r4(γlb) =

J−1∑
j=−J

E
{
E(γ

1/2
lb Z)41{Z ∈ [xj , xj+1]}

}

≥ δ
−1∑

j=−J
E(γ

1/2
lb xj)

4ϕ(xj) + δ

J−1∑
j=0

E(γ
1/2
lb xj)

4ϕ(xj+1)
(∗)
≥ r4,lb,

where the step (∗) is verified in the accompanying Python file.

Remark 2.B.13. The above computer-assisted proof requires evaluating the function E(x) = ϕ(x)/Ψ(x),
where Ψ(x) = P[Z ≥ x] is itself an integral. We evaluate this as follows. Note that the inputs x on which

we numerically evaluate E are bounded above by γ
1/2
ub L ≤ 10. Define L+ = 12. We estimate

E(x)−1 =

∫ L+

x

ϕ(y)

ϕ(x)
dy +

P[Z ≥ L+]

ϕ(x)
≤
∫ L+

x

e−(y2−x2)/2 dy +
e−(L2

+−x
2)/2

√
2π

and

E(x)−1 ≥
∫ L+

x

ϕ(y)

ϕ(x)
dy =

∫ L+

x

e−(y2−x2)/2 dy.

The remaining integral can be rigorously bounded by numerical integration, and for x ≤ 10 the term

e−(L2
+−x

2)/2/
√

2π will contribute an error that is multiplicatively small.

Finally, we turn to Claim 2.B.4. By Lemma 2.4.21(b), E ′ takes values in (0, 1). Thus the function g
defined in (2.102) is decreasing in m and increasing in q, and

g(m(ẑ), q0, γ0) ≥ g(mub, qlb, γ0). (2.110)

However, g is not clearly monotone in γ, so we instead control the derivative of g in γ.

Lemma 2.B.14. Let g̃(γ) = g(mub, qlb, γ). Then, for all γ ≥ 0, |g̃′(γ)| ≤ 20.

Proof. We write g̃(γ) = E[ĝ(γ1/2Z)], where

ĝ(x) =
E ′(x)

(1− qlb)(1− E ′(x)) +mubE ′(x)
. (2.111)

A straightforward calculation shows that

ĝ′′(x) =
(1− qlb)E(3)(x)

((1− qlb)(1− E ′(x)) +mubE ′(x))2
− 2(1− qlb)(mub + qlb − 1)E ′′(x)2

(((1− qlb)(1− E ′(x)) +mubE ′(x))2)3
.

Since E ′(x) ∈ (0, 1) by Lemma 2.4.21(b),

(1− qlb)(1− E ′(x)) +mubE ′(x) ≥ min(1− qlb,mub) = 1− qlb.

Lemma 2.4.21(c)(d) yields |E ′′(x)| ≤ 1, |E(3)(x)| ≤ 13. Thus

|ĝ′′(x)| ≤ 13

1− qlb
+

2(mub + qlb − 1)

(1− qlb)2
≤ 40,

where the final estimate follows from the simple bounds qlb ≤ 3/5, mub ≤ 1. Finally, a gaussian integration
by parts calculation yields

g̃′(γ) =
1

2
E[ĝ′′(γ1/2Z)],

which implies the result.
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Proof of Claim 2.B.4. In light of (2.110) and Lemma 2.B.14, we will estimate

g(m(ẑ), q0, γ0) ≥ g(mub, qlb, γlb)− 20|γub − γlb|.

We will estimate g(mub, qlb, γlb) by discretization, like in the proof of CLaim 2.B.2. Let L = 8, δ = 10−3,
and J = L/δ. For integer j ∈ [−J, J ], let xj = jδ.

Note that ĝ(x) defined in (2.111) takes positive values, and is an increasing function of E ′(x). Moreover,
by Lemma 2.4.21(c), E ′(x) is an increasing function of x. Thus ĝ(x) is an increasing function of x. Hence,

g(mub, qlb, γlb) = E[ĝ(γ
1/2
lb Z)] ≥

J−1∑
j=−J

E[ĝ(γ
1/2
lb Z)1{Z ∈ [xj , xj+1]}]

≥ δ
−1∑

j=−J
ĝ(γ

1/2
lb xj)ϕ(xj) + δ

J−1∑
j=0

ĝ(γ
1/2
lb xj)ϕ(xj+1).

Combining the above,

g(m(ẑ), q0, γ0) ≥ δ
−1∑

j=−J
ĝ(γ

1/2
lb xj)ϕ(xj) + δ

J−1∑
j=0

ĝ(γ
1/2
lb xj)ϕ(xj+1)− 20|γub − γlb|

(∗)
≥ glb,

where the step (∗) is verified in the accompanying Python file. We numerically evaluate ĝ using the identity
E ′(x) = E(x)(E(x)− x) (Lemma 2.4.21(b)), evaluating E as in Remark 2.B.13.
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Chapter 3

A constructive proof of the spherical
Parisi formula

Abstract – The Parisi formula for the free energy is among the crown jewels in the theory of spin glasses.

We present a simpler proof of the lower bound in the case of the spherical mean-field model. Our method

follows the TAP approach developed recently in e.g. [Sub24]: we obtain an ultrametric tree of pure states,

each with approximately the same free energy as the entire model, which are hierarchically arranged in

accordance with the Parisi ansatz. We construct this tree “layer by layer” given the minimizer to Parisi’s

variational problem. On overlap intervals with full RSB, the tree is built by an optimization algorithm

due to Subag. On overlap intervals with finite RSB, the tree is constructed by a new truncated second

moment argument; a similar argument also characterizes the free energy of the resulting pure states.

Notably we do not use the Aizenman–Sims–Starr scheme, and require interpolation bounds only up to

the 1RSB level. Our methods also yield results for large deviations of the ground state, including the

entire upper tail rate function for all 1RSB models without external field.

3.1 Introduction

We consider the mixed p-spin Hamiltonian

HN (σ) =
∑
p≥1

γp
N (p−1)/2

N∑
i1,...,ip=1

gi1,...,ipσi1 · · ·σip . (3.1)

Here gi1,...,ip are i.i.d. standard Gaussians, and the coefficients γp satisfy
∑
p≥1 2pγ2

p < ∞.1 This model is

described by the mixture function ξ(t) =
∑P
p=1 γ

2
pt
p. For σ1,σ2 ∈ RN , define the overlap R(σ1,σ2) =

〈σ1,σ2〉/N . Then HN is the Gaussian process with covariance

EHN (σ1)HN (σ2) = Nξ(R(σ1,σ2)).

Since the introduction of this model by Sherrington and Kirkpatrick [SK75], a central question has been to
understand the free energy, defined as follows. In this paper we consider the case of spherical spins. Let

SN =
{
σ ∈ RN : ‖σ‖2 =

√
N
}

be the sphere of radius
√
N . The partition function and free energy density are defined by

ZN =

∫
SN

expHN (σ) dσ, (3.2)

FN =
1

N
logZN , (3.3)

1For notational convenience, we have written the model’s external field as the degree-1 term ofHN , rather than the traditional
h
∑N

i=1 σi. In the spherical models we consider, these are of course equivalent by rotational invariance.
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where in (3.2) the integration is with respect to the uniform probability measure on SN .
The in-probability limit of the free energy was first predicted by Parisi in [Par79], and proved in the

breakthrough works of Talagrand [Tal06b, Tal06a] and Panchenko [Pan13a] following decades of progress
in the probability and statistical physics communities. In the equivalent formulation due to Crisanti and
Sommers [CS92], the limiting free energy is described as follows. Let x : [0, 1]→ [0, 1] be a right-continuous
non-decreasing function such that x(q̂) = 1 for some q̂ < 1 (which may depend on x). Let

x̂(q) =

∫ 1

q

x(s) ds.

Define the Crisanti-Sommers functional

P(x; ξ) =
1

2

{
ξ′(0)x̂(0) +

∫ 1

0

ξ′′(q)x̂(q) dq +

∫ q̂

0

dq

x̂(q)
+ log(1− q̂)

}
. (3.4)

Note that x̂(q) = 1− q for q > q̂, so this functional is independent of q̂. Finally define

P(ξ) = inf
x

P(x; ξ). (3.5)

Theorem 3.1.1 ([Tal06a, Che13]). The limiting free energy exists and equals

p-lim
N→∞

FN = P(ξ).

3.1.1 Main result

The purpose of this paper is to give a new constructive proof of the (more difficult) lower bound for
p-limN→∞ FN in the Parisi formula. In fact, we will construct an ultrametric tree of pure states, each
with the same free energy as the entire model, taking all overlaps in the model’s overlap distribution (in fact
a slight extension thereof, see (3.6) below) as predicted by Parisi’s ultrametric ansatz [Par79, Par83].

We will use the following characterization of the unique minimizer of (3.5). We emphasize that this
description (including existence and uniqueness) is a comparatively elementary fact about the variational
problem, and as yet says nothing about the free energy FN . For given x, define

F (q) = ξ′(q)−
∫ q

0

ds

x̂(s)2
, f(s) =

∫ s

0

F (q) dq,

and

S = {s ≤ 1 : f(s) = fmax} , fmax = sup{f(q) : q ∈ [0, 1)}. (3.6)

Lemma 3.1.2 ([Tal06a, Proposition 2.1]). There is a unique x attaining the infimum (3.5), which is char-
acterized as follows. Let ν be the probability measure on [0, 1] such that x(q) = ν([0, q]). Then ν(S) = 1.

Remark 3.1.3. The measure ν is the overlap distribution of the model ξ. Namely in the generic models
where

∑
p even:γp>0 1/p =

∑
p odd:γp>0 1/p =∞, one has limN→∞ EG⊗2(f(R(σ1,σ2))) =

∫
f(x)dν(x) for all

continuous f : [−1, 1]→ R, where G is the Gibbs measure of the model and σ1,σ2 are independent samples
from G. The same holds for arbitrary ξ modulo small “generic perturbations” that do not affect the free
energy; see [Pan13b, Chapter 3].

Remark 3.1.4. It is possible for supp(ν) ⊆ S to be a strict inclusion, and one may think of overlaps
q ∈ S \ supp(ν) as “atoms of mass zero” in the overlap distribution. Indeed, [Sub24, Theorem 10] showed
that (for generic models) all overlaps in S are multi-samplable, meaning that the Gibbs probability of sampling
several points with this pairwise overlap is not exponentially small.

The following two definitions describe the geometry of the pure states that our main result will construct.
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Definition 3.1.5. For k,D ∈ N, let T = T(k,D) be the tree with vertices {∅} ∪ [k]∪ [k]2 ∪ · · · ∪ [k]D rooted
at ∅, where u ∈ [k]d is the parent of v ∈ [k]d+1 if u is the length-d prefix of v. For u, v ∈ T, write |u| for the
length of u and u∧ v for the length of the least common ancestor of u, v. Let L = L(k,D) = [k]D be the leaf
set of T.

Definition 3.1.6. Let k,D ∈ N, 0 ≤ q0 < · · · < qD ≤ 1, ~q = (q0, . . . , qD), and δ > 0. A (k,D, ~q, δ)-
ultrametric tree is a collection of points (σu)u∈T such that

|R(σu,σv)− qu∧v| ≤ δ, u, v ∈ T. (3.7)

For q ∈ [0, 1), define

E(q) =
1

2

{
ξ′(0)x̂(0) +

∫ q

0

ξ′′(s)x̂(s) ds+

∫ q

0

ds

x̂(s)

}
.

For k ∈ N, δ > 0, and ‖σ‖2 ≤
√
qN , let

Bandk,q,δ(σ) =
{
~ρ = (ρ1, . . . ,ρk) :

∥∥ρi∥∥
2

=
√
qN,

|R(ρi − σ,σ)| ≤ δ, |R(ρi − σ,ρj − σ)| ≤ δ, ∀1 ≤ i < j ≤ k
}
.

Theorem 3.1.7. For any δ, ε > 0, D ∈ N and increasing q0, . . . , qD ∈ S with qD = sup(S), there exists c > 0
such that the following holds for any k ≤ ecN . With probability 1 − e−cN there is a (k,D, ~q, δ)-ultrametric
tree (σu)u∈T with the following properties.

(i) Energy of tree nodes: for each u ∈ T, 1
NHN (σu) ≥ E(q|u|)− ε.

(ii) Free energy of pure states: for each u ∈ L,

1

kN
log

∫
Bandk,1,δ(σu)

exp

(
k∑
i=1

HN (ρi)

)
d~ρ ≥ P(ξ)− ε. (3.8)

The free energy lower bound (3.8) holds even in a “k-replicated” sense, where we average over k replicas
ρi constrained to be nearly orthogonal. This of course lower bounds the free energy of a single replica, as

∫
Bandk,1,δ(σu)

exp

(
k∑
i=1

HN (ρi)

)
d~ρ ≤

(∫
Band1,1,δ(σu)

expHN (ρ) dρ

)k
, (3.9)

and this shows there is no free energy cost to taking k approximately orthogonal replicas. In our proof of
Theorem 3.1.7, we derive an analogous k-replicated lower bound on the energy increment from any σu, where
u ∈ T \L, to its children σu1, . . . ,σuk, see Theorem 3.4.4(ii); this allows us to construct the ultrametric tree
(σu)u∈T.

As a consequence of Theorem 3.1.7, we obtain the lower bound in the Parisi formula.

Corollary 3.1.8. We have p-liminfN→∞ FN ≥ P(ξ).

Proof. Equations (3.8) and (3.9) imply

FN =
1

N
log

∫
SN

expHN (ρ) dρ ≥ 1

N
log

∫
Band1,1,δ(σu)

expHN (ρ) dρ

≥ 1

kN
log

∫
Bandk,1,δ(σu)

exp

(
k∑
i=1

HN (ρi)

)
d~ρ ≥ P(ξ)− ε.

Since this holds for any ε > 0, the result follows.

Taking the temperature to zero, we also obtain the following consequence on near-ground states.
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Corollary 3.1.9. Let ν∞ be the zero-temperature overlap measure defined in (3.14), and let q1 < q2 < · · · <
qD = 1 lie in supp(ν∞). Then for any δ, ε > 0, there exists c > 0 such that for all k ≤ ecN , with probability
1− e−cN there exists a (k,D, ~q, δ)-ultrametric tree T ⊆ SN such that:

min
σ∈L

HN (σ)/N ≥ max
σ∈SN

HN (σ)/N − ε. (3.10)

In fact the same holds with supp(ν∞) replaced by T from (3.15), which is the zero-temperature analog of S.

Finally in Section 3.5, we study the large deviations of the ground state energyGSN = maxσ∈SN HN (σ)/N .
Confirming predictions of [LACTFLD24], we determine the upper tail rate function for all 1RSB ξ with
γ1 = 0, and identify a sharp phase transition in the speed from O(N) to Ω(N2) for general ξ. The former
follows by the methods of Section 3.3; the latter uses Corollary 3.1.9, and in particular the fact that k can
be taken exponentially large in N .

Remark 3.1.10. Related ultrametric decompositions for spin glasses have appeared in several previous
works, including [Jag17, Sub24, CS21]. Our work follows the approach of [Sub24], and in particular uses a
uniform concentration idea introduced therein. In the aforementioned works, this idea is used with previously
established properties of Gibbs measures and free energies to construct ultrametric decompositions.

Our work proceeds in the opposite direction, using this idea to prove the lower bound in the Parisi
formula. Uniform concentration reduces the proof of the general lower bound to four special cases, which we
term fundamental types (see Section 3.2). For two of these cases, elementary proofs of the lower bound are
known that do not depend on the full Parisi formula. Our main contribution is to provide such a proof for
the two remaining cases, and thereby complete an independent proof of the lower bound. As a consequence,
we are able to construct the tree in Theorem 3.1.7 one layer at a time “by hand.”

A notable aspect of Theorem 3.1.7 is that it gives an ultrametric tree with exponentially large branching
factor at each level. At zero temperature, with γ1 = 0 so that 0 ∈ supp(ν∞), the existence of many
approximately orthogonal near ground states is closely related to disorder chaos; see [Cha14, DEZ15, AC18,
CHL18, Eld20a]. Corollary 3.1.9 is the first to show ecN approximately orthogonal near ground states exist
without additional assumptions on ξ.

3.1.2 Previous approaches to the Parisi formula

Mean-field spin glasses were introduced in [SK75, Der81] to model disordered magnetic materials. Soon
after, [TAP77, dAT78] observed that the replica-symmetric ansatz made by Sherrington and Kirkpatrick
could not be correct at low temperatures. This was resolved by Parisi’s ground-breaking replica symmetry
breaking solution, yielding a formula for the free energy at any temperature [Par79, Par80, Par83]. Several
mysterious, fascinating features were present in this highly non-rigorous ansatz, including the prediction
of ultrametricity [MPS+84a, MPS+84b, MPV87] which led to the introduction of Ruelle cascades [Rue87].
Spherical spin glasses were also introduced in [CS92], where it was observed that a similar replica ansatz
should apply and lead to simpler formulas. Despite this, rigorous results were for some time mainly restricted
to high-temperature settings with similar behavior to classical spin systems [ALR87, CN95].

A crucial breakthrough was made in [GT02], which proved the existence of a limiting free energy at all
temperatures using the interpolation method. Then in [Gue03], Guerra gave an inspired interpolation upper
bound for the free energy, which matched the conjectural Parisi ansatz. Finally, Talagrand used a difficult
interpolation scheme (analyzing its intermediate-time behavior using another interpolation) to prove the
Parisi formula at all temperatures for both Ising and spherical models, with the slight restriction that γp = 0
for all p odd [Tal06b, Tal06a].

While Talagrand’s solution was rather complicated, it was realized in [ASS03] that Guerra’s upper bound
allows one to transparently deduce an extended variational formula for the free energy over a space of “random
overlap structures”, relaxing the ultrametricity condition in the Parisi ansatz. Combined with asymptotic
ultrametricity of the Gibbs measures shown by [Pan13a], this led to an alternate proof of the Parisi formula
with no parity restriction [Pan14, Che13]. More recently, the intrinsic behavior of the associated variational
formula was clarified via connection to stochastic Hamilton-Jacobi equations [AC15, JT16], and a limiting
zero temperature formula was obtained for the ground state energy [AC17, CS17].
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3.2 Fundamental model types

In this subsection we define four types of models, which we term topologically trivial, strictly RS,
strictly 1RSB, and strictly FRSB. We state lower bounds on the free energy of strictly RS models and
the ground state energies of the other three model types. These models will serve as the basic building blocks
for any overlap distribution. The proof of Theorem 3.1.7, carried out in Section 3.4, will decompose a model
ξ into several sub-models of these types and apply these results. These lower bounds are then combined
back together via a uniform concentration lemma of [Sub24].

Definition 3.2.1. The model ξ is strictly RS if S = {0}.

The remaining three types of models will be defined using a zero-temperature version of the Crisanti-
Sommers formula introduced in [CS17], which is obtained as a limit of (3.4). For right-continuous non-

decreasing integrable α : [0, 1]→ [0,∞) and L >
∫ 1

0
α(s) ds, let

α̂(q) = L−
∫ q

0

α(s) ds.

Then define

Q(L,α; ξ) =
1

2

{
ξ′(0)L+

∫ 1

0

ξ′′(q)α̂(q) dq +

∫ 1

0

dq

α̂(q)

}
(3.11)

and
Q(ξ) = inf

L,α
Q(L,α; ξ). (3.12)

Theorem 3.2.2 ([CS17, Theorem 1]). The limiting ground state energy of the model ξ is

p-lim
N→∞

1

N
max
σ∈SN

HN (σ) = Q(ξ).

The minimizer of (3.12) has a similar characterization to Lemma 3.1.2 above. For given L,α, define

G(q) = ξ′(q)−
∫ q

0

ds

α̂(s)2
, g(s) =

∫ 1

s

G(q) dq. (3.13)

Similarly to before, we let ν∞ be the finite Borel measure on [0, 1] defined by

ν∞([0, q]) = α(q) ∀q ∈ [0, 1] (3.14)

and define the set
T = {q ∈ [0, 1] : g(q) = 0}. (3.15)

Note that we always have 1 ∈ T .

Lemma 3.2.3 ([CS17, Theorem 2]). There is a unique (L,α) attaining the infimum (3.12), which is char-
acterized by the following properties:

G(1) = 0; min
q∈[0,1]

g(q) = 0; ν∞(T c) = 0.

Definition 3.2.4. The model ξ is topologically trivial if T = {1}, strictly 1RSB if T = {0, 1}, and
strictly FRSB if T = [0, 1].

Remark 3.2.5. Note that ξ can only be strictly RS, strictly 1RSB, or strictly FRSB if ξ′(0) = γ2
1 = 0, i.e.

there is no external field. Indeed if ξ′(0) > 0, then F (q), G(q) > 0 for q in a neighborhood of 0, so we cannot
have 0 ∈ S, T . Conversely, by Lemma 3.2.13(a), ξ can only be topologically trivial if ξ′(1) ≥ ξ′′(1), which
implies ξ′(0) > 0 except in the simple case that ξ is quadratic.
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• q

x(q)

1

1

Topologically trivial 1RSB FRSB 1RSB RS

Figure 3.2.1: Decomposition of an overlap distribution into fundamental components. Our proof of Theo-
rem 3.1.7 combines lower bounds on the free or ground state energy of each piece.

3.2.1 Proof outline for Theorem 3.1.7

Decomposition into fundamental types We will construct the ultrametric tree in Theorem 3.1.7 layer
by layer, as follows. Let x attain the infimum in (3.5); it is known from [JT18] (see Lemma 3.4.1) that
the associated S (3.6) is a finite union of intervals (including possibly atoms). We may assume without
loss of generality that the sequence q0, . . . , qD contains all endpoints of these intervals, so that q0 = inf S,
qD = supS, and each interval [qd, qd+1] (where we take as convention q−1 = 0, qD+1 = 1) either is contained
in S or intersects S at exactly its endpoints. Recall that (modulo Remark 3.1.4) S is the support of the
overlap distribution ν([0, q]) = x(q), so these intervals comprise the overlap support and overlap gaps of the
model ξ.

Following a construction of [Sub24], we define a sub-model of ξ for each interval [qd, qd+1] (see (3.47)),
which represents the landscape of HN on an orthogonal band of radius

√
(qd+1 − qd)N around a point of

radius
√
qdN . Due to the choice of q0, . . . , qD, the sub-model for [0, q0] will be topologically trivial, that for

[qD, 1] strictly RS, and the remaining sub-models either strictly 1RSB or strictly FRSB (see Figure 3.2.1). We
then prove sharp lower bounds for the free energy of each strictly RS component and the ground state energy
of the remaining components. Furthermore, for all but topologically trivial components, this lower bound
will hold in a k-replicated sense. This allows us to combine the bounds and construct the tree described by
Theorem 3.1.7 in Section 3.4.

The aforementioned lower bounds are stated in Subsection 3.2.2. For topologically trivial and strictly
FRSB models, they are already known, using the Kac–Rice formula and an explicit optimization algorithm
respectively. Namely [FLD14, BČNS22] showed that topologically trivial models have w.h.p. two critical
points, the global maximum and minimum, and characterized their energies (the intuition is that the strong
external field overpowers the remainder of the disorder). Meanwhile [Sub21a] showed how to construct an
approximate ground state of any strictly FRSB model (which can easily be made k-replicated). It is worth
pointing out that locating the ground state of the topologically trivial model in the first stage is analogous to
the recentering step from the conditional second moment method approach used in [Bol19, DS18, BY22] for
related problems. These works studied replica-symmetric models with external field, which for the purposes
of this paper amount to a combination of topologically trivial and strictly RS models.

Given this, our primary remaining tasks are the lower bounds for strictly RS and 1RSB models. We
prove these bounds using a new truncated second moment argument, explained below.

We note that the “decomposition” strategy we follow was introduced by [Sub24], and has been subse-
quently implemented to recover the Parisi formula in several restricted settings. [BSZ20] showed that under
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the subset of the 1RSB phase called “Condition M”, the free energy can be understood at low enough tem-
perature by decomposing the model into 1RSB and RS parts. A similar “full RSB + RS” decomposition was
observed in [Sub21a]. In the shattered phase (a subset of the replica-symmetric phase), [BJ24] used a similar
decomposition to understand geometric properties of the landscape. These results were highly suggestive
and motivational for our work. However they did not apply in fully general models because the RS and
1RSB phases could not always be handled without depending on the Parisi formula. Because we solve these
cases independently without this dependency, we can combine this with the above ingredients to arrive at a
new proof of the Parisi formula.

Truncated second moment It is natural to study the free energy of strictly RS models using the second
moment method. A direct calculation shows that if

ξ(q) +
1

2
log(1− q2) ≤ 0 ∀q ∈ [0, 1), (3.16)

then the second moment method succeeds and p-limN→∞ FN = 1
2ξ(1). However, this does not encompass

the entire RS phase. Indeed, by Lemma 3.1.2 (with x ≡ 1), the model is strictly RS if (and only if)

ξ(q) + q + log(1− q) ≤ 0 ∀q ∈ [0, 1) (3.17)

with equality only at q = 0. These conditions do not agree, so even in the strictly RS phase it is possible
for the dominant contribution to the second moment to come from pairs with nonzero overlap. Similarly,
[BSZ20, Condition M] gives a condition under which the second moment method, applied to a suitable
critical point count, identifies the ground state energy. However, this condition does not encompass the
entire zero-temperature 1RSB phase, given by (3.27) below.

We overcome these difficulties by truncating the moment calculation to typical points, see Definitions 3.3.1
and 3.3.8. Roughly, σ ∈ SN will be said to be free energy typical if for any q, the free energy on the band

Bandq(σ) = {ρ ∈ SN : R(ρ,σ) = q}

is at most P(ξ), and ground state typical if the ground state energy on such bands is at most Q(ξ). We will
show that typical points dominate the respective first moments for both of the model types described above,
by applying Guerra’s interpolation bound to appropriate conditional models. This implies that truncation
has only a slight effect on the first moment. On the other hand, truncation immediately ensures that the
second moment is dominated by pairs of orthogonal points, causing the second moment method to succeed
throughout the RS and 1RSB regimes.

To prove these highly non-obvious typicality properties, we rely on the following upper bounds which
follow from the interpolation method of [Gue03]. In fact we require only replica-symmetric bounds at positive
temperature, and 1RSB bounds at zero temperature.

Proposition 3.2.6. For any x as in (3.4) of the form x(q) = 1{q ≥ q∗},

p-limsup
N→∞

FN ≤ P(x; ξ).

Proposition 3.2.7. For any (L,α) as in (3.11) of the form α(q) = u1{q ≥ q∗},

p-limsup
N→∞

1

N
max
σ∈SN

HN (σ) ≤ Q(L,α; ξ).

Remark 3.2.8. Proposition 3.2.6 follows directly from [Tal06a], while Proposition 3.2.7 follows from the zero
temperature limits taken in [CS17] or [JT17]. We note that proving them for general ξ requires Talagrand’s
positivity principle [Pan07, Tal11], which follows from the Ghirlanda–Guerra identities. If one wishes to
avoid these to keep things elementary, one may assume throughout this paper that ξ is convex on [−1, 1].
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3.2.2 Lower bounds for free and ground state energy

The following propositions lower bound the free or ground state energies in the four fundamental model
types. They are special cases of Theorem 3.1.7 where ξ is of these types.

Proposition 3.2.9. Suppose ξ is strictly RS. For all δ, ε > 0, there exists c = c(ξ, δ, ε) such that if k ≤ ecN ,
with probability 1− e−cN ,

1

kN
log

∫
Bandk,1,δ(0)

exp

(
k∑
i=1

HN (σi)

)
d~σ ≥ P(ξ)− ε.

Proposition 3.2.10. Suppose ξ is strictly 1RSB. For all δ, ε > 0, there exists c = c(ξ, δ, ε) such that if
k ≤ ecN , with probability 1− e−cN there exists ~σ ∈ Bandk,1,δ(0) such that

1

N
HN (σi) ≥ Q(ξ)− ε ∀i ∈ [k].

Proposition 3.2.11. Suppose ξ is topologically trivial. For all ε > 0, there exists c = c(ξ, ε) such that with
probability 1− e−cN , there exists σ ∈ SN such that 1

NHN (σ) ≥ Q(ξ)− ε.

Proposition 3.2.12. If ξ is strictly FRSB, the conclusion of Proposition 3.2.10 also holds.

We will prove Propositions 3.2.9 and 3.2.10 in Section 3.3 by the aforementioned truncated second moment
argument. Propositions 3.2.11 and 3.2.12 are known from previous work, and we outline their proofs below.

Lemma 3.2.13. The following holds.

(a) If ξ is topologically trivial, then ξ′(1) ≥ ξ′′(1) and Q(ξ) =
√
ξ′(1).

(b) If ξ is strictly FRSB, then Q(ξ) =
∫ 1

0
ξ′′(q)1/2 dq.

Proof. If ξ is topologically trivial, then (recalling notation of Lemma 3.2.3), α ≡ 0, and so α̂ ≡ L. Thus

G(q) = ξ′(q)− q

L2
.

Since Lemma 3.2.3 gives G(1) = 0, we have L−2 = ξ′(1). Because min g ≥ 0, we have

0 ≤ g′′(1) = −G′(1) = −ξ′′(1) + L−2,

so ξ′(1) ≥ ξ′′(1). Moreover, plugging this (L,α) into (3.11) shows Q(ξ) =
√
ξ′(1). This proves part (a). If ξ

is strictly FRSB, then g ≡ 0, so

G′(q) = ξ′′(q)− 1

α̂(q)2
= 0.

This implies α̂(q) = ξ′′(q)−1/2. Plugging this α̂ into (3.11) proves part (b).

Proof of Proposition 3.2.11. By Lemma 3.2.13(a), we have ξ′(1) ≥ ξ′′(1). Define

GSN ≡
1

N
max
σ∈SN

HN (σ). (3.18)

[BČNS22, Theorem 1.1] shows via the Kac–Rice formula that with high probability, GSN ≥
√
ξ′(1)−ε/2. By

concentration of the ground state energy (see Proposition 3.2.15 below), GSN ≥
√
ξ′(1)− ε with probability

1− e−cN . Lemma 3.2.13(a) further implies
√
ξ′(1) = Q(ξ), concluding the proof.

Proof of Proposition 3.2.12. We use a randomized version of Subag’s Hessian ascent algorithm [Sub21a] (see
also [HS25, Section 3.7]). Starting from x0 = 0 ∈ RN , we choose small η = η(ε, δ) ∈ 1/N and for 0 ≤ j < 1/η
construct xj+1 from xj as follows. For x ∈ RN let S(η)(x) be the span of the top Nη eigenvectors of
∇2HN (x)|x⊥ , with any measurable-in-x tie-breaking procedure. (Here we view ∇2HN (x) as a quadratic
form and restrict it to the subspace x⊥ = {y ∈ RN : 〈x,y〉 = 0}.) Let Sj = S(η)(xj), and choose vj ∈ Sj
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uniformly at random from the corresponding unit sphere, independently of all previous choices. Then let
xj+1 = xj + vj

√
ηN if 〈vj ,∇HN (xj)〉 ≥ 0, else xj+1 = xj − vj

√
ηN . The output of this algorithm is

x∗ = x1/η ∈ SN . (Note that 〈xj ,vj〉 = 0 by construction, thus ‖xj‖22 = jηN almost surely.)
Let x∗,x

′
∗ be independent outputs of this algorithm for the same HN . We claim that with probability

1− e−cN over HN and the randomness inside both runs of the algorithm:

|〈x∗,x′∗〉| ≤ δN, (3.19)

HN (x∗)/N ≥
∫ 1

0

ξ′′(q)1/2 dq − ε Lem 3.2.13(b)
= Q(ξ)− ε, . (3.20)

This claim implies the desired conclusion by taking ecN/3 independent runs of the algorithm. The first part
(3.19) holds conditionally on x′∗: we have P[|〈vj ,x′∗〉| ≤ ηN | x′∗,xj ] ≥ 1 − e−cN since vj is uniform on a
Ω(N) dimensional sphere.

The second part (3.20) is similar to [Sub21a] (see also [HS25, Section 3.7]) so we give an outline. First one

notes that ∇2HN (x)|x⊥ is a GOE matrix scaled by
√(

1− 1
N

)
ξ′′(‖x‖22) for x independent of HN (see e.g.

[Sub21a, Eq. (3.10)]). Because of the N2 speed in the large deviation rate function for the bulk spectrum
of GOE, combining a η

√
N -net of the ball with Proposition 3.2.14 below implies that λNη(∇2HN (x)|x⊥) ≥

2
√
ξ′′(‖x‖2/N)− ε2 uniformly in ‖x‖ ≤

√
N with probability 1− e−cN . Using Proposition 3.2.14 again to

control the Taylor approximation error, one finds with the same probability:

HN (xj+1)−HN (xj) ≥
1

2
· ηN ·

(
2
√
ξ′′(‖xj‖2/N)− ε2

)
, ∀0 ≤ j < 1/η.

Telescoping gives (3.20), completing the proof.

3.2.3 Preliminary concentration estimates

For a tensor A ∈ (RN )⊗k, define the operator norm

‖A‖op = max
‖σ1‖2,...,‖σk‖2≤1

|〈A,σ1 ⊗ · · · ⊗ σk〉| .

Proposition 3.2.14. For any model ξ, there exists a constant c = c(ξ) > 0 and sequence of constants
(Ck)k≥0 independent of N such that the following holds. Defining the convex set

KN =
{
HN ∈HN :

∥∥∇kHN (σ)
∥∥
op
≤ CkN1− k2 ∀k ≥ 0, ‖σ‖2 ≤

√
N
}
⊆HN ,

(i) For all N , we have P[HN ∈ KN/2] ≥ 1− e−cN .

(ii) More generally, let ψ : HN → RM be an almost surely finite linear map. Then P[HN ∈ KN : ψ(HN )] ≥
1− e−cN whenever E[HN : ψ(HN )] ∈ KN/2.

Proof. Part (i) follows from e.g. [HS25, Proposition 2.3] (modulo dilation of KN by a factor of two). For
part (ii), note that the conditional law of HN−E[HN | ψ(HN )] does not depend on ψ(HN ). Moreover, letting

H
(ψ)
N ∈ HN be a Hamiltonian with this law, there exists an independent centered Gaussian H

(¬ψ)
N ∈ HN

such that the independent sum H
(ψ)
N +H

(¬ψ)
N has the law of HN . Then whenever E[HN | ψ(HN )] ∈ KN/2,

we have

P[HN ∈ KN | ψ(HN )] ≥ P[H
(ψ)
N ∈ KN/2]

(†)
≥ 2P[H

(ψ)
N +H

(¬ψ)
N ∈ KN/2]− 1

= 2P[HN ∈ KN/2]− 1

≥ 1− 2e−cN .

Here (†) follows from the simple observation that by symmetry in law of H
(¬ψ)
N and independence,

P
[
H

(ψ)
N +H

(¬ψ)
N ∈ KN/2 | H(ψ)

N /∈ KN/2
]
≤ 1/2.
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Proposition 3.2.15. For any model ξ, there exists a constant c = c(ξ) > 0 such that FN (3.3) and GSN
(3.18) satisfy the concentration inequality

P (|FN − EFN | ≥ t) ,P (|GSN − EGSN | ≥ t) ≤ 2 exp(−ct2N).

Proof. The concentration inequality for FN is [Pan13b, Theorem 1.2], and that for GSN is by the Borell-TIS
inequality [Bor76, CIS76].

3.2.4 Preliminaries on the Kac–Rice formula

For each σ ∈ SN , let {e1(σ), . . . , eN (σ)} be an orthonormal basis of RN with e1(σ) = σ/
√
N . Let

T = {2, . . . , N}. Let ∇THN (σ) ∈ RT denote the projection of ∇HN (σ) ∈ RN to the space spanned
by {e2(σ), . . . , eN (σ)}, and ∇2

T ×THN (σ) ∈ RT ×T analogously. Define the radial and tangential derivatives

∂radHN (σ) = 〈e1(σ),∇HN (σ)〉 , ∇spHN (σ) = ∇THN (σ).

Further, define the Riemannian Hessian

∇2
spHN (σ) = ∇2

T ×THN (σ)− 1√
N
∂radHN (σ)IT ×T . (3.21)

The following lemma describes the joint law of these derivatives for any fixed σ ∈ SN .

Lemma 3.2.16 ([BČNS22, Lemma 3.2]). For any σ ∈ SN , the random variables
(
HN (σ), ∂radHN (σ)

)
and

∇spHN (σ) and ∇2
T ×THN (σ) are independent, with the following laws.

• (HN (σ), ∂radHN (σ)) is a centered Gaussian with covariance

E(HN (σ), ∂radHN (σ))⊗2 =

[
Nξ(1)

√
Nξ′(1)√

Nξ′(1) ξ′(1) + ξ′′(1)

]
.

• ∇spHN (σ) is a centered Gaussian with covariance ξ′(1)IN−1.

• ∇2
T ×THN (σ) is a scaled GOE matrix, with

E(∇2
T ×THN (σ))2

i,j =
(1 + δi,j)ξ

′′(1)

N
,

symmetry across the diagonal, and independent entries on and above the diagonal.

Say σ ∈ SN is a critical point of HN if ∇spHN (σ) = 0, and let Crt denote the set of such points.
Further, for (σ, HN )-measurable event E , let

Crt(E) = {σ ∈ Crt : (σ, HN ) ∈ E .} . (3.22)

The Kac–Rice formula [Ric44, Kac48], applied to ∇spHN , states that

E|Crt(E)| =
∫
SN

E
[
|det∇2

spHN (σ)|1 {(σ, HN ) ∈ E}
∣∣∣∇spHN (σ) = 0

]
ϕ∇spHN (σ)(0) dσ, (3.23)

where ϕX denotes the probability density of the random variable X. In Section 3.3, we will use specific
known consequences of this formula, which hold because conditional on (HN (σ), ∂radHN (σ)), the matrix
∇2

spHN (σ) appearing in the determinant is a shifted and scaled GOE matrix.

3.3 Strictly RS and 1RSB Models via truncated second moment

In this section we prove Propositions 3.2.9 and 3.2.10. Subsection 3.3.1 proves Proposition 3.2.9, and the
rest of the section is devoted to the proof of Proposition 3.2.10.
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3.3.1 Strictly RS models

Let ξ be strictly RS. Recall from Remark 3.2.5 that this implies ξ′(0) = 0. Using the notation of Lemma 3.1.2,
x ≡ 1 so

P(ξ) =
1

2
ξ(1).

Moreover,
f(q) = ξ(q) + q + log(1− q)

has unique maximum q = 0 on [0, 1]. Set η > 0 small depending on δ such that

f(q) ≤ −6η ∀q ∈ [δ, 1]. (3.24)

For σ ∈ SN and q ∈ [−1, 1], let Bandq(σ) = {ρ : R(σ,ρ) = q}.

Definition 3.3.1. A point σ is free energy typical if for all |q| ≥ δ,

Φ(q;σ) ≡ 1

N
log

∫
Bandq(σ)

expHN (ρ) dρ ≤ 1

2
ξ(1)− η.

We denote by TN ⊆ SN denote the (random) set of free energy typical points, and

Z̃N ≡
∫
TN

expHN (σ)dσ.

We will prove Proposition 3.2.9 by computing two moments of Z̃N .

Proposition 3.3.2. We have EZ̃N ≥ (1− e−cN ) exp(Nξ(1)/2).

Proposition 3.3.3. We have EZ̃2
N ≤ exp(N(ξ(1) +O(δ))).

For fixed σ ∈ SN , define the planted model

HN (ρ) = Nξ(R(ρ,σ)) + ĤN (ρ),

where ĤN (ρ) is a spin glass with mixture ξ. Let PσPl denote the law of this HN .
The following crucial lemma uses the interpolation bound Proposition 3.2.6 on a band. A similar estimate

was observed by Alaoui, Montanari, and the second author in [AMS25, Proposition 3.9] to study shattering.

Lemma 3.3.4. For fixed σ ∈ SN , |q| ≥ δ, the following holds. With probability 1− e−cN over PσPl,

Φ(q;σ) ≤ 1

2
ξ(1)− 2η.

Proof. For ρ ∈ Bandq(σ), under PσPl we have

HN (ρ) = ξ(q)N + ĤN (ρ).

Moreover, on Bandq(σ), writing ρ = qσ +
√

1− q2τ for τ ⊥ σ, the process HN (τ ) = ĤN (ρ) has mixture

ξ̃q(t) = ξ(q2 + (1− q2)t). (3.25)

Define the order parameter x̃(t) = 1{t ≥ r} where r = q
1+q . By Proposition 3.2.6,

Φ(q;σ) ≤ ξ(q) + P(x̃; ξ̃q, 0) +
1

2
log(1− q2) + oP (1),

where 1
2 log(1 − q2) accounts for the volume of Bandq(σ) and oP (1) is a term tending to 0 in probability

(under PσPl). Note that P(x̃; ξ̃q, 0) depends on ξ̃q through ξ̃′q and ξ̃′′q only, and these depend on q only through
|q|. Moreover ξ(q) ≤ ξ(|q|). So we may assume without loss of generality that q > 0.
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We upper bound P(x̃; ξ̃q, 0) via:

2P(x̃; ξ̃q, 0) ≤ ξ̃′q(r)(1− r) +

∫ 1

r

ξ̃′′q (t)(1− t) dt+
r

1− r
+

∫ 1

r

dt

1− t

= ξ̃q(1)− ξ̃q(r) +
r

1− r
+ log(1− r)

= ξ(1)− ξ(q) + q − log(1 + q).

Thus

Φ(q;σ) ≤ 1

2
(ξ(1) + ξ(q) + q + log(1− q)) + oP (1)

(3.24)

≤ 1

2
ξ(1)− 3η + oP (1).

The conclusion follows from Proposition 3.2.15, applied to the free energy Φ(q;σ).

Lemma 3.3.5. For any fixed σ ∈ SN , PσPl[σ ∈ TN ] ≥ 1− e−cN .

Proof. Suppose the event in Lemma 3.3.4 holds for all q ∈ {±δ,±(δ + 1/N), . . . ,±(δ + M/N)} for the
largest M such that δ + M/N ≤ 1, and furthermore that HN ∈ KN holds. By Proposition 3.2.14(ii) with
ψ(HN ) = HN (σ), this occurs with probability 1− e−cN after adjusting c. Then, for all q = ±(δ +m/N),

Φ(q;σ) ≤ 1

2
ξ(1)− 2η.

For all q ∈ [δ +m/N, δ + (m+ 1)/N ], on event KN ,

Φ(q;σ) ≤ Φ(δ +m/N ;σ) +O(N−1) ≤ 1

2
ξ(1)− η,

and similarly for q ∈ [−δ − (m+ 1)/N,−δ −m/N ]. This implies σ ∈ TN .

Proof of Proposition 3.3.2. For any σ ∈ SN ,

EZ̃N
EZN

=
E[exp(HN (σ))1{σ ∈ TN}]

E[exp(HN (σ))]
.

This is the probability of σ ∈ TN under the reweighted measure P̃ with Radon–Nikodym derivative P̃/P ∝
exp(HN (σ)), and by properties of Gaussian conditioning we have precisely P̃ = PσPl. Combining with
Lemma 3.3.5 yields

EZ̃N
EZN

= PσPl(σ ∈ TN ) = 1− e−cN .

The result follows because EZN = exp(Nξ(1)/2).

Proof of Proposition 3.3.3. Writing Z̃2
N as a double integral and recalling TN from Definition 3.3.1, we have

almost surely

Z̃2
N =

∫∫
TN×TN

exp(HN (σ1) +HN (σ2))dσ1dσ2

≤
∫∫
SN×SN

exp(HN (σ1) +HN (σ2))1{R(σ1,σ2) ≤ δ}dσ1dσ2 + eN(ξ(1)/2−η)

∫
SN

exp(HN (σ)) dσ.

Taking expectations,

EZ̃2
N ≤

∫ δ

−δ
eN(ξ(1)+ξ(q))(1− q2)−(N−1)/2 dq + eN(ξ(1)−η).

The exponential growth rate of the integral is

ξ(1) + max
q∈[−δ,δ]

{
ξ(q) +

1

2
log(1− q2)

}
= ξ(1) +O(δ)

by Lipschitz continuity of the quantity inside the maximum around 0.
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Proof of Proposition 3.2.9. The statement is clearly monotone in δ, so it suffices to prove it for δ suitably
small in ε. By the last two propositions and Paley-Zygmund,

P
(
Z̃N ≥

1

2
exp(Nξ(1)/2))

)
≥ e−O(δ)N . (3.26)

Suppose this event holds. Let G denote the Gibbs measure of Z̃N (i.e. the Gibbs measure of ZN conditioned
on σ ∈ TN ). Then,∫

Bandk,1,δ(0)

exp

(
k∑
i=1

HN (σi)

)
d~σ ≥

∫
Bandk,1,δ(0)∩T kN

exp

(
k∑
i=1

HN (σi)

)
d~σ

= Z̃kNG
⊗k (|R(σi,σj)| ≤ δ for all 1 ≤ i < j ≤ k

)
≥ Z̃kN

(
1−

(
k

2

)
G⊗2(|R(σ1,σ2)| ≥ δ)

)
.

For any σ1 ∈ TN , G-almost surely

G(|R(σ1,σ2)| ≥ δ|σ1) =
1

Z̃N

∫
|q|≥δ

∫
Bandq(σ1)

exp(HN (σ2)) dσ2 dq

≤ exp(N(ξ(1)/2− η))
1
2 exp(Nξ(1)/2)

= 2 exp(−ηN).

For k ≤ eηN/3,

1−
(
k

2

)
G⊗2(|R(σ1,σ2)| ≥ δ) ≥ 1

2
.

Combining the above and letting

Z(k) =
1

kN
log

∫
Bandk,1,δ(0)

exp

(
k∑
i=1

HN (σi)

)
d~σ,

we conclude that

P
(
Z(k) ≥ ξ(1)

2
− o(1)

)
≥ e−O(δ)N .

Similarly to [Pan13b, Theorem 1.2] we can show the concentration inequality

P(|Z(k) − EZ(k)| ≥ t) ≤ exp(−ct2N).

(In fact a much stronger inequality is true, see Lemma 3.4.6 below.) The result follows from the last two
inequalities for δ suitably small in ε.

3.3.2 Strictly 1RSB models

We turn to the proof of Proposition 3.2.10. Let ξ be strictly 1RSB, and so ξ′(0) = 0 by Remark 3.2.5. For
most of the proof we will assume that ξ is not pure; we then appeal to continuity at the end by slightly
perturbing any pure ξ (which will preserve the strict 1RSB property). This simplifies the presentation
below as certain formulas degenerate in the pure case, see Remark 3.3.14. We note that some intermediate
computations and lemmas resemble those from previous work including [ABČ13, AB13, BSZ20], which made
different assumptions on ξ.

Recalling the notation of Lemma 3.2.3, there exists u > 0 such that α ≡ u, and the order parameter
(L,α) is described by the pair (L, u). It can easily be verified that the function υ : [0,+∞)→ R given by

υ(z) =
(1 + z) log(1 + z)

z2
− 1

z

is strictly decreasing with limz→0+ υ(z) = 1
2 and limz→∞ υ(z) = 0.
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Lemma 3.3.6. Assume ξ is strictly 1RSB. Let z be the unique solution to υ(z) = ξ(1)
ξ′(1) and y =

√
(1 + z)ξ′(1).

Then

L =
1 + z

y
, u =

z

y
, Q(ξ) =

ξ′(1) + zξ(1)

y
,

and for all q ∈ [0, 1],

ξ(1)− ξ(q) ≥ ξ′(1)

(
1 + z

z2
log (1 + (1− q)z)− 1− q

z

)
, (3.27)

with equality at exactly q = 0, 1.

Proof. As α̂(q) = L− uq, we calculate that

G(q) = ξ′(q)− q

L(L− uq)
, g(q) = ξ(1)− ξ(q)− 1

u

(
1

u
log

L− uq
L− u

− 1− q
L

)
.

Since G(1) = g(0) = 0, we get the system of equations

ξ′(1) =
1

L(L− u)
, ξ(1) =

1

u2
log

L

L− u
− 1

Lu
.

Let z′ = u
L−u , so

ξ(1)

ξ′(1)
=
L(L− u)

u2
log

L

L− u
− L− u

u
= υ(z′).

Thus z′ = z by monotonicity of υ. Then

L =

√
1 + z′

ξ′(1)
=

1 + z

y
, u = L · z′

1 + z′
=
z

y
.

These formulas and the condition g(q) ≥ 0 for all q (with equality at precisely q = 0, 1) imply (3.27). Finally,

2Q(ξ) = 2Q(L,α; ξ) =

∫ 1

0

ξ′′(q)(L− uq)dq +

∫ 1

0

dq

L− uq

= (L− u)ξ′(1) + uξ(1) +
1

u
log(1 + z).

Note that (L− u)ξ′(1) = ξ′(1)
y , uξ(1) = zξ′(1)

y , and

1

u
log(1 + z) =

zξ′(1)

y

(
(1 + z)

z2
log(1 + z)

)
=
zξ′(1)

y

(
1

z
+
ξ(1)

ξ′(1)

)
=
ξ′(1) + zξ(1)

y
.

This gives the formula for Q(ξ).

We also record a simple inequality in the parameters we will use later.

Lemma 3.3.7. We have y2 ≥ ξ′′(1).

Proof. Because min g(q) = 0 is attained at q = 1,

0 ≤ g′′(1) = −G′(1) = −ξ′′(1) + (L− u)−2 = −ξ′′(1) + y2.

Let η1, η2, η3 > 0 be small constants to be determined later, where each ηi will be set small in terms of
δ, ξ, and {ηj : j < i} (i.e. informally, 0 < η3 � η2 � η1 � δ � 1). By (3.27), we may set η3 such that

ξ(1)− ξ(q) ≥ ξ′(1)

(
1 + z

z2
log (1 + (1− q)z)− 1− q

z

)
+

6y

z
η3 (3.28)
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for all q ∈ [δ, 1− η2]. Set

E0 = Q(ξ) =
ξ′(1) + zξ(1)

y
, R0 = y +

ξ′′(1)

y
,

B = [E0 − η1 − η3, E0 − η1 + η3]× [R0 + η
3/4
1 − η3, R0 + η

3/4
1 + η3]. (3.29)

By slight abuse of notation, for A ⊆ R2, let

Crt(A) =

{
σ ∈ Crt :

(
1

N
HN (σ),

1√
N
∂radHN (σ)

)
∈ A

}
. (3.30)

Definition 3.3.8. A point σ ∈ Crt(B) is ground state typical if the following conditions hold.

(i) For all q ∈ [δ, 1− η2],

Ψ(q;σ) ≡ 1

N
sup

ρ∈Bandq(σ)

HN (ρ) ≤ E0 − η1 − η3.

(ii) HN does not have any critical points ρ with R(σ,ρ) ≥ 1− η2.

Denote the set of such points by C̃rt(B).

We will prove Proposition 3.2.10 via the next two propositions, whose proofs comprise the rest of the
section.

Proposition 3.3.9. We have E|C̃rt(B)| ≥ eΩ(η1)N .

Proposition 3.3.10. We have E|C̃rt(B)|2 ≤ eO(δ)N .

Remark 3.3.11. The choice (3.29) of B looks strange at first, because when ξ is a pure model HN (σ)
and ∂radHN (σ) are almost surely proportional, so there are a.s. no critical points with energy and radial
derivative described by B. This is not a problem for the proof because the parameters η1, η2, η3 can be
taken small in ξ, and then the statement of Proposition 3.2.10 is continuous in ξ; see the end of the proof of
Proposition 3.2.10.

3.3.3 Ground state typicality is with high probability

The main result of this subsection is the following proposition. In it, we fix σ ∈ SN and condition on the
event {σ ∈ Crt(B)}. Here when conditioning, we refer to the standard regular conditional probability given
(HN (σ), ∂radHN (σ)), which is a linear function of HN .

Proposition 3.3.12. If (E,R) ∈ B, then

P
[
σ ∈ C̃rt(B) |

(
HN (σ), ∂radHN (σ),∇spHN (σ)

)
= (EN,R

√
N,0)

]
≥ 1− e−cN .

We will prove Proposition 3.3.12 by studying the ground state energy on bands defined by their overlap
with σ, analogously to the replica-symmetric case.

Lemma 3.3.13. Conditional on (HN (σ), ∂radHN (σ),∇spHN (σ)) = (EN,R
√
N,0), the restriction of HN

to Bandq(σ) has law

HN (ρ)
d
=
N(qξ′(q) + zξ(q))

y
+N

〈
vq,

[
E − E0

R−R0

]〉
+ ĤN (ρ), (3.31)

where

vq =

[
vqE
vqR

]
=

[
ξ(1) ξ′(1)
ξ′(1) ξ′(1) + ξ′′(1)

]−1 [
ξ(q)
qξ′(q)

]
(3.32)

and ĤN is a (N − 1)-dimensional spin glass with the following covariance. Write ρ = qσ +
√

1− q2τ and

let HN (τ ) = ĤN (ρ). Then HN has mixture

ξ̃q(t) = ξ(q2 + (1− q2)t)− C − (1− q2)ξ′(q)2

ξ′(1)
t. (3.33)

for some constant C (which will be irrelevant for our purposes).
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Remark 3.3.14. Note that the matrix in (3.32) has determinant

ξ(1)(ξ′(1) + ξ′′(1))− ξ′(1)2 =

∑
p≥2

γ2
p

∑
p≥2

p2γ2
p

−
∑
p≥2

pγ2
p

2

.

This is nonnegative by Cauchy-Schwarz and strictly positive when ξ is not pure, so the matrix inverse is
well-defined. This is one reason we assume ξ is not pure.

Proof. By Lemma 3.2.16, HN (σ), ∂radHN (σ), and ∇spHN (σ) are jointly Gaussian with covariance matrix Nξ(1)
√
Nξ′(1) 0>√

Nξ′(1) ξ′(1) + ξ′′(1) 0>

0 0 ξ′(1)IN−1

 .
For ρ ∈ Bandq(σ), we further have

EHN (ρ)HN (σ) = Nξ(q),

EHN (ρ)∂radHN (σ) =
√
Nqξ′(q),

EHN (ρ)∇spHN (σ) = ξ′(q)P⊥σ ρ.

Thus

E[HN (ρ)|HN (σ), ∂radHN (σ),∇spHN (σ)] =

〈[
ξ(1) ξ′(1)
ξ′(1) ξ′(1) + ξ′′(1)

]−1 [
ξ(q)
qξ′(q)

]
,

[
HN (σ)√

N∂radHN (σ)

]〉

+
ξ′(q)

ξ′(1)
〈P⊥σ ρ,∇spHN (σ)〉. (3.34)

Then ĤN (ρ) = HN (ρ)− E[HN (ρ)|HN (ρ), ∂radHN (ρ),∇spHN (ρ)] has covariance

1

N
EĤN (ρ1)ĤN (ρ2) = ξ(R(ρ1,ρ2))−

〈[
ξ(1) ξ′(1)
ξ′(1) ξ′(1) + ξ′′(1)

]−1 [
ξ(q)
qξ′(q)

]
,

[
ξ(q)
qξ′(q)

]〉

− ξ′(q)2

ξ′(1)
R(P⊥σ ρ

1, P⊥σ ρ
2).

This proves (3.33). The conclusion (3.31) follows from (3.34), by noting that[
ξ(1) ξ′(1)
ξ′(1) ξ′(1) + ξ′′(1)

]−1 [
E0

R0

]
=

1

y(ξ(1)(ξ′(1) + ξ′′(1))− ξ′(1)2)

[
ξ′(1) + ξ′′(1) −ξ′(1)
−ξ′(1) ξ(1)

] [
zξ(1) + ξ′(1)

(1 + z)ξ′(1) + ξ′′(1)

]
=

1

y

[
z
1

]
, (3.35)

and thus 〈[
ξ(1) ξ′(1)
ξ′(1) ξ′(1) + ξ′′(1)

]−1 [
ξ(q)
qξ′(q)

]
,

[
E0

R0

]〉
=
qξ′(q) + zξ(q)

y
.

The next estimate will prepare us to apply Proposition 3.2.7. We will use the order parameters:

L̃ =
1 + (1− q)z

(1− q2)y
, α̃(t) = u1{t ≥ r}, r =

q

1 + q
. (3.36)

Proposition 3.3.15. For fixed σ ∈ SN , E,R ∈ R, q ∈ [δ, 1− η2],

qξ′(q) + zξ(q)

y
+Q(L̃, α̃; ξ̃q, 0) ≤ E0 − 3η3.
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Proof. By direct computation,

2Q(L̃, α̃; ξ̃q, 0) = ξ̃′q(r)L̃+

∫ 1

r

ξ̃′′q (t)
(
L̃− (t− r)u

)
dt+

r

L̃
+

∫ 1

r

dt

L̃− (t− r)u
. (3.37)

The first two terms on the right-hand side simplify as

ξ̃′q(r)L̃+

∫ 1

r

ξ̃′′q (t)
(
L̃− (t− r)u

)
dt

= ξ̃′q(1)L̃+ (ξ̃q(1)− ξ̃q(r)− (1− r)ξ̃′q(1))u

= (1− q2)

(
ξ′(1)− ξ′(q)2

ξ′(1)

)
L̃+ (ξ(1)− ξ(q)− (1− q)ξ′(1))u

=
1

yξ′(1)

{(
ξ′(1)2 − ξ′(q)2)(1 + (1− q)z

)
+ (ξ(1)− ξ(q)− (1− q)ξ′(1)) zξ′(1)

}
=

1

yξ′(1)

{
ξ′(1)2 + zξ′(1)(ξ(1)− ξ(q))− ξ′(q)2(1 + (1− q)z)

}
.

The last two terms of (3.37) simplify as

r

L̃
=

q(1− q)y
1 + (1− q)z

=
q(1− q)(1 + z)ξ′(1)

y(1 + (1− q)z)
,∫ 1

r

dt

L̃− (t− r)u
=

1

u
log

L̃

L̃− (1− r)u
=

1

u
log(1 + (1− q)z)

(3.28)

≤ 1

y
(z(ξ(1)− ξ(q)) + (1− q)ξ′(1))− 6η3.

It thus suffices to show

qξ′(q) + zξ(q)

y
+

1

2yξ′(1)

{
ξ′(1)2 + zξ′(1)(ξ(1)− ξ(q))− ξ′(q)2(1 + (1− q)z)

}
+
q(1− q)(1 + z)ξ′(1)

2y(1 + (1− q)z)
+

1

2y
(z(ξ(1)− ξ(q)) + (1− q)ξ′(1)) ≤ ξ′(1) + zξ(1)

y
.

The terms in red cancel. Also clearing a factor of y, it remains to show

qξ′(q)− 1 + (1− q)z
2

· ξ
′(q)2

ξ′(1)
− 1

2

(
q − q(1− q)(1 + z)

1 + (1− q)z

)
ξ′(1) ≤ 0.

Since q − q(1−q)(1+z)
1+(1−q)z = q2

1+(1−q)z , the desired inequality reduces to the trivial

− 1

2ξ′(1)(1 + (1− q)z)
(qξ′(1)− (1 + (1− q)z)ξ′(q))2 ≤ 0.

Proposition 3.3.16. For fixed σ ∈ SN , E,R ∈ R, q ∈ [δ, 1 − η2], the following holds. With probability
1− e−cN conditionally on (HN (σ), ∂radHN (σ),∇spHN (σ)) = (EN,R

√
N,0):

Ψ(q;σ) ≤ E0 +

〈
vq,

[
E − E0

R−R0

]〉
− 2η3.

Proof. Lemma 3.3.13, Proposition 3.3.15, and Proposition 3.2.7 imply

Ψ(q;σ) ≤ E0 +

〈
vq,

[
E − E0

R−R0

]〉
− 3η3 + oP (1).

The result follows by Proposition 3.2.15, applied to the ground state energy Ψ(q;σ).
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Lemma 3.3.17. There exist constants c1, c2 > 0 depending only on δ such that for all q ∈ [δ, 1],

vqE ≥ 1− c1(1− q)2, vqR ≤ −c2(1− q).

Proof. We have that

1− vqE =
(ξ(1)− ξ(q))(ξ′(1) + ξ′′(1))− (ξ′(1)− qξ′(q))ξ′(1)

ξ(1)(ξ′(1) + ξ′′(1))− ξ′(1)2
,

−vqR =
qξ′(q)ξ(1)− ξ(q)ξ′(1)

ξ(1)(ξ′(1) + ξ′′(1))− ξ′(1)2
.

Note that

qξ′(q)ξ(1)− ξ(q)ξ′(1) =

∑
p≥2

pγ2
pq
p

∑
p≥2

γ2
p

−
∑
p≥2

γ2
pq
p

∑
p≥2

pγ2
p


=

∑
p>p′≥2

γ2
pγ

2
p′(p− p′)(qp

′
− qp)

= (1− q)
∑

p>p′≥2

γ2
pγ

2
p′q

p′(p− p′)(1 + q + · · ·+ qp−p
′−1).

The sum is positive and uniformly bounded away from 0 for q ∈ [δ, 1]. Similarly

(ξ(1)− ξ(q))(ξ′(1) + ξ′′(1))− (ξ′(1)− qξ′(q))ξ′(1)

=

∑
p≥2

γ2
p(1− qp)

∑
p≥2

p2γ2
p

−
∑
p≥2

pγ2
p(1− qp)

∑
p≥2

pγ2
p


=

∑
p>p′≥2

γ2
pγ

2
p′(p− p′)

(
(1− qp

′
)p− (1− qp)p′

)

= (1− q)2
∑

p>p′≥2

γ2
pγ

2
p′(p− p′)

p′−1∑
r=0

(r + 1)(p− p′)qr +

p−2∑
r=p′

p′(p− 1− r)qr


and the sum is uniformly bounded above for q ∈ [δ, 1].

Proof of Proposition 3.3.12. Consider σ ∈ Crt(B) with HN (σ) = EN , ∂radHN (σ) = R
√
N , so (E,R) ∈ B.

We will show both conditions (i) and (ii) hold with conditional probability 1− e−cN .

We begin with condition (i), considering a fixed q ∈ [δ, 1− η2]. Let E = E0− η1 + ι1, R = R0 + η
3/4
1 + ι2,

where |ι1|, |ι2| ≤ η3. We will show that with probability 1− e−cN ,

Ψ(q;σ) ≤ E0 − η1 − 2η3. (3.38)

By Proposition 3.3.16, it suffices to show〈
vq,

[
−η1

η
3/4
1

]〉
+

〈
vq,

[
ι1
ι2

]〉
≤ −η1. (3.39)

By Lemma 3.3.17, 〈
vq,

[
−η1

η
3/4
1

]〉
≤ −η1 + c1(1− q)2η1 − c2(1− q)η3/4

1 .

Setting η1 small enough, we can ensure that c1(1 − q)2η1 ≤ 1
2c2(1 − q)η3/4

1 . Since η3 can be taken small in
η1, this proves (3.39), and (3.38) follows.
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Suppose the event (3.38) holds for q ∈ {δ, δ+1/N, . . . , δ+M/N} for the largest M such that δ+M/N ≤ 1,
and that HN ∈ KN . This occurs with probability 1 − e−cN by Proposition 3.2.14(ii). On KN , for all
q ∈ [δ +m/N, δ + (m+ 1)/N ],

Ψ(q;σ) ≤ Ψ(δ +m/N ;σ) +O(N−1) ≤ E0 − η1 − 2η3.

Thus part (i) holds.
To verify condition (ii), we will argue that with high (conditional) probability, σ is a “well” for HN .

Let θ : [0,∞) → SN be an arbitrary unit-speed geodesic on SN with θ(0) = σ, and consider the function
f(t) = HN (θ(t

√
N))/N . We have HN ∈ KN with conditional probability 1 − e−cN , and on this event the

C3 norm of f is bounded independently of N . Moreover f ′(0) = 0 since ∂radHN (σ) = 0, while

f ′′(0) = 〈θ′(0),∇2
spHN (σ)θ′(0)〉 ≤ λmax(∇2

spHN (σ)).

Given (HN (σ), ∂radHN (σ)), the conditional law of ∇2
spHN (σ) is (see e.g. [HS23c, Lemma 2.1]):√

ξ′′(1) ·
(

1− 1

N

)
·GOE(N − 1)− ∂radHN (σ) · IN−1.

Hence λmax(∇2
spHN (σ)) ≤ (2

√
ξ′′(1) + η3)− ∂radHN (σ) has conditional probability 1− e−cN . We will prove

condition (ii) whenever this inequality and HN ∈ KN both hold. By definition of B, we then have:

f ′′(0) ≤ (2
√
ξ′′(1) + η3)− ∂radHN (σ) ≤ 2

√
ξ′′(1)−R0 − η3/4

1 + 2η3 ≤ −
η

3/4
1

2
.

The final bound follows because R0 = y + ξ′′(1)
y ≥ 2

√
ξ′′(1) by AM-GM, while η3 is sufficiently small

depending on η1. Recalling that f ′(0) = 0 and f has bounded C3 norm, it follows that f ′(t) 6= 0 for all

t ≤ o(η
3/4
1 ). Since θ′(0) was arbitrary, we conclude that HN has no other critical point within distance

o(η
3/4
1

√
N) of σ. In particular for small enough η2 depending on η1, HN has no critical point σ′ with

R(σ,σ′) ≥ 1− η2. This completes the proof.

We will actually use Proposition 3.3.12 via the following natural corollary.

Corollary 3.3.18. For any σ ∈ SN and (E,R) ∈ B:

E
[
|det∇2

spHN (σ)| · 1{σ /∈ C̃rt(B)}
∣∣ (HN (σ), ∂radHN (σ),∇spHN (σ)

)
= (EN,R

√
N,0)

]
≤ e−cN/3E

[
|det∇2

spHN (σ)|
∣∣ (HN (σ), ∂radHN (σ),∇spHN (σ)

)
= (EN,R

√
N,0)

]
.

Proof. Note that the conditional law of ∇2
spHN (σ) that of a GOE(N − 1) matrix scaled by

√
N−1
N and

shifted by R · IN−1. Recalling the notation (3.40), [BBM23, Theorem A.2] implies:

1

N
logE

[
|det∇2

spHN (σ)|
∣∣ (HN (σ), ∂radHN (σ),∇spHN (σ)

)
= (EN,R

√
N,0)

]
= κ(R)± oN (1),

1

N
logE

[
|det∇2

spHN (σ)|2
∣∣ (HN (σ), ∂radHN (σ),∇spHN (σ)

)
= (EN,R

√
N,0)

]
= 2κ(R)± oN (1).

(See the end of [HS23c, Proof of Proposition 3.1] for further details.) By conditional Cauchy–Schwarz,

E
[
|det∇2

spHN (σ)| · 1{σ /∈ C̃rt(B)}
∣∣ (HN (σ), ∂radHN (σ),∇spHN (σ)

)
= (EN,R

√
N,0)

]
≤ E

[
|det∇2

spHN (σ)|2
∣∣ (HN (σ), ∂radHN (σ),∇spHN (σ)

)
= (EN,R

√
N,0)

]1/2
× P

[
1{σ /∈ C̃rt(B)}

∣∣ (HN (σ), ∂radHN (σ),∇spHN (σ)
)

= (EN,R
√
N,0)

]1/2
.

Applying Proposition 3.3.12 to the last term gives the claimed estimate.
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3.3.4 Truncated moments of critical point count via Kac-Rice

We will need the following critical point count formulas from [BSZ20]. Let

Σ =

[
ξ(1) ξ′(1)
ξ′(1) ξ′(1) + ξ′′(1)

]
, Σq =


ξ(1) ξ(q) ξ′(1) qξ′(q)
ξ(q) ξ(1) qξ′(q) ξ′(1)
ξ′(1) qξ′(q) ξ′(1) + ξ′′(1) qξ′(q) + q2ξ′′(q)
qξ′(q) ξ′(1) qξ′(q) + q2ξ′′(q) ξ′(1) + ξ′′(1)


be the covariances of ( 1√

N
HN (σ), ∂radHN (σ)) and ( 1√

N
HN (σ), 1√

N
HN (ρ), ∂radHN (σ), ∂radHN (ρ)), where

R(σ,ρ) = q. Let

ρ(dλ) =
1

2π

√
4− λ21{|λ| ≤ 2} dλ

be the semicircle measure, and define

κ(x) =

∫
R

log |λ− x|ρ(dλ) (3.40)

=
1

4
x2 − 1

2
− 1{|x| > 2}

(
1

4
|x|
√
x2 − 4− log

(√
x2 − 4 + |x|

2

))

Θ(E,R) =
1

2
+

1

2
log

ξ′′(1)

ξ′(1)
− 1

2

〈
(E,R),Σ−1(E,R)

〉
+ κ

(
R/
√
ξ′′(1)

)
(3.41)

Ξ(q, E1, E2, R1, R2) = 1 +
1

2
log

(1− q2)ξ′′(1)2

ξ′(1)2 − ξ′(q)2
− 1

2

〈
(E1, E2, R1, R2),Σ−1

q (E1, E2, R1, R2)
〉

+ κ
(
R1/

√
ξ′′(1)

)
+ κ

(
R2/

√
ξ′′(1)

)
.

Similarly to (3.30), for A ⊆ [−1, 1]× R4 let

Crt2(A) =

{
(σ,ρ) ∈ Crt2 :

(
R(σ,ρ),

1

N
HN (σ),

1

N
HN (ρ),

1√
N
∂radHN (σ),

1√
N
∂radHN (ρ)

)
∈ A

}
.

The next lemma, shown by the Kac–Rice formula and Laplace’s method, gives the first and second moments
for the relevant critical point counts. We note that although only an upper bound is stated below for the
second moment, it actually holds with equality as shown in [BBM23, Appendix A].

Lemma 3.3.19 ([BSZ20, Theorems 3.1 and 3.2]). For any product of intervals A ⊆ R2,

lim
N→∞

1

N
logE|Crt(A)| = sup

(E,R)∈A
Θ(E,R).

Furthermore, for any product of intervals A ⊆ [−1, 1]× R4,

lim sup
N→∞

1

N
logE|Crt2(A)| ≤ sup

(q,E1,E2,R1,R2)∈A
Ξ(q, E1, E2, R1, R2).

Lemma 3.3.20. We have Θ(E0, R0) = Ξ(0, E0, E0, R0, R0) = 0.

Proof. Let x0 = R0/ξ
′′(1)1/2. Then,

x0 =
y

ξ′′(1)1/2
+
ξ′′(1)1/2

y
(3.42)

so by Lemma 3.3.7 √
x2

0 − 4 =
y

ξ′′(1)1/2
− ξ′′(1)1/2

y
. (3.43)
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Also clearly x0 ≥ 2. It follows that

κ(x0) =
1

4

(
y

ξ′′(1)1/2
+
ξ′′(1)1/2

y

)2

− 1

2
−
{

1

4

(
y2

ξ′′(1)
− ξ′′(1)

y2

)
− log

y

ξ′′(1)1/2

}
=
ξ′′(1)

2y2
+ log

y

ξ′′(1)1/2
=
ξ′′(1)

2y2
+

1

2
log(1 + z)− 1

2
log

ξ′′(1)

ξ′(1)
.

By (3.35),

−1

2

〈
(E0, R0),Σ−1(E0, R0)

〉
= −zE0 +R0

2y
= −zξ

′(1) + z2ξ(1)

2y2
− 1

2
− ξ′′(1)

2y2
.

Thus,

Θ(E0, R0) =
1

2
log(1 + z)− zξ′(1) + z2ξ(1)

2y2

=
z2

2(1 + z)

(
(1 + z) log(1 + z)

z2
− 1

z
− ξ(1)

ξ′(1)

)
= 0.

Clearly Ξ(0, E0, E0, R0, R0) = 2Θ(E0, R0), which concludes the proof.

Remark 3.3.21. Since we restrict attention to Crt(B) in this section, we do not need to verify that Θ(E0, ·)
is actually maximized at R0. However this is true at least on R ≥ 2

√
ξ′′(1) (the range corresponding to local

maxima of HN ) and follows from Lemma 3.5.2 later and concavity of Θ. Hence the “annealed complexity”
of local maxima at energy E0 is indeed zero. For the special case of pure models, the appearance of the
ground state energy as a threshold for annealed complexity was verified in [ABČ13].

Proof of Proposition 3.3.9. We will show that

Θ(E0 − η1, R0 + η
3/4
1 ) =

zη1

y
+O(η

9/8
1 ). (3.44)

Note that κ is C3/2 on [2,+∞), with derivative

κ′(x) =
1

2
x− 1

4

√
x2 − 4− x2

4
√
x2 − 4

+
1√

x2 − 4
=

1

2

(
x−

√
x2 − 4

)
. (3.45)

This implies in particular that κ′
(
a + 1

a

)
= 1/a for a ≥ 1. Recalling (3.42), (3.43), and using Taylor’s

theorem for Hölder continuous functions,

κ

(
R0 + η

3/4
1√

ξ′′(1)

)
= κ

(
R0√
ξ′′(1)

)
+ κ′

(
R0√
ξ′′(1)

)
η

3/4
1√
ξ′′(1)

+O
(

(η
3/4
1 )3/2

)
= κ

(
R0√
ξ′′(1)

)
+
η

3/4
1

y
+O(η

9/8
1 ).

The function f(E,R) = − 1
2 〈(E,R),Σ−1(E,R)〉 is clearly analytic, so

f(E0 − η1, R0 + η
3/4
1 ) = f(E0, R0)− 〈(−η1, η

3/4
1 ),Σ−1(E0, R0)〉+O(η

3/2
1 )

(3.35)
= f(E0, R0) +

zη1

y
− η

3/4
1

y
+O(η

3/2
1 ).

It follows that

Θ(E0 − η1, R0 + η
3/4
1 ) = Θ(E0, R0) +

zη1

y
+O(η

9/8
1 )

Lem. 3.3.20
=

zη1

y
+O(η

9/8
1 ),

and thus, by Lemma 3.3.19,
E|Crt(B)| ≥ eΩ(η1)N .
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Let R(HN ) denote the set of ground state typical σ ∈ SN . We apply the Kac–Rice formula (3.23) with
event

E =
{
σ ∈ (Crt(B) \ C̃rt(B))

}
=

{(
1

N
HN (σ),

1√
N
∂radHN (σ)

)
∈ B

}
∩ {σ 6∈ R(HN )} .

By the law of iterated expectation, the Kac–Rice formula gives

E|Crt(B) \ C̃rt(B)| =
∫
SN

E

[
E
[
|det∇2

spHN (σ)| · 1{σ 6∈ R(HN )}
∣∣HN (σ), ∂radHN (σ),∇spHN (σ)

]
× 1

{(
1

N
HN (σ),

1√
N
∂radHN (σ)

)
∈ B

} ∣∣∣∣∇spHN (σ) = 0

]
ϕ∇spHN (σ)(0) dσ

Cor. 3.3.18
≤ e−cN/3

∫
SN

E

[
E
[
|det∇2

spHN (σ)|
∣∣HN (σ), ∂radHN (σ),∇spHN (σ)

]
× 1

{(
1

N
HN (σ),

1√
N
∂radHN (σ)

)
∈ B

} ∣∣∣∣∇spHN (σ) = 0

]
ϕ∇spHN (σ)(0) dσ

= e−cN/3E|Crt(B)|.

Thus,

E|C̃rt(B)| ≥ (1− e−cN/3)E|Crt(B)| ≥ eΩ(η1)N .

We defer the proofs of the following two lemmas to Subsection 3.3.5.

Lemma 3.3.22. Let V ⊆ SN be a finite set of points with |V | = M .

(a) There exists V1 ⊆ V such that |V1| = MΩ(δ) and R(σ,ρ) ≥ −δ for all σ,ρ ∈ V1.

(b) There exists V2 ⊆ V × V such that |V2| = Ω(M2δ) and R(σ,ρ) ≥ −δ for all (σ,ρ) ∈ V2.

Lemma 3.3.23. If the function q 7→ ξ′′(q)−1/2 is convex on [0, 1], then ξ is strictly 1RSB.

Proof of Proposition 3.3.10. By definition of ground state typical, a.s. any distinct σ,ρ ∈ C̃rt(B) sat-

isfy R(σ,ρ) ≤ δ. Let V2 ⊆ C̃rt(B)2 be the set of (σ,ρ) which furthermore satisfy R(σ,ρ) ≥ −δ. By

Lemma 3.3.22(b), |C̃rt(B)|2 ≤ Cδ−1|V2| for an absolute constant C. Also, a.s. V2 ⊆ Crt2(B2) where

B2 = [−δ, δ]× [E0 − η1 − η3, E0 − η1 + η3]2 × [R0 + η
2/3
1 − η3, R0 + η

2/3
1 + η3]2.

Thus, by Lemma 3.3.19,

E|C̃rt(B)|2 ≤ Cδ−1E|Crt2(B2)| ≤ Cδ−1 exp {N sup Ξ(B2) + o(N)} .

It is clear that Ξ is locally Lipschitz near (0, E0, E0, R0, R0). By Lemma 3.3.20, Ξ(0, E0, E0, R0, R0) = 0, so
sup Ξ(B2) ≤ O(δ). The result follows.

Proof of Proposition 3.2.10. We first prove the proposition for non-pure ξ, as we have been assuming through-
out the section. The statement is monotone in δ, so we may assume δ is small in ε. By Propositions 3.3.9
and 3.3.10 and Paley-Zygmund,

P
(
|C̃rt(B)| ≥ 1

2
E|C̃rt(B)|

)
≥ e−O(δ)N . (3.46)

Suppose this event holds. By Lemma 3.3.22(a), there exists V1 ⊆ C̃rt(B) with

|V1| ≥
(

1

2
E|C̃rt(B)|

)O(δ)

= eO(δη1N)
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such that |R(σ,ρ)| ≤ δ for all σ,ρ ∈ V1. By the choice of B, all these points have energy at least

E0 − η1 − η3 ≥ Q(ξ)− ε/2,

where we recall E0 = Q(ξ) and take η1, η3 small in ε. Let

X =
1

N
sup

~σ∈Bandk,1,δ(0)

inf
i∈[k]

HN (σi).

Combining the above shows that for any k ≤ eO(δη1N),

P (X ≥ Q(ξ)− ε/2) ≥ e−O(δ)N .

A direct calculation shows that for fixed σ, HN (σ) is O(N1/2)-Lipschitz in the disorder Gaussians. Since
suprema and infima preserve Lipschitz constants, NX is also O(N1/2)-Lipschitz in the disorder Gaussians.
We thus have the concentration inequality

P(|X − EX| ≥ t) ≤ exp(−ct2N).

Combining the last two inequalities implies that (for δ small in ε) P(X ≥ Q(ξ) − ε) ≥ 1 − e−cN . This
completes the proof for non-pure ξ.

Finally, we turn to the case where ξ(q) = β2qp is pure. Then, HN (σ) = βH
(p)
N (σ), where H

(p)
N (σ) =

〈G(p),σ⊗p〉. Consider a perturbation ĤN (σ) = βH
(p)
N (σ) + ιβH

(p+1)
N (σ), for a fixed ι > 0 chosen small in

δ, ε. This has mixture ξ̂(q) = β2(qp + ι2qp+1). Note that

ξ̂′′(q)−1/2 =
q−(p−2)/2

β
√
p(p− 1)

(
1 +

ι2(p+ 1)

p− 1
q

)−1/2

is convex on [0, 1], so Lemma 3.3.23 implies ξ̂ is strictly 1RSB. By the result for non-pure ξ, there exists

c = c(ξ̂, δ, ε/2) such that for all k ≤ ecN , with probability 1− e−cN there exists ~σ ∈ Bandk,1,δ(0) such that
for all i ∈ [k],

1

N
ĤN (σi) ≥ Q(ξ̂, 0)− ε

2
≥ Q(ξ)− ε

2
.

By Proposition 3.2.14, there exists a constant C such that 1
N supσ∈SN H

(p+1)
N (σ) ≤ C with probability

1− e−cN . On the intersection of these events, for each i ∈ [k],

1

N
HN (σi) ≥ 1

N
ĤN (σi)− ι

N
H

(p+1)
N (σi) ≥ Q(ξ)− ε

2
− Cι ≥ Q(ξ)− ε

for ι small in ε.

3.3.5 Deferred proofs

Proof of Lemma 3.3.22. Consider the graph G with vertex set V where (σ,ρ) is an edge if R(σ,ρ) < −δ.
Note that G does not contain a r = d1/δe-clique, because if such a clique U ⊆ V existed, then the Gram
matrix [R(σ,ρ)]σ,ρ∈U would not be positive semi-definite.

Let R(s, t) denote the (s, t) Ramsey number. Recall the classic Ramsey upper bound

R(s, t) ≤
(
s+ t− 2

s− 1

)
,

which can be proved by applying the inequality R(s, t) ≤ R(s − 1, t) + R(s, t − 1) recursively. Thus
R(r,Mδ/2) . M (r−1)δ/2 � M , so G contains a M δ/2-independent set. This proves part (a). Since G
avoids an r-clique, by Turán’s theorem G avoids at least 1

r−1 = O(δ) fraction of edges, proving (b).

Lemma 3.3.24. In any model with ξ′(0) = 0, we have 0 ∈ T .
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Proof. Assume otherwise and let q ∈ (0, 1] be the minimal point in T . Then g(q) = 0. If q < 1, then q is an
interior local minimizer of g, so 0 = g′(q) = −G(q); if q = 1, then the characterization from Lemma 3.2.3
implies G(q) = 0. So in either case G(q) = 0. Also from the definition (3.13) of G we have G(0) = 0.

Recall that the measure ν given by ν([0, s]) = α(s) is supported on T . Thus α ≡ 0 on [0, q), and so α̂ is
constant on [0, q]. Therefore G is convex on [0, q]. Since G(0) = G(q) = 0, this implies G ≤ 0 on [0, q].

Thus g(0) = g(q) +
∫ q

0
G(s) ds ≤ g(q) = 0. So 0 ∈ T , contradicting minimality of q.

Proof of Lemma 3.3.23. Lemma 3.3.24 implies 0 ∈ T , and Lemma 3.2.3 ensures 1 ∈ T . The following
argument, adapted from [Tal06a, Proposition 2.2], shows that |T | ≤ 2, which then implies T = {0, 1}.

Consider any q1, q2 ∈ T such that q1 < q2. If qi ∈ (0, 1), then G(qi) = 0 because qi is an interior local
minimizer of g; if qi = 1 then G(qi) = 0 by Lemma 3.2.3; and if qi = 0 then G(qi) = 0 by definition (3.13)
of G. So G(q1) = G(q2) = 0. Moreover g(q1) = g(q2) = 0, so

∫ q2
q1
G(s) ds = 0. It follows that there are two

points in q3, q4 ∈ (q1, q2) such that G′(q3) = G′(q4) = 0.
We have thus shown that between any two elements of T lies two zeros of G′. However, G′(q) =

ξ′′(q) − 1
α̂(q)2 , so at any zero of G′ we have ξ′′(q)−1/2 = α̂(q). However ξ′′(q)−1/2 is convex by assumption,

while α̂(q) is concave by definition, so these functions intersect at most twice. It follows that |T | ≤ 2.

3.4 Building a model from fundamental types: proof of Theo-
rem 3.1.7

In this section we complete the proof of Theorem 3.1.7. The proof proceeds in two steps:

(1) Using the lower bounds in Propositions 3.2.9 through 3.2.12 and a uniform concentration lemma due
to Subag (Lemma 3.4.6 below) we prove Theorem 3.4.4 below, which constructs an ultrametric tree
with somewhat more lenient constraints than Theorem 3.1.7.

(2) By pruning this ultrametric tree we arrive at the ultrametric tree in Theorem 3.1.7.

Before giving the full proof, we note the free energy lower bound Corollary 3.1.8 follows by combining
what we have done with [Sub24], where the decomposition approach we follow was introduced. Namely
[Sub24, Theorem 5] used the existence of many orthogonal replicas to lower bound the free energy by a
sum of the ground state on a subsphere

√
qSN plus the free energy of a “band” model centered at a typical

point on this subsphere. Using this idea sequentially with q = q0, q1, . . . yields Corollary 3.1.8 since each
intermediate model takes one of the four fundamental types analyzed previously in this paper.

Our analysis below is conceptually similar to [Sub24], but constructs eΩ(N) near-orthogonal approximate
ground states in each intermediate model, and hence gives a larger tree of pure states than was known to exist
previously by any method in this generality. By contrast [Sub24] relies on Chatterjee’s superconcentration,
which only gives a slowly diverging number of near-orthogonal approximate ground states. This improvement
is also what allows us to prove the lower tail large deviations for the ground state have speed at least N2

(see Subsection 3.5.2).

3.4.1 A tree with local constraints

Lemma 3.4.1. For any model ξ, the set S (recall (3.6)) is a disjoint union of finitely many closed intervals,
possibly including atoms. Moreover qD < 1.

Proof. The first statement follows from [JT18, Corollary 1.6] and the observation that d =
(

1√
ξ′′

)′′
changes

sign finitely many times on [0, 1]. Indeed, S is precisely the coincidence set denoted {η = ξ}, as can be seen
from the display between (1.1.1) and (1.1.2) therein.

For the second statement, note that x̂(q) = 1− q for q in some interval [q̂, 1], so F (q) ≤ C− 1
1−q for some

C independent of q. Hence f(q) ≤ Cq + log(1− q), so limq→1− f(q) = −∞, which implies qD < 1.

Definition 3.4.2. A sequence q0, . . . , qD with 0 ≤ q0 < · · · < qD ≤ 1 is an S-refinement if

∂S ⊆ {q0, . . . , qD} ⊆ S,
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where ∂S = S ∩ Sc is the boundary of S in R. (In particular q0 = inf(S) and qD = sup(S).)

In the following variant of Definition 3.1.6, the orthogonality constraints are enforced only locally. For
u, v ∈ T, write u ∼ v if u = v, or u, v are siblings, or one of u, v is the parent of the other.

Definition 3.4.3. Let k,D ∈ N, 0 ≤ q0 < · · · < qD ≤ 1, ~q = (q0, . . . , qD), and δ > 0. A (k,D, ~q, δ)-locally
ultrametric tree is a collection of points (σu)u∈T such that (3.7) holds for all u ∼ v.

We will first prove the following variant of Theorem 3.1.7, where the properties required of the ultrametric
tree are relaxed in two ways: ultrametricity will be enforced only locally, and we will lower bound the average
energy increment from each node to its children rather than the energy of each node. We will deduce
Theorem 3.1.7 from Theorem 3.4.4 in Subection 3.4.3 by pruning this tree.

Theorem 3.4.4. For any δ, ε > 0, D ∈ N, and S-refinement q0, . . . , qD, there exists c > 0 such that the
following holds for any k ≤ ecN . With probability 1 − e−cN , there is a (k,D, ~q, δ)-locally ultrametric tree
(σu)u∈T with the following properties.

(i) Energy of root: 1
NHN (σ∅) ≥ E(q0)− ε.

(ii) Parent-to-child energy increments: for each u ∈ T \ L,

1

kN

k∑
i=1

(
HN (σui)−HN (σu)

)
≥ E(q|u|+1)− E(q|u|)− ε.

(iii) Free energy of pure states: for each u ∈ L,

1

kN
log

∫
Bandk,1,δ(σu)

exp

(
k∑
i=1

(
HN (ρi)−HN (σu)

))
d~ρ ≥ P(ξ)− E(qD)− ε.

3.4.2 Model decomposition into fundamental types

Fix parameters δ, ε,D, (q0, . . . , qD) as in Theorem 3.4.4. We take as convention q−1 = 0, qD+1 = 1. Define
ξ−1(x) = ξ(q0x) and, for 0 ≤ d ≤ D,

ξd(x) = ξ(qd + (qd+1 − qd)x)− ξ(qd)− ξ′(qd)(qd+1 − qd)x. (3.47)

The following proposition gives the link between ξ and each ξd from the point of view of the Parisi formula.
It follows by matching order parameters, see [Sub24, Proposition 11].

Proposition 3.4.5. The following hold.

(a) The model ξ−1 is topologically trivial and satisfies Q(ξ−1) = E(q0). (We treat this part as vacuous if
q0 = 0, in which case ξ−1 ≡ 0.)

(b) For each 0 ≤ d ≤ D − 1, ξd is either strictly 1RSB or strictly FRSB, and satisfies Q(ξd) = E(qd+1)−
E(qd).

(c) The model ξD is strictly RS and satisfies P(ξD) = P(ξ)− E(qD)− 1
2 log(1− qD).

For 0 ≤ d ≤ D − 1 and ‖σ‖2 =
√
qdN , define

Fd,k(σ) =
1

kN
max

~ρ∈Bandk,qd+1,δ
(σ)

k∑
i=1

(
HN (ρi)−HN (σ))

)
,

and for ‖σ‖2 =
√
qDN ,

FD,k(σ) =
1

kN
log

∫
Bandk,1,δ(σ)

exp

(
k∑
i=1

(
HN (ρi)−HN (σ)

))
d~ρ.

The following uniform concentration lemma was proved at finite temperature in [Sub24, Proposition 1],
as consequence of the concentration of Lipschitz functions of Gaussians. Its proof at zero temperature is
identical.

118



Lemma 3.4.6. For all ε > 0, there exists δ0 = δ0(ξ, ε) and k0 = k0(ξ, ε) such that for all δ ≤ δ0, k ≥ k0 the
following holds with probability 1−e−cN . For all 0 ≤ d ≤ D and all ‖σ‖2 =

√
qdN , |Fd,k(σ)−EFd,k(σ)| ≤ ε.

Proposition 3.4.7. There exists c > 0 (depending on δ, k,D, q0, . . . , qD) such that the following holds.

(a) With probability 1− e−cN , there exists ‖σ‖2 =
√
q0N such that 1

NHN (σ) ≥ E(q0)− ε.

(b) For all k ≤ ecN , 0 ≤ d ≤ D − 1 and any fixed σ with ‖σ‖2 =
√
qdN :

EFd,k(σ) ≥ E(qd+1)− E(qd)− ε.

(c) For all k ≤ ecN and any fixed σ with ‖σ‖2 =
√
qDN :

EFD,k(σ) ≥ P(ξ)− E(qD)− ε.

Proof. Since H
(−1)
N (ρ) ≡ HN (

√
q0ρ) has mixture ξ−1, part (a) follows by Propositions 3.4.5(a) and 3.2.11.

Next we prove part (b). For 0 ≤ d ≤ D − 1, and fixed ‖σ‖2 =
√
qdN , the model

H
(d,σ)
N (ρ) = HN (

√
qd+1 − qdρ+ σ)−HN (σ)−

√
qd+1 − qd〈∇HN (σ),ρ〉,

restricted to the band σ⊥ = {ρ ∈ SN : R(ρ,σ) = 0} is a (N − 1)-dimensional model with mixture ξd. By
Proposition 3.4.5(b), this model is either strictly 1RSB or strictly FRSB. By Propositions 3.2.10 and 3.2.12,
combined with concentration via Borell-TIS, we thus find:

1

kN
E max
~ρ∈Bandk,1,δ(0)∩(σ⊥)k

k∑
i=1

H
(d,σ)
N (ρi) ≥ E(qd+1)− E(qd)− ε.

Still with σ fixed, let ~ρ∗ attain the maximum in the previous display. Then we have the inequality chain

EFd,k(σ) ≥ 1

kN
E max
~ρ∈Bandk,1,δ(0)∩(σ⊥)k

k∑
i=1

(
HN (

√
qd+1 − qdρi + σ)−HN (σ)

)
≥ 1

kN
E

k∑
i=1

(
HN (

√
qd+1 − qdρi∗ + σ)−HN (σ)

)
(∗)
=

1

kN
E

k∑
i=1

H
(d,σ)
N (ρi∗) ≥ E(qd+1)− E(qd)− ε,

where the step (∗) uses that H
(d,σ)
N is independent of ∇HN (σ) as a process. This proves part (b).

The proof of (c) is similar. The modelH
(D,σ)
N restricted to σ⊥ is a (N−1)-dimensional model with mixture

ξD. By Proposition 3.4.5(c), this model is strictly RS with respect to the normalized N − 2 dimensional

Hausdorff measure H̃N−2 on σ⊥. By Propositions 3.2.9 and 3.4.5(c), with probability 1− e−cN :

1

kN
log

∫
Bandk,1,δ2 (0)∩(σ⊥)k

exp

(
k∑
i=1

H
(D,σ)
N (ρi)

)
dH̃kN−2(~ρ) ≥ P(ξ)− E(qD)− 1

2
log(1− qD)− ε/3.

Moreover since HN ∈ KN with probability 1− e−cN , we easily find that with high probability, the restricted
free energy with respect to the original uniform measure on SN obeys a similar bound:

1

kN
log

∫
Bandk,1,δ(σ)

exp

(
k∑
i=1

HN (ρi)−HN (σ)

)
d~ρ ≥ P(ξ)− E(qD)− ε/2.

Here the term 1
2 log(1− qD) disappeared from rescaling. By Lipschitz concentration of the left-hand side,

1

kN
E
∫
Bandk,1,δ(σ)

exp

(
k∑
i=1

HN (ρi)−HN (σ)

)
d~ρ ≥ P(ξ)− E(qD)− 2ε/3.

This concludes the proof.
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Proof of Theorem 3.4.4. It suffices to prove the theorem for k = ecN and δ ≤ δ0(ξ, ε), as the statement is
clearly monotone in k and δ. As k is growing in N , k ≥ k0(ξ, ε) and Lemma 3.4.6 holds.

By Proposition 3.4.7, for d ≤ D − 1 and any fixed ‖σ‖2 =
√
qdN , ‖σ‖2 =

√
qDN , respectively,

EFd,k(σ) ≥ E(qd+1)− E(qd)− ε/2, EFD,k(σ) ≥ P(ξ)− E(qD)− ε/2.

By Lemma 3.4.6, with probability 1− e−cN , for all ‖σ‖2 =
√
qdN , ‖σ‖2 =

√
qDN , respectively,

Fd,k(σ) ≥ E(qd+1)− E(qd)− ε, FD,k(σ) ≥ P(ξ)− E(qD)− ε. (3.48)

By Proposition 3.4.7(a), with probability 1 − e−cN there exists
∥∥σ∅∥∥

2
=
√
q0N such that 1

NHN (σ∅) ≥
E(q0)− ε. Starting from this point, we can construct the remaining σu using (3.48).

3.4.3 Pruning the relaxed tree

We apply Theorem 3.4.4 with parameters (δ2/2D4, ε/2(D + 1)) in place of (δ, ε). Let c > 0 be given by
this theorem and k = ecN . Then, with probability 1 − e−cN , there is a (k,D, ~q, δ)-locally ultrametric tree
(σu)u∈T, where T = T(k,D), with properties (i), (ii), (iii) (where δ, ε are replaced by δ2/2D4, ε/2(D + 1)).
Throughout this subsection, assume this event holds and KN from Proposition 3.2.14 holds.

Let c0 = c/2D and k′′ = ec0N . We will show that for a subtree T′′ ∼= T(k′′, D) of T, (σu)u∈T′′ has
the properties described in Theorem 3.1.7. We obtain T′′ from T by two steps of pruning: we first ensure
all energies are suitably large (Proposition 3.4.8), and then that global overlap constraints are satisfied
(Proposition 3.4.9).

Proposition 3.4.8. For an absolute constant C = C(ξ) and k′ = ε
CD e

cN , there exists a subtree T′ ∼= T(k′, D)
of T such that the following holds. For each u ∈ T′ \ L and all i ∈ [k] such that ui ∈ T′,

1

N

(
HN (σui)−HN (σu)

)
≥ E(q|u|+1)− E(q|u|)− ε/(D + 1). (3.49)

Proof. We will construct T′ by breadth-first exploration starting from the root: at every non-leaf u we
encounter, we will find k′ children of it such that (3.49) holds.

Consider one such u, and abbreviate ∆i = 1
N

(
HN (σui)−HN (σu)

)
, ∆E|u| = E(q|u|+1) − E(q|u|). By

property (ii) of Theorem 3.4.4,

1

k

k∑
i=1

∆i ≥ ∆E|u| − ε/2(D + 1).

On event KN , sup‖x‖2≤
√
N |HN (σ)| ≤ C0N , so deterministically |∆i| ≤ 2C0 for all i ∈ [k]. By Markov’s

inequality on unif([k]),

1

k

∣∣i ∈ [k] : ∆i ≤ ∆E|u| − ε/(D + 1)
∣∣ =

1

k

∣∣i ∈ [k] : 2C0 −∆i ≥ 2C0 −∆E|u| − ε/(D + 1)
∣∣

≤
2C0 −∆E|u| − ε/(D + 1)

2C0 −∆i ≤ 2C0 −∆E|u| − ε/2(D + 1)
,

and thus

1

k

∣∣i ∈ [k] : ∆i ≥ ∆E|u| − ε/(D + 1)
∣∣ ≥ ε/2D

2C0 −∆i ≤ 2C0 −∆E|u| − ε/2(D + 1)
≥ ε

4C0(D + 1)
.

Setting C = 8C0, we conclude that we can find k′ children of u such that (3.49) holds.

Proposition 3.4.9. There is a subtree T′′ ∼= T(k′′, D) of T′ such that for any distinct parent-child pairs
(u, ui), (v, vj) in T′′ (where possibly u = v), |R(σui − σu,σvj − σv)| ≤ δ/D2.
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Proof. We will construct T′′ by breadth-first exploration starting from the root. We will abbreviate xui =
σui − σu. We maintain a set

C = {xui : (u, ui) is a parent-child pair in T′′},

and will maintain the invariant that |R(x,y)| ≤ δ/D2 for any distinct x,y ∈ C. At every non-leaf u we
encounter in the exploration, we will find k′′ children of it such that, when the corresponding k′′ parent-child
pairs are added to T′′, this invariant continues to hold. Note that at all times,

|C| ≤ k′′ + (k′′)2 + · · ·+ (k′′)D ≤ 2(k′′)D = 2ecN/2.

Consider the step in this procedure where we choose children for node u. Let Iu = {i ∈ [k] : ui ∈ T′}, so
|Iu| = k′. For y ∈ C, let I+

u (y), I−u (y) be the sets of i ∈ [k] such that R(y,xui) > δ/D2 and R(y,xui) <
−δ/D2. We claim that at any such step, |I+

u (y)| ≤ 2D4/δ2 and |I−u (y)| ≤ 2D4/δ2. This claim suffices,
since it implies ∣∣∣∣∣∣Iu \

⋃
y∈C

(I+
u (y) ∪ I−u (y))

∣∣∣∣∣∣ ≥ k′ − 2ecN/2 · 4D4

δ2
� k′′.

Indeed, we may choose any k′′ elements i in this set and add the corresponding ui to T′′, which preserves
the required invariant by definition.

It remains to prove the above claim, which we do now. We bound only |I+
u (y)| since the case of |I−u (y)|

is analogous. For all i ∈ I+
u (y), write

xui =
R(y,xi)

R(y,y)
y + τui

for τui ⊥ y. Because T is a (k,D, ~q, δ2/2D4)-locally ultrametric tree, |R(xui,xuj)| ≤ δ2/2D4 for all i 6= j.
Thus, for all distinct i, j ∈ I+

u (y).

δ2

2D4
≥ R(xui,xuj) =

R(y,xi)R(y,xj)

R(y,y)
+R(τui, τuj) ≥ δ2

D4
+R(τui, τuj),

where we use that R(y,y) ≤ 1. Thus R(τui, τuj) ≤ −δ2/2D4. However, R(τui, τui) ≤ R(xui,xui) ≤ 1.
Thus |I+

u (y)| ≤ 2D4/δ2, as if not the Gram matrix of (τui)i∈I+u (y) would not be positive semi-definite.

Proof of Theorem 3.1.7. We will show T′′ satisfies the desired properties. First, for any u, v ∈ T′′, let
|u| = d1, |v| = d2, and let (∅ = u0, u1, u2, . . . , ud1 = u), (∅ = v0, v1, . . . , vd2 = v) be the ancestor paths of
u, v. Also let ` = u ∧ v, so u` = v` is the least common ancestor of u, v. Then

R(σu,σv) =

d1−1∑
i=0

d2−1∑
j=0

R(σui+1 − σui ,σvj+1 − σvj ). (3.50)

The sub-sum corresponding to 0 ≤ i = j < ` equals

`−1∑
i=0

R(σui+1 − σui ,σuj+1 − σuj ) =

`−1∑
i=0

(qi+1 − qi) = q`,

while the remaining terms of (3.50) are bounded by δ/D2 in absolute value by Proposition 3.4.9. Thus

|R(σu,σv)− qu∧v| ≤ D2 · δ/D2 = δ,

so (σu)u∈T′′ is a (k′′, D, ~q, δ)-ultrametric tree. By property (i) of Theorem 3.4.4 and (3.49), for all u ∈ T′′
with |u| = d,

1

N
HN (σu) =

1

N
HN (σ∅) +

d−1∑
i=0

1

N
(HN (σui+1)−HN (σui)) ≥ E(qd)− (d+ 1)ε/(D + 1) ≥ E(qd)− ε.

Thus property (i) of Theorem 3.1.7 holds. Property (ii) of Theorem 3.1.7 follows immediately from property
(iii) of Theorem 3.4.4, as this property is monotone in k′.
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Proof of Corollary 3.1.9. The proof is essentially identical to Theorem 3.1.7 but without the strictly RS part.
Thus we just give an outline. Using [JT17, Theorem 1.13] and analyticity of ξ, it follows that Lemma 3.4.1
also holds for T . With the obvious definition, let q0, . . . , qD = 1 be a T -refinement. Proposition 3.4.5 remains
true with the same proof, except that ξD = 0 is now trivial. The remainder of the proof is as before.

3.5 Large deviations for the ground state

Here we make a brief study of large deviations for the ground state energy GSN = maxσ∈SN HN (σ).
[LACTFLD24] recently investigated this problem using the replica method, obtaining very interesting but
non-rigorous results. It was predicted that for 1RSB models (without external field), the upper tail has rate
function given by a natural Kac–Rice upper bound, referred to as “replica-symmetric” behavior therein. We
verify this prediction in Subsection 3.5.1 by adapting the interpolation-enhanced truncation from Section 3.3.
In Subsection 3.5.2 we employ Corollary 3.1.9 to show the lower tail speed transitions to Ω(N2) below
Q(ξ−γ2

1t) for general mixtures. As mentioned in Remark 3.5.9, the super-linearity in the lower tail is closely
connected to the Dotsenko–Franz–Mézard conjecture [DFM94, Tal07, Jag17].

3.5.1 Upper tail for 1RSB models

We assume in this subsection that γ1 = 0 and ξ is 1RSB, i.e. the minimizer (L,α) of (3.12) satisfies α ≡ u.
Unlike Section 3.3, we do not assume strict 1RSB, but parameters such as y, z, E0, R0 still retain the same
definitions. We will also assume throughout this subsection that ξ is not pure. Similarly to Proposition 3.2.10,
pure ξ can be handled by adding small perturbation terms to ξ, e.g. chosen small enough so the perturbation
Hamiltonian has maximum absolute value at most δN with probability 1 − eN/δ (such perturbations have
essentially no effect even in a large deviation sense).

The main computation is again encapsulated in controlling conditional band models as described in
Lemma 3.3.13. Note that the only term in (3.31) that depends on (E,R) is

N

〈
vq,

[
E − E0

R−R0

]〉
for vq = (vqE , v

q
R) defined in (3.32).

Proposition 3.5.1. For any ξ, ε with γ1 = 0, there exists δ such that for all q ∈ [ε, 1− ε],

vqE ∈ [δ, 1− δ], (3.51)

vqR ≤ −δ. (3.52)

Proof. We easily compute

vqE =
ξ(q)ξ′(1) + ξ(q)ξ′′(1)− qξ′(q)ξ′(1)

ξ(1)ξ′(1) + ξ(1)ξ′′(1)− ξ′(1)2
; vqR =

qξ′(q)ξ(1)− ξ(q)ξ′(1)

ξ(1)ξ′(1) + ξ(1)ξ′′(1)− ξ′(1)2
.

(Recall from Remark 3.3.14 that the denominators are strictly positive as long as ξ is not pure.) Note that

d

dq

qξ′(q)

ξ(q)
=
ξ(q)(ξ′(q) + qξ′′(q))− qξ′(q)2

ξ(q)2
> 0 (3.53)

by Cauchy–Schwarz (as in Remark 3.3.14), and so q 7→ qξ′(q)
ξ(q) is strictly increasing. Thus qξ′(q)ξ(1)

ξ(q) − ξ′(1) is

negative and bounded away from 0 on q ∈ [ε, 1− ε]. Since ξ(q) is also bounded away from 0 on this interval,

this implies (3.52). Moreover, since q 7→ qξ′(q)
ξ(q) is increasing,

ξ(q)ξ′(1) + ξ(q)ξ′′(1)− qξ′(q)ξ′(1) ≥ ξ(q)
(
ξ′(1) + ξ′′(1)− ξ′(1)2

ξ(1)

)
,
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i.e. vqE ≥ ξ(q)/ξ(1) ≥ δ. It now suffices to show vqE is strictly increasing in q. Differentiating and rearranging,
it suffices to show

ξ′′(1)

ξ′(1)

?
>
qξ′′(q)

ξ′(q)
.

This holds because, by a calculation analogous to (3.53), q 7→ qξ′′(q)
ξ′(q) is increasing.

Given ξ, we let R = R × [2
√
ξ′′(1),∞). Critical points with (E,R) ∈ R will correspond to possible

local maxima in Kac–Rice. Recalling (3.41), it is easy to see that Θ is strictly concave and continuously
differentiable on R. (Indeed the integral definition of κ immediately implies strict concavity outside the
support of ρ.) For all E ∈ R, define

R∗(E) = arg max
R≥2
√
ξ′′(1)

Θ(E,R), Θ∗(E) = Θ(E,R∗(E)).

It is easy to see that both are finite, since the matrix Σ in (3.41) is positive definite.

Lemma 3.5.2. For 1RSB ξ, we have ∂
∂RΘ(E0, R0) = 0.

Proof. Recall (3.41) and (3.45). Since R0 = y + ξ′′(1)
y and y ≥

√
ξ′′(1) by Lemma 3.3.7, we find:

∇Θ(E0, R0) = −Σ−1

[
E0

R0

]
+

[
0

ξ′′(1)−1/2κ′(R0/
√
ξ′′(1))

]
= −Σ−1

[
(ξ′(1) + zξ(1))/y
y + (ξ′′(1)/y)

]
+

[
0

1/y

]
.

We would like to show the second entry in this vector vanishes, and (using Cramer’s rule) it is given by

ξ′(1)2 + zξ(1)ξ′(1)− ξ(1)y2 − ξ(1)ξ′′(1)

y det(Σ)
+

1

y
.

Recalling from Lemma 3.3.6 that y =
√

(1 + z)ξ′(1), the conclusion follows.

Lemma 3.5.3. If ξ is 1RSB, then R∗(E) is continuous and strictly increasing on [E0,∞) with R∗(E0) = R0.
Moreover Θ∗(E) is continuous and strictly decreasing with Θ∗(E0) = 0 and lim

E→∞
Θ∗(E) = −∞.

Proof. Let
M(R) = max

E∈R
Θ(E,R).

This is easily seen to be C1 on [2
√
ξ′′,∞) and smooth on the interior, and inherits concavity from Θ. Since

Θ(E,R) is a strictly concave quadratic function of (E,R) plus a strictly concave function of R, it can be
written as

Θ(E,R) = M(R)−K1(E −K2R)2,

for K1,K2 depending only on ξ. Further, one easily finds that −M(R) � R2 for large R since κ grows
sublinearly. Hence M ′(R) is a strictly decreasing, continuous function with limR→∞M ′(R) = −∞.

R∗(E) is the unique solution in [2
√
ξ′′,∞) to

M ′(R∗) = 2K1K2(K2R∗ − E), (3.54)

assuming such a solution exists (if not, one would have the boundary solution R∗ = 2
√
ξ′′(1).) Lemma 3.5.2

implies R0 = R∗(E0). By monotonicity arguments (or inspecting a diagram), it follows that for all E ≥ E0,
(3.54) admits a solution R∗(E) which is continuous and strictly decreasing in E. It similarly follows that
Θ∗(E) is continuous and strictly decreasing. Finally to show lim

E→∞
Θ∗(E) = −∞, note that since Σ is positive

definite one has Θ(E,R) ≤ −ε(|E|+ |R|)2 + log(|R|) for some ε = ε(ξ) > 0.
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Similarly to Section 3.3, for 0 < η4 � η3 � η2 � η1 � 1 small depending on some fixed E > E0 let

B̃(E) = [E − η3, E + η3]× [R∗(E)− η3, R∗(E) + η3].

Recalling (3.30), we say σ ∈ Crt(B̃(E)) is large deviation typical if HN has no critical points ρ with
R(σ,ρ) ≥ 1− η1 and

Ψ(q;σ) = sup
ρ∈Bandq(σ)

HN (ρ) ≤ E − η3, ∀q ∈ [−η4, 1− η1]. (3.55)

Lemma 3.5.4. For any E > E0 and with small 0 < η3 � η2 � η1 � 1, given that σ ∈ Crt(B̃(E)), σ is
large deviation typical with conditional probability at least 1− e−cN .

Proof. Let Eσ = HN (σ)/N and Rσ = ∂radHN (σ)/
√
N . For η3 small enough we must have Eσ − E0 ≥

(E − E0)/2 > 0 and Rσ −R0 ≥ (R−R0)/2 > 0 since σ ∈ Crt(B̃(E)).
The former condition that HN has no critical points ρ with |R(σ,ρ)| ≥ 1 − η1 follows by Proposi-

tion 3.2.14 applied to the conditionally random part of the Hamiltonian ĤN , exactly as in the proof of

Proposition 3.3.12(ii). (Since Rσ > R0 = y + ξ′′

y ≥ 2
√
ξ′′, which was also the case in that proof.)

Now we show (3.55). Combining Proposition 3.5.1 and Lemma 3.5.3, and using (η1, η2) for (ε, δ) in the
former, 〈

vq,

[
Eσ − E0

Rσ −R0

]〉
≤ vqE(Eσ − E0) ≤ (1− η2)(Eσ − E0), ∀q ∈ [0, 1− η1]. (3.56)

Next, note that if one replaces the −2η3 term with +η3, the proof of Proposition 3.3.15 goes through for
(possibly non-strictly) 1RSB models and all q ∈ [0, 1− η1]. Moreover as usual it can be made simultaneous

for all q by using Proposition 3.2.14 to union bound over a finite set of q. Thus conditional on σ ∈ Crt(B̃(E))
and the values (Eσ, Rσ), with probability 1− e−cN we have for all q ∈ [0, 1− η1] simultaneously:

Ψ(q;σ) ≤ E0 +

〈
vq,

[
Eσ − E0

Rσ −R0

]〉
+ η3

(3.56)

≤ E0 + (1− η2)(Eσ − E0) + η3 ≤ Eσ − 2η3.

Finally Proposition 3.2.14 implies Ψ(q;σ) is C(ξ, Eσ, Rσ)-Lipschitz on [−η4, 0] with probability 1 − e−cN .
Thus we find, as desired, that with conditional probability 1− e−cN ,

Ψ(q;σ) ≤ Eσ − η3, ∀q ∈ [−η4, 1− η1].

Recalling (3.22), let LMAX ⊆ Crt denote the set of local maxima of HN .

Proposition 3.5.5. For any ξ and ε > 0, there exists c(ε) > 0 such that for N large enough,

E
[∣∣∣LMAX ∩ {σ : ∂radHN (σ) ≤ 2

√
ξ′′(1)− ε}

∣∣∣] ≤ e−c(ε)N2

.

Proof. Similarly to Corollary 3.3.18, by combining Cauchy–Schwarz and the Kac–Rice formula it suffices to
show that for all R ≤ 2

√
ξ′′(1)− ε,

P
[
σ ∈ LMAX

∣∣ (∂radHN (σ),∇spHN (σ)
)

= (R
√
N,0)

]
≤ e−c

′(ε)N2

.

Recalling (3.21), this follows easily by the large deviation principle for the bulk spectrum of a GOE matrix,
which has speed N2 [BG97a].

We are ready to determine the rate function for the upper tail of GSN in 1RSB models.

Theorem 3.5.6. Assume ξ is 1RSB. Then max(GSN , E0) obeys a large deviation principle on [E0,∞) with
speed N and good rate function −Θ∗(E).
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Proof. Since Θ∗(E) decreases continuously from Θ∗(E0) = 0 to −∞, and exponential tightness is clear by
e.g. Borell–TIS, it suffices2 to show

lim
η↓0

lim
N→∞

1

N
logP[GSN ∈ [E − η,E + η]]

?
= Θ∗(E), ∀E > E0. (3.57)

Thus, fix E > E0 and let
Crttyp(B̃(E)) t Crtatyp(B̃(E)) = Crt(B̃(E))

respectively denote the large deviation typical and atypical critical points of HN . For the large deviation
upper bound, recall from Lemma 3.5.3 that on [E,∞) × [2

√
ξ′′(1),∞) the function Θ is maximized at

(E,R∗(E)) with value Θ∗(E). We claim that the expected number of local maxima σ ∈ LMAX satisfying
HN (σ)/N ≥ [E, Ē] is at most exp(NΘ∗(E) + o(N)) for any Ē < ∞ independent of N . Indeed, Proposi-
tion 3.5.5 shows that points R ≤ 2

√
ξ′′(1) − ε contribute a negligible amount. Sending ε → 0 slowly with

N and applying Lemma 3.3.19 (and continuity of Θ) yields the claim. Since the global maximum of HN is
of course a local maximum, this together with exponential tightness of the ground state yields the upper
bound.

For the lower bound, exactly as in Proposition 3.3.18 and its use in proving Proposition 3.3.9, we may
deduce from Lemma 3.5.4 that

E|Crtatyp(B̃(E))| ≤ e−cN/3E|Crt(B̃(E))|.

In particular
E|Crttyp(B̃(E))| ≥ E|Crt(B̃(E))|/2 ≥ exp(−NΘ∗(E)± o(N))/2.

By definition, any two distinct large deviation typical points have overlap at most −η4. Hence there are
almost surely at most 2η−2

4 large deviation typical points in total, for any HN (because their Gram matrix
of overlaps must be positive semi-definite). Therefore

P[|Crttyp(B̃(E))| ≥ 1] ≥ η2
4E|Crttyp(B̃(E))|/2 ≥ η2

4 exp(−NΘ∗(E)± o(N))/4

≥ exp(−NΘ∗(E)± o(N)).

By definition, if |Crttyp(B̃(E))| ≥ 1 then GSN ≥ E − η3. Since η3 was arbitrarily small, we obtain

lim inf
η↓0

lim
N→∞

1

N
logP[GSN ≥ E − η] ≥ Θ∗(E), ∀E > E0.

Since we already established the large deviation upper bound with strictly increasing rate function −Θ∗ as
well as exponential tightness, the previous display implies (3.57) as desired.

3.5.2 Transition to quadratic speed

In this subsection, ξ is a general model, not necessarily 1RSB. We show in Theorem 3.5.8 that the large devi-
ations of GSN are of speed O(N) above Q(ξ−γ2

1t) and Ω(N2) below. The following exact orthogonalization
lemma is crucial to show the latter result.

Lemma 3.5.7. Fix small constants c, δ > 0. Suppose σ1, . . . ,σk ∈ SN for k = ecN satisfy |R(σi,σj)| ≤ δ
for all 1 ≤ i < j ≤ k. Then for c′ > 0 depending only on c, δ and for N large enough, there exists a subset
A ⊆ [k] of size |A| ≥ c′N and points {σ̃a}a∈A such that:

R(σ̃a, σ̃a
′
) = 0, ∀a 6= a′ ∈ A,

‖σ̃a − σa‖2 ≤ δ0.01
√
N.

(3.58)

2Given exponential tightness, [AGZ10, Theorem D.4 and Corollary D.6] show (3.57) implies a large deviation principle on
[E0 + ε,∞) for any ε > 0. The large deviation principle easily extends to [E0,∞) due to the aforementioned properties of Θ∗.
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Proof. Let A ⊆ [k] be any maximal subset such that there exist {σ̃a}a∈A obeying (3.58), and assume for
sake of contradiction that |A| < c′N . For i ∈ [k], let σ̂i be the projection of σi onto span

(
{σ̃a}a∈A

)
. By

maximality of A, we have ‖σ̂i‖2 ≥ δ0.1
√
N for all i. With B(A) the radius

√
N ball in span

(
{σ̃a}a∈A

)
, let

B̂ = B(A)\δ0.1B(A). Then, for a universal C > 0, B̂(A) admits a covering by exp(C|A| log(1/δ)) radius δ
√
N

balls, whose centers are disjoint from δ0.1B(A)/2. Since we assumed |A| < c′N , we have (for small enough
c′)

exp(C|A| log(1/δ)) ≤ exp(cN/3).

Hence by the pigeonhole principle, there exists J ⊆ [k]\A with |J | ≥ exp(cN/3) such that the points {σ̂j}j∈J
in B̂ are all contained in a radius δ

√
N ball centered at some σ̂J ∈ span

(
{σ̃a}a∈A

)
with ‖σ̂J‖ ≥ δ0.1

√
N/2.

Therefore

1

|J |
∑
j∈J
〈σj , σ̂J〉 =

1

|J |
∑
j∈J
〈σ̂j , σ̂J〉 ≥ 1

|J |
∑
j∈J

(
〈σ̂J , σ̂J〉 − ‖σ̂j − σ̂J‖2 · ‖σ̂J‖2

)
≥ δ0.3N.

On the other hand, since we assumed |R(σi,σj)| ≤ δ, we have∥∥∥∥∥∥ 1

|J |
∑
j∈J

σj

∥∥∥∥∥∥
2

2

=
1

|J |2
∑

j1,j2∈J
〈σj1 ,σj2〉 ≤ 1

|J |2
(
|J |+ |J |2δN

)
≤ 2δN.

Since ‖σ̂J‖2 ≤
√
N , Cauchy–Schwarz gives the desired contradiction.

Recall γ1 is the weight of the degree-1 interactions in (3.1), and ξ′(0) = γ2
1 . For h ≥ 0, let

ξγ1←h(t) = ξ(t)− γ2
1t+ h2t

denote ξ with this interaction weight replaced by h. In particular ξγ1←0(t) = ξ(t)− γ2
1t.

Theorem 3.5.8. For any E > Q(ξγ1←0),

lim sup
ε→0

lim sup
N→∞

− 1

N
logP[GSN ∈ [E − ε, E + ε]] ≤ C1(ξ, E). (3.59)

On the other hand, for any ε > 0,

lim inf
N→∞

− 1

N2
logP[GSN ≤ Q(ξγ1←0)− ε] ≥ C2(ξ, ε). (3.60)

Proof. We first prove (3.59), assuming further that ξ′(0) > 0. By Theorem 3.2.2 and Proposition 3.2.14,
Q(ξγ1←h) is uniformly Lipschitz in h. Moreover clearly limh→∞Q(ξγ1←h) = ∞. Thus E = Q(ξγ1←h) for
some h > 0. Let g = (g1, . . . , gN ) be the vector of degree 1 disorder coefficients in (3.1). For small η > 0,

γ1‖g‖2√
N
∈ [h− η, h+ η]

occurs with probability at least e−C1(ξ,E)N . Conditional on this event, P[GSN ∈ [E − ε, E + ε]] ≥ 1/2. This
proves (3.59) if ξ′(0) > 0.

Next, suppose ξ′(0) = 0. Assuming γp > 0, we consider the conditional behavior of HN on the large
deviation event EN,x that the order p coefficient g1,1,...,1 (as in (3.1)) satisfies

g1,1,...,1 = x
√
N.

Using Proposition 3.2.14 to discretize SN into bands with fixed first coordinate, and applying the zero
temperature Parisi formula to each band, it easily follows that, with ξ̃q as in (3.25),

GS(x) ≡ lim
N→∞

E[GSN | EN,x] = sup
0≤q≤1

{
Q(ξ̃q) + qpx

}
.
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Moreover this limit holds locally uniformly in x. In particular GS(x) is continuous and strictly increasing,
and (since γ1 = 0) GS(0) = Q(ξ). Hence for some x∗(E), δ > 0 we have GS(x) ∈ [E − ε/2, E + ε/2] for all
x ∈ [x∗(E)− δ, x∗(E) + δ]. Then by Borell-TIS, for N sufficiently large, we conclude (3.59) from:

P[GSN ∈ E − ε, E + ε] ≥ P[N−1/2g1,1,...,1 ∈ [x∗(E)− δ, x∗(E) + δ]]/2 ≥ e−C(ξ,E)N .

We turn to the proof of (3.60). We start from Corollary 3.1.9, applied to

HN,≥2(σ) = HN (σ)− γ1〈g,σ〉,

which is a Hamiltonian with mixture ξγ1←0. This implies the high-probability existence of σ1, . . . ,σk ∈ SN
for k = ecN such that |R(σi,σj)| ≤ δ � ε for all 1 ≤ i < j ≤ k and HN,≥2(σi) ≥ Q(ξγ1←0) − ε

4 . On this
event, Lemma 3.5.7 ensures the existence of A ⊆ [k] with |A| ≥ c′N and points {σ̃a}a∈A obeying (3.58). On
the event of Proposition 3.2.14 we then have

1

c′N2
max

~ρ∈Bandc′N,1,0(0)

c′N∑
i=1

HN,≥2(ρi) ≥ min
σ̃a

HN,≥2(σ̃a)/N ≥ Q(ξγ1←0)− ε

2
.

Similarly to [Sub24, Proposition 1], the left-hand side above is sub-Gaussian with standard deviation proxy

O(N−2). With c′′ = c′′(ξ, c, c′, δ) > 0 a small constant, we find that with probability 1− e−c′′N2

,

1

c′N2
max

~ρ∈Bandc′N,1,0(0)

c′N∑
i=1

HN,≥2(ρi) ≥ Q(ξγ1←0)− 3ε

4
.

Let (ρ̂1, . . . , ρ̂c
′N ) attain the maximum on the left-hand side (and depend measurably on HN,≥2).

Finally we add back in the external field γ1〈g,σ〉. Note that {σ̃a}a∈A can be chosen (in some measurable

way) depending only on HN,≥2, so we may take g independent of {ρ̂i}1≤i≤c′N . Then
∑
i≤c′N γ1〈g, ρ̂i〉 is

conditionally a centered Gaussian with variance c′N2, so it has absolute value smaller than εc′N2/4 with

probability 1− e−c′′N2

. On this event and that of the preceding display, we find as desired:

max
σ∈SN

HN (σ)/N ≥ 1

c′N2
max

~ρ∈Bandc′N,1,0(0)

c′N∑
i=1

HN (ρi) ≥
( 1

c′N2

c′N∑
i=1

HN,≥2(ρ̂i)
)
− ε

4
≥ Q(ξγ1←0)− ε.

Remark 3.5.9. Given a weaker version of Corollary 3.1.9 with kN ≤ eo(N), one finds |A| ≥ Ω(log kN )
in Lemma 3.5.7, which implies speed Ω(N log kN ). In particular, Chatterjee’s “multiple peaks” property
[Cha14] suffices to obtain super-linear speed for the lower tail. At positive temperature, the super-linearity
in the lower tail was essentially predicted by Dotsenko-Franz-Mézard in [DFM94] and proved in [Tal07, Jag17]
using a similar “orthogonal structures” idea; see also [Che23a] which derives it from superconcentration. The
main new feature of Theorem 3.5.8 is the quadratic rate, which is best possible when γ2 6= 0. It is natural
to conjecture that Npmin is the correct lower tail speed for pmin = min{p : γp > 0}.
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Chapter 4

Strong topological trivialization of
multi-species spherical spin glasses

Abstract – We study the landscapes of multi-species spherical spin glasses. Our results determine the
phase boundary for annealed trivialization of the number of critical points, and establish its equivalence
with a quenched strong topological trivialization property. Namely in the “trivial” regime, the number
of critical points is constant, all are well-conditioned, and all approximate critical points are close to a
true critical point. As a consequence, we deduce that Langevin dynamics at sufficiently low temperature
has logarithmic mixing time.

Our approach begins with the Kac–Rice formula. We characterize the annealed trivialization phase

by explicitly solving a suitable multi-dimensional variational problem, obtained by simplifying certain

asymptotic determinant formulas from [BBM23, McK24]. To obtain more precise quenched results, we

develop general purpose techniques to avoid sub-exponential correction factors and show non-existence

of approximate critical points.Many of the results are new even in the 1-species case.

4.1 Introduction

This paper studies the landscapes of certain random, non-convex functions HN : RN → R, namely the
Hamiltonians of spherical spin glasses. Mean-field spin glass models were introduced in [SK75] to study
disordered magnetic materials, and subsequently studied in many papers including [Rue87, CS92, CHS93].
Of particular note, Parisi predicted the free energy through the phenomenon of replica symmetry breaking
in [Par79], which was later proved by [Tal06b, Tal06a] following decades of progress.

The spin glasses we focus on will feature r ≥ 1 species, with the domain of HN given by a product
of r high-dimensional spheres. Such models include (in the Ising case) the r = 2 bipartite SK model
[KC75, KS85, FKS87a, FKS87b] which has received recent attention due to connections with neural networks
[BGG10, ABG+12, HPG18]. For r > 1, a basic understanding of the low-temperature statics is still missing
in general: due to a breakdown of the crucial interpolation method [GT02], it is not even known that the
limiting ground state energy exists in general despite much recent work [BCMT15, Pan15, Mou21, Mou23,
BL20, BS22a, Sub21b, Sub23b, Kiv23].

We follow the landscape complexity approach pioneered by [Fyo04], studying the set of critical points
using techniques such as the Kac–Rice formula. We focus in particular on topological trivialization: the
transition of the number of critical points from exponential to constant beyond a critical external field
strength. As further detailed below, precise understanding of this phenomenon faces several challenges.
First, while one expects a dimension-independent number of critical points under a strong external field, the
reduced symmetry from multiple species means tools for computing expected counts of critical points are
accurate only to leading exponential order. Second, these leading order terms must be accessed implicitly
through the solution to a vector Dyson equation. Third, even perfect knowledge of the critical points does not
suffice to understand approximate critical points with small gradient (e.g. low temperature Gibbs samples)
which might be far from any genuine critical point. Fourth, the Kac–Rice formula only gives annealed
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expectations, so the phase boundary it suggests might not correspond to any quenched property. These
challenges will lead us to develop new techniques which enhance the Kac–Rice formula and yield a more
complete description of the landscape even in the one-species setting.

Landscape complexity Our starting point is the Kac–Rice formula introduced in [Ric44, Kac48] (see
[AT09, Chapter 11] for a textbook treatment). In general this formula allows one to compute moments for
the number of critical points, local optima, and similar quantities for smooth Gaussian processes on manifolds.
It has been employed, usually to obtain annealed counts of critical points, in many settings including spiked
tensor models [BMMN19, RBBC19, FMM21, CFM23, ABL22], non-gradient vector fields [CKLDP97, FK16,
Fyo16, Gar17, BFK21, Kiv24, Sub23a], polymer models [FLDRT18], Euler characteristics [TA03], generalized
linear models [MBB20], and the elastic manifold [BBM24]. Typically the most complicated term in the Kac–
Rice integrand is the expected determinant of a large random matrix.

For spherical spin glasses, the important works [ABČ13, AB13] calculated the annealed exponential
growth rates for the number of critical points of various indices and energy levels. Matching second moment
estimates for pure models were established in [Sub17a], see also [AG20, SZ21]. These yielded in some cases an
elementary proof of the Parisi formula at zero temperature, as well as further geometric results on the Gibbs
measures [SZ17, Sub17b, BSZ20, BJ24]. Annealed asymptotics for the multi-species setting were obtained
in [McK24], with a matching second moment computation in the pure case by [Kiv23].

Our primary aim will be to identify the topologically trivial phase where the landscape contains a
(dimension-free) constant number of critical points, and to understand it in detail. This was done for
the annealed complexity of single-species spin glasses in [FLD14, Fyo15, BČNS22], which showed that in the
trivial regime the only critical points are the unique global maximum and minimum (with high probability).
In these works and many others mentioned above, the high degree of symmetry is crucial: it ensures the ran-
dom matrices appearing in Kac–Rice computations are from the Gaussian Orthogonal Ensemble, for which
exact determinantal formulas are available. Recently the work [BBM23] gave broadly applicable tools for
random matrix determinants with less symmetry. Their work enables quite general Kac–Rice computations,
with the caveat that the results hold only to leading exponential order (i.e. with an extra eo(N) factor in
dimension N).

Through the example of multi-species spin glasses, we aimed to study the following three meta-questions
on random landscapes which do not seem to have been addressed in the literature. While the first is somewhat
tailored to the multi-species setting and the recent work [BBM23], we are unaware of rigorous results toward
the latter two in any of the models above.

(1) For non-symmetric models with Hessians more complicated than GOE, does the topologically trivial
regime still exhibit a dimension-free number of critical points? Or is the eo(N) upper bound on annealed
complexity the end of the story?

(2) With or without symmetry, does the phase boundary of annealed topological trivialization have genuine
significance? Or can the regime of quenched topological trivialization be strictly larger?

(3) Does topological trivialization imply rapid convergence for optimization algorithms such as Langevin
dynamics? Or might regions with small but non-zero gradient lead to arbitrarily slow convergence?

The last question in particular was highlighted in the recent book chapter [RF23], which ends:

Finally, we find it appropriate to conclude this chapter by recalling that getting
a refined information on the landscape topology and geometry can hopefully
shed light and guide us into the comprehension of the dynamical evolution of
the complex systems associated to it: establishing quantitatively this connection
between landscape and dynamics is the underlying goal of the landscape program,
and thus the most relevant perspective.

Our results We make progress on all three of the above questions. As the first step, we establish in
Theorem 4.1.11 the annealed phase boundary for topological trivialization in the sense of leading exponen-
tial order. Already these annealed estimates determine the ground state energy in the topologically trivial
phase. Answering Question (1), we go further and show throughout the topologically trivial regime that
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the number of critical points in an r-species spin glass is exactly 2r, which is the minimum possible for any
Morse function on a product of r spheres. Moreover the landscape trivializes in a quantitative sense: each
of the 2r critical points has dimension-free condition number, and all approximate critical points (with small
gradient) are close to one of them. We call this confluence of properties strong topological trivialization
(see Definition 4.1.12), and show that for any landscape satisfying it, the mixing time for low tempera-
ture Langevin dynamics is O(logN). This addresses Question (3) above. Conversely in the topologically
non-trivial phase, our companion paper [HS24] explicitly constructs exponentially many well-separated ap-
proximate critical points (see Proposition 4.1.14 below). This implies quenched failure of strong topological
trivialization whenever the annealed complexity is non-trivial, partially addressing Question (2).

Proof techniques Our computations using the Kac–Rice formula rely on asymptotics for expectations of
random determinants computed in [BBM23] via the vector Dyson equation, in particular Corollary 1.9.A
therein. We determine the expected number of critical points to leading exponential order, in particular
identifying the trivial regime of annealed complexity eo(N).

First we discuss several new challenges arising in the Kac–Rice computations as compared to the single-
species setting. Whereas the random determinants arising for one species are of a GOE matrix plus a scalar
multiple of the identity, with multiple species the GOE is replaced by a more general Gaussian block matrix.
Before the present work, the exponential-order growth rates of the relevant determinants were only known
in the form of an integral Ψ =

∫
log |γ|dµ(γ) for a measure µ whose Stieltjes transform solves a vector Dyson

equation (see (4.44)). While this integral can be explicitly evaluated in the single-species case because µ is
a shift of the semicircle law, in general this representation is far from explicit. Addressing this challenge,
we find a closed-form formula for this integral (Lemma 4.4.4), expressed in terms of the solution to the
vector Dyson equation. This formula makes the Kac–Rice calculations reasonably explicit and may be of
independent interest.

The annealed complexity is now given by the maximum of an r-dimensional complexity functional F :
Rr → R whose main term is this Ψ. Determining the maximum of F is also complicated and requires more
than finding its stationary points. Even for one species, F has both concave and convex regions and is C1

but not C2. With r > 1 species, the maximization of F becomes a multi-dimensional optimization problem
where the number of concave and nonconcave regions in Rr grows exponentially with r; see Subsection 4.4.3
and Figure 4.4.1. In general, F has about 3r stationary points (see Lemma 4.4.5), 2r of which eventually
yield critical points of HN . To show that the remaining stationary points do not maximize F , we construct
at each of these points an explicit direction along which the Hessian ∇2F is positive. The construction of
this direction requires an understanding of the solution to the vector Dyson equation, which ranges over a
non-trivial subset of Cr that we characterize (Lemma 4.4.8). To justify the necessary calculations, we also
prove (in Theorem 4.A.2) new joint continuity properties of the vector Dyson equation; these extend results
of [AEK17a, AEK20] in the case of finitely many blocks.

Having determined the trivial regime for annealed complexity, we next turn a more precise understanding
of this regime, for example aiming to show the number of critical points is exactly 2r with high probability.
It follows from the annealed estimates that all critical points are well-conditioned and must have one of 2r

“types” corresponding to maxima of F (see Definition 4.6.1). Here the type of a critical point essentially
determines its overlap with the external field (which is an r-dimensional vector), as well as its energy and
Hessian spectrum. This motivates the following natural strategy. For each of the 2r types we restrict
attention to a lower-dimensional band having the correct overlap with the external field (thus containing all
critical points of that type), and search for critical points of the restriction of HN to this band by repeating
this process. The conditional law of HN on such a band is again a spherical multi-species spin glass in the
topologically trivial regime, and the relevant band shrinks in diameter each step. Thus we would hope to
eventually show that all critical points of each fixed type are close together. Since the Kac–Rice estimates
imply all critical points are well-conditioned, there can only be at most 1 inside any small region. Hence this
would imply a 2r upper bound for the number of critical points.

Unfortunately this approach does not make sense on its face because critical points are brittle. In
particular the set of critical points of HN restricted to a lower dimensional band might be unrelated to
the set of critical points on an open neighborhood of said band. To overcome this difficulty, we establish in
Theorem 4.5.2 a way to pass from annealed upper bounds for exact critical points to high-probablity non-
existence of approximate critical points (with small gradient). Because the notion of approximate critical
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point is more robust, the shrinking bands argument above can be salvaged, thus proving the 2r upper bound.
The fact that all 2r critical points actually exist then follows by the Morse inequalities from differential
topology. The aforementioned non-existence of approximate critical points far from any exact critical point
also falls out of the shrinking bands argument.

We note that the ability to control approximate critical points via Kac–Rice estimates seems quite
powerful and should have further applications to random landscapes. In addition to the shrinking bands
argument above, we also needed Theorem 4.5.2 to show strict positivity of the annealed complexity in the
complementary “non-trivial” regime, see Subsection 4.5.3. Further, in Section 4.7 we use these ideas to derive
energy estimates for “approximate local maxima” in single-species spherical spin glasses without external
field, via the annealed thresholds E±∞ of [AB13]. We have already applied these estimates to obtain bounds
on the energy attained by low temperature Langevin dynamics [Sel24b] and the algorithmic threshold energy
for Lipschitz optimization [HS23a, HS24].

Connections to algorithms As mentioned previously, our landscape results yield non-asymptotic algo-
rithmic consequences in the “trivial” regime. We show in Theorem 4.1.16 that low temperature Langevin
dynamics rapidly enters a small neighborhood of the global maximum and remains there for an exponentially
long time, even from disorder-dependent initialization. The proof relies on recent work by one of us [Sel24b]
to ensure the dynamics does not get stuck in saddle points. Thanks to the local concavity of HN around its
global maximum, we also deduce in this theorem that low temperature Langevin dynamics undergoes total
variation mixing within O(logN) time. These results follow in a black-box way from the strong topological
trivialization property discussed above.

Being an optimization algorithm, Langevin dynamics can find only the global maximum or minimum.
However an equally natural “critical point following” algorithm explained in Subsection 4.6.6 suffices to find
all 2r critical points. Here one first locates the critical point of the desired “type” under an amplified external
field, and then follows its movement as the external field strength is gradually decreased. Well-conditioning
of critical points ensures that this movement is stable and easy to follow for any model in the “trivial” regime.
This can be seen as a variant of “state following” [BFP97, ZK10, SCK+12]; see also [BSZ20, Proposition
9.1] and [SFL19] for similar ideas.

Finally, the phase boundary for topological trivialization coincides with a transition in the structure of
algorithmically reachable states we recently identified in [HS23a, HS24]. These works study the optimization
of HN using algorithms, viewed as functions of the disorder coefficients, with Lipschitz constant independent
of N . Roughly speaking, it is shown that the reachable points for the best such optimization algorithms have
the structure of a continuously branching ultrametric tree, and both approximate message passing and a
second-order ascent algorithm generalizing that of [Sub21a] (and using a correlated ensemble of Hamiltonians)
find these points. The algorithmic tree is rooted at a random location correlated with the external field (which
is simply the origin when the external field vanishes), and branches orthogonally outward until reaching the
boundary of the state space. When the external field is large enough, the algorithmic tree degenerates; the
root moves all the way to the boundary of the state space and no branching occurs. We show in this paper
that said degeneracy coincides with topological trivialization. In the “nontrivial” regime, the algorithmic tree
is non-degenerate and [HS24] uses the above algorithms to construct ecN well-separated approximate critical
points, yielding the quenched non-trivialization discussed previously. Conversely in the “trivial” regime,
[HS24] gives a signed generalization of the root-finding approximate message passing iteration which locates
all 2r critical points by implementing the previously mentioned recursive-bands argument as an algorithm.

4.1.1 Model description

Fix a finite set S = {1, . . . , r} and weights ~λ = (λ1, . . . , λr) ∈ RS
>0 with

∑
s∈S λs = 1. For each positive

integer N , fix a deterministic partition {1, . . . , N} =
⊔
s∈S Is with Ns/N = λN,s and limN→∞ λN,s = λs

for Ns = |Is|. For s ∈ S and x ∈ RN , let xs ∈ RIs denote the restriction of x to coordinates Is. We
consider the product-of-spheres state space

SN =
{
x ∈ RN : ‖xs‖22 = λsN ∀ s ∈ S

}
. (4.1)
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For each k ≥ 1 fix a symmetric tensor

Γ(k) = (γs1,...,sk)s1,...,sk∈S ∈ (Rr≥0)⊗k

with
∑
k≥1 2k

∥∥Γ(k)
∥∥
∞ < ∞, and let G(k) ∈ (RN )⊗k be a tensor with i.i.d. standard Gaussian entries. For

A ∈ (RS )⊗k, B ∈ (RN )⊗k, define A �B ∈ (RN )⊗k to be the tensor with entries

(A �B)i1,...,ik = As(i1),...,s(ik)Bi1,...,ik , (4.2)

where s(i) denotes the s ∈ S such that i ∈ Is. We consider the mean-field multi-species spin glass
Hamiltonian

HN (σ) =
∑
k≥1

1

N (k−1)/2
〈Γ(k) �G(k),σ⊗k〉

=
∑
k≥1

1

N (k−1)/2

N∑
i1,...,ik=1

γs(i1),...,s(ik)G
(k)
i1,...,ik

σi1 · · ·σik (4.3)

with inputs σ = (σ1, . . . , σN ) ∈ SN . For σ,ρ ∈ SN , define the species s overlap and overlap vector

Rs(σ,ρ) =
〈σs,ρs〉
λsN

, ~R(σ,ρ) =
(
R1(σ,ρ), . . . , Rr(σ,ρ)

)
. (4.4)

Let � denote coordinate-wise product. For ~x = (x1, . . . , xr) ∈ RS , let

ξ(~x) =
∑
k≥1

〈Γ(k) � Γ(k), (~λ� ~x)⊗k〉

=
∑
k≥1

∑
s1...,sk∈S

γ2
s1,...,sk

(λs1xs1) · · · (λskxsk).

The random function HN can also be described as the Gaussian process on RN with covariance

EHN (σ)HN (ρ) = Nξ(~R(σ,ρ)).

It will be useful to define, for s ∈ S ,

ξs(~x) = λ−1
s ∂xsξ(~x), (4.5)

ξ′ = ∇ξ(~1) ∈ Rr, (4.6)

ξ′′ = ∇2ξ(~1) ∈ Rr×r. (4.7)

We will often write diag(ξ′) for the r× r matrix with (s, s) entry ξ′s, and similarly for other vectors. Finally,
most of our results require the following generic non-degeneracy condition for ξ.

Assumption 4.1.1. ξ is non-degenerate if Γ(1),Γ(2),Γ(3) > 0 holds entry-wise. For fixed ~λ, a family of
mixture functions ξ is uniformly non-degenerate if the sums

∑
k≥1 2k‖Γ(k)‖∞ are uniformly bounded

above, and for some ε > 0, we have Γ(1),Γ(2),Γ(3) ≥ ε entry-wise for all ξ in the family.

4.1.2 Basic notations and conventions

Here we detail some notations that will be useful to understand the statements in the next subsection.

Definition 4.1.2. For probability measures µ, ν on a metric space (X , d), and p ∈ [1,∞], we denote by
Wp(µ, ν) the Wasserstein distance

Wp(µ, ν) =

(
inf

Π∈C(µ,ν)
EΠ

[
d(x,y)p

])1/p

,

where the infimum is over all couplings (x,y) ∼ Π with marginals x ∼ µ and y ∼ ν. (For p = ∞, the
distance is the essential supremum of d(x,y) under the coupling.) Unless otherwise specified, (X , d) will
always be Rn for some n ≥ 1 with the standard Euclidean metric.
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Definition 4.1.3. The Hausdorff distance between sets S1, S2 ⊆ R is given by

dH(S1, S2) ≡ max

(
max
s1∈S1

d(s1, S2), max
s2∈S2

d(S1, s2)

)
. (4.8)

Here d(s1, S2) = infs2∈S2
d(s1, s2) is the usual point-to-set distance.

Given a symmetric n × n matrix M , we denote by λmin(M),λmax(M) its minimum and maximum
eigenvalue, and by λk(M) its k-th largest eigenvalue. Using P(R) to denote the space of probability measures
on R, denote by

spec(M) = {λk(M) : k ∈ [n]} ⊆ R, µ̂(M) =
1

n

n∑
k=1

δλk(M) ∈ P(R), (4.9)

the empirical spectral support and measure of M . Let

spec
HN

(x) = spec
(
∇2

spHN (x)
)
, µ̂HN (x) = µ̂

(
∇2

spHN (x)
)

(4.10)

be the corresponding objects for the Riemannian Hessian defined just below. We will always use non-bolded
~λ = (λs)s∈S to denote the species weights as in Subsection 4.1.1.

Next we define the radial derivative and Riemannian gradient and Hessian HN . Throughout the paper
we assume I1 = {1, . . . ,m1}, I2 = {m1 +1, . . . ,m2}, and so on. Let R = {m1, . . . ,mr} and T = [N ]\R. For
each σ ∈ SN , we pick an orthonormal basis

{
e1(σ), . . . , eN (σ)

}
of RN so that {ei(σ) : i ∈ Is} constitutes

an orthonormal basis of RIs , and σs =
√
λsNems(σ). For S ⊆ [N ], let ∇SHN (σ) ∈ RS denote the

restriction of ∇HN (σ) ∈ RN to the coordinates in S (in the orthonormal basis {e1(σ), . . . , eN (σ)}), and
define ∇2

S×SHN ∈ RS×S analogously. The radial derivative is ∇RHN (σ); it will be convenient to define a

rescaled radial derivative ∇radHN (σ) = N−1/2∇RHN (σ) so that the below formulas become dimension-free.
Then, define the matrices

Λ = diag(~λ) ∈ Rr×r, A = diag(ξ′) + ξ′′ ∈ Rr×r . (4.11)

The following standard fact relates the Riemannian gradient and Hessian of HN to the Euclidean gradient
and Hessian and can be taken as a definition.

Fact 4.1.4. Let ∇spHN (σ), ∇2
spHN (σ) denote the Riemannian gradient and Hessian of HN in SN . Then,

∇spHN (σ) = ∇THN (σ) , ∇2
spHN (σ) = ∇2

T ×THN (σ)− diag(Λ−1/2∇radHN (σ) � 1T ) .

Explicitly, the curvature term diag(Λ−1/2∇radHN (σ) � 1T ) is a diagonal matrix D ∈ RT ×T where for all
i ∈ T ∩ Is,

Di,i =
1√
λs

(∇radHN (σ))s =
1√
λsN

∂msHN (σ).

We now define approximate critical points and ground states. We remark that all ε-approximate ground
states are δ-approximate critical points for some δ(ε) tending to 0 with ε, assuming HN lies in the exponen-
tially high probability set KN defined in Proposition 4.2.4.

Definition 4.1.5. A point x ∈ SN is an ε-approximate critical point if ‖∇spHN (x)‖2 ≤ ε
√
N , and an

ε-approximate ground state if HN (x) + εN ≥ maxσ∈SN HN (σ). We will sometimes abbreviate these by
ε-critical point and ε-ground state. Moreover, x is C-well conditioned if ∇2

spHN (x) has all eigenvalues
in ±[C−1, C]. Finally, x is an (ε, C)-well conditioned critical point if it is both an ε-critical point and
C-well conditioned.

Finally, we will often say that an event holds with probability 1− e−cN . In these cases, unless specified
otherwise, c is a small constant which may depend on all other relevant N -independent constants.
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4.1.3 Main results on strong topological trivialization

In this subsection we state our main results. Theorem 4.1.11 below shows that super-solvable models have
eo(N) critical points and identifies their possible asymptotic energies, correlation with G(1), and Hessian
spectrum. Theorem 4.1.13 considerably refines this statement for strictly super-solvable models, establishing
strong topological trivialization: the number of critical points equals 2r, all are well-conditioned, and all
approximate critical points are close to one of them.

Definition 4.1.6. Assume ξ is non-degenerate. We say ξ is super-solvable if diag(ξ′) � ξ′′, where � de-
notes the Loewner (positive semi-definite) partial order, strictly super-solvable if diag(ξ′) � ξ′′. Similarly
we say ξ is strictly sub-solvable if diag(ξ′) 6� ξ′′. We say ξ is solvable if diag(ξ′)− ξ′′ � 0 is singular.

Remark 4.1.7. The condition diag(ξ′) � ξ′′ coincides with the condition for degeneracy of the algorithmic
ultrametric trees identified in [HS23a, Theorem 3]. In one species, this condition recovers the annealed
trivialization condition determined by [BČNS22, Theorem 1.1] and coincides with the condition for zero-
temperature replica symmetry [CS17, Proposition 1].

Remark 4.1.8. The super-solvability condition above also appeared naturally in [HS23a] via the analysis of
an ODE describing the algorithmic threshold for optimizing multi-species spherical spin glass Hamiltonians.
In that paper, super-solvability is a property of points in Rr≥0 for fixed ξ, and this ODE has different behaviors
on super-solvable and sub-solvable regions of Rr≥0. In the present work, ξ is super-solvable if, in the language

of [HS23a], ~1 is super-solvable for ξ.

Remark 4.1.9. We note that in both [HS23a, HS24], the linear external field term in HN is a deterministic

vector h rather than the random G(1); both papers immediately apply to the model (4.3) by conditioning

on G(1). On the other hand, the upper bounds we obtain on annealed complexity become slightly stronger
when the external field is random.

The 2r critical points of a strictly super-solvable model will correspond naturally to sign patterns ~∆ ∈
{−1, 1}r, which determine whether the critical point is positively or negatively correlated with the external

field in each species. For each ~∆, we define its associated energy, overlap, and radial derivative:

E(~∆) =
∑
s∈S

∆s

√
λsξ′s ,

~R(~∆) =

(
∆sγs√
ξ′s

)
s∈S

,

~x(~∆) =

(
∆s

√
ξ′s +

∑
s′∈S

∆s′

√
λs′

λs
·
ξ′′s,s′√
ξ′s′

)
s∈S

.

(4.12)

Below we refer to certain probability measures µ(~x(~∆)) ∈ P(R), which are the limiting spectral measures
for certain random block matrices, defined using the vector Dyson equation in (4.39). We also refer to

their supports S(~∆) = supp
(
µ(~x(~∆))

)
⊆ R which are finite unions of intervals (see (4.43)). We will use

Definitions 4.1.2 and 4.1.3 as well as ∇2
sp and ∇rad as defined in Fact 4.1.4.

Definition 4.1.10. Let ε > 0 and ~∆ ∈ {−1, 1}r. A point x ∈ SN is (ε, ~∆)-good if:∣∣∣∣ 1

N
HN (x)− E(~∆)

∣∣∣∣ ≤ ε, (4.13)∥∥∥~R(G(1),x)− ~R(~∆)
∥∥∥
∞
≤ ε (4.14)∥∥∥∇radHN (x)− ~x(~∆)

∥∥∥
∞
≤ ε (4.15)

W2

(
µ̂HN (x), µ(~x(~∆))

)
≤ ε and dH

(
spec(∇2

spHN (x)), S(~∆)
)
≤ ε . (4.16)

A point is ε-good if it is (ε, ~∆)-good for some ~∆ ∈ {−1, 1}r. Let Q(ε, ~∆),Q(ε) ⊆ SN be the sets of

(ε, ~∆)-good and ε-good points, respectively.
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Define CrttotN = CrttotN (HN ) to be the set of critical points of HN , and Crtgood,εN = CrttotN ∩ Q(ε) and

Crtbad,εN = CrttotN \Q(ε). The following theorem shows that solvability defines the phase boundary for annealed
topological trivialization. It further shows that in strictly super-solvable models, all critical points are ε-good
and thus belong to one of 2r types corresponding to ~∆ ∈ {−1, 1}r, defined by Definition 4.1.10.

Theorem 4.1.11. (a) If ξ is super-solvable, then

lim
N→∞

1

N
logE|CrttotN | = 0. (4.17)

(b) If ξ is strictly super-solvable, for all ε > 0, there exists c = c(ξ, ε) > 0 such that

lim sup
N→∞

1

N
logE|Crtbad,εN | ≤ −c. (4.18)

(c) On the other hand, if ξ is strictly sub-solvable, then

lim
N→∞

1

N
logE|CrttotN | > 0. (4.19)

Our next result states that HN has exactly 2r critical points with high probability when ξ is strictly
super-solvable: one for each type ~∆ ∈ {−1, 1}r. Moreover all approximate critical points are near a true
critical point, and (as a consequence) all approximate ground states are near the true ground state (recall
Definition 4.1.5). We find it helpful to abstract some of these results into the following definition, which
could easily be extended to other manifolds besides SN . (The first requirement, smoothness at the natural
scale, holds with high probability by Proposition 4.2.4.)

Definition 4.1.12. We say the function HN : SN → R is (C, ε, ι)-strongly topologically trivial if:

(i) ‖∇kHN (σ)‖op ≤ CN1− k2 for k ∈ {0, 1, 2, 3}.

(ii) |CrttotN | ≤ C.

(iii) All critical points of HN are C-well-conditioned.

(iv) All critical points x of HN besides the unique global maximum satisfy λN/C(∇2
spHN (x)) ≥ 1/C.

(v) All ε-approximate critical points of HN are within distance ι
√
N of a critical point.

We say the sequence of functions (HN )N≥1 is C-strongly topologically trivial if for any ι > 0, for ε > 0
sufficiently small, all but finitely many are (C, ε, ι)-strongly topologically trivial. We say the sequence is
strongly topologically trivial if the previous condition holds for some finite C.

We note that from conditions (i) and (iii), it follows that if x is a critical point for HN and ‖x̃ − x‖ ≥
C−4
√
N , then x̃ is not a C−10-approximate critical point. Hence if condition (v) holds for ι which is small

depending on C, then one can actually take ι = O(ε). The next main result shows that if ξ is strictly super-
solvable then the sequence (HN )N≥1 is almost surely topologically trivial. In fact, we precisely describe the
2r critical points of HN .

Theorem 4.1.13. If ξ is strictly super-solvable, then the following holds with probability 1 − e−cN . For
sufficiently small ε > 0, HN has exactly one critical point x~∆ satisfying (4.13) through (4.16) for each
~∆ ∈ {−1, 1}r. Moreover for all ι > 0 there exists ε > 0 such that:

(a) All ε-critical points of HN are C(~λ, ξ)-well conditioned and lie in the disjoint union⋃
~∆∈{−1,1}r

Bι
√
N (x~∆).

(b) The number of positive eigenvalues of ∇2
spHN (x~∆) is exactly

∑
s∈S Ns · 1∆s=−1.
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(c) All ε-ground states lie in Bι
√
N (x~1).

On the other hand, strong topological trivialization becomes false for strictly sub-solvable ξ (with proba-
bility 1−e−cN ). This exhibits a natural quenched phase transition coinciding with the annealed transition of
E|CrttotN | in Theorem 4.1.11. Indeed our companion paper explicitly constructs exponentially many

√
N/C-

separated approximate critical points whenever ξ is strictly sub-solvable, which contradicts parts (ii), (v)
of Definition 4.1.12 when ι ≤ 1/(2C). The precise result is quoted below. (Note however that we give no
quenched lower bounds on the number of exact critical points when ξ is strictly sub-solvable, which would
be interesting to obtain.)

Proposition 4.1.14 ([HS24, Proposition 3.6]). For any strictly sub-solvable ξ there exists C(~λ, ξ) > 0 such
that for any ε > 0 there exists δ > 0 such that with probability 1 − e−cN the following holds. There exist
M = eδN distinct ε-approximate critical points x1, . . . ,xM ∈ SN such that ‖xi − xj‖2 ≥

√
N/C for all

1 ≤ i < j ≤M .

4.1.4 Consequences for Langevin dynamics

Here we obtain dynamical consequences from our landscape results, showing that for any strongly topolog-
ically trivial landscape, low temperature Langevin dynamics mixes in O(logN) time. The main ingredient
is a recent result by one of us [Sel24b] showing that, roughly speaking, low temperature Langevin dynamics
can get stuck only in approximate local maxima.

Definition 4.1.15. Given a Hamiltonian HN : SN → R, initial condition X(0) ∈ SN , and β ≥ 0, the
β-Langevin dynamics X(t) driven by standard RN -valued Brownian motion B(t) is the process solving the
stochastic differential equation

dX(t) =

(
β∇spHN (X(t))−

∑
s∈S

Ns − 1

2λsN
Xs(t)

)
dt+ P⊥X(t)

√
2 dB(t). (4.20)

Here P⊥X(t) is the rank N − r projection matrix onto the orthogonal complement of span
(
X1(t), . . . ,Xr(t)

)
.

Theorem 4.1.16. Fix ~λ and let (HN )N≥1 be a C-strongly topologically trivial sequence of functions HN :

SN → R with unique local maximum x∗ = x∗,N . (E.g. HN as above, with x∗ = x(~1).) Then:

(a) For any ε > 0, if β ≥ β0(~λ, ε, C) and T ≥ T0(~λ, ε, C) and N are sufficiently large, β-Langevin dynamics
started from any X(0) ∈ SN satisfies with probability 1− e−cN :

inf
t∈[T,T+ecN ]

HN (X(t)) ≥ HN (x∗)− εN, (4.21)

inf
t∈[T,T+ecN ]

‖X(t)− x∗‖2 ≤ ε
√
N. (4.22)

(b) For β ≥ β0(~λ,C), the β-Langevin dynamics has total variation mixing time O(logN).

Proof. Part (a): We use [Sel24b, Theorem 1.2], the proof of which easily extends to finite products of spheres
as considered here (see Remark 2.8 therein, and note that Proposition 4.2.4 below ensures the needed C-

boundedness). The implication is that to prove (4.21) it suffices to show that for η ≤ η0(ξ, ~λ, ε) ≤ ε/2 small

enough (playing the role of ε therein), E
(η)
∗ as defined in [Sel24b, Definition 2] satisfies

E
(η)
∗ ≥

HN (x∗)

N
− ε

2
.

By said definition, this holds if no σ ∈ SN satisfies all of the following properties:

(1) ‖∇spHN (σ)‖2 ≤ η
√
N .

(2) The Hessian ∇2
spHN (σ) satisfies λbηNc

(
∇2

spHN (σ)
)
≤ η.
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(3) HN (σ) ≤ HN (x∗)− εN
2 .

By the definition of strong topological trivialization, for small η condition (1) implies that σ ∈ Bι√N (x)
for some critical point x, where ι→ 0 as η → 0. Condition (2) implies x = x∗: otherwise Definition 4.1.12(iv)
implies λN/C(∇2

spHN (x)) ≥ 1/C, so Definition 4.1.12(i) with k = 3 implies (for small enough ι) that
λN/C(∇2

spHN (x)) ≥ 1/(2C), which is a contradiction for η0 < 1/(2C). Thus σ ∈ Bι
√
N (x∗), which (for

small η) contradicts condition (3).
We conclude that (4.21) holds, and (4.22) follows (with a different choice of ε) thanks to Theorem 4.1.13.
Part (b): Let us choose ε small enough that λmax

(
∇2

spHN (x)
)
≤ 0 is negative semi-definite onBε

√
N (x∗);

this is possible thanks to parts (i) (with k = 3) and (iii) of Definition 4.1.12. Also choose β large enough
that Part (a) of this theorem applies with this choice of ε.

Let C ⊆ SN be the product of diameter ε
√
N/r spherical caps inside each (SN,s)1≤s≤r centered at x∗.

Each of the r factors is a convex Riemannian manifold with boundary (see e.g. [Kro79]), hence so is C. We
consider the reflected Langevin dynamics with inward normal reflection in C, as constructed in e.g. [CZ17,

Section 2.1]. Let Pt be the transition kernel for ordinary Langevin dyamics, and P̃t that of the reflected
dynamics.

Recall that SN has uniformly positive Ricci curvature (as N varies) and ∇2
spHN (x) is negative semidefi-

nite on all of C. It follows that the Gibbs measure dνβ(x) = Z−1
N,βe

βHN (x)dx also has uniformly positive Ricci
curvature within C (see e.g. [GJ19, Proposition 22]). Let ν̃β be the Gibbs measure νβ of HN conditioned to lie
in C. By [Wan14, Theorem 3.3.2] and convexity of the manifold C, it follows that the reflected Langevin dy-
namics inside C contracts exponentially in (Riemannian) Wasserstein distance: for any probability measures
ρ0, ρ

′
0 on C,

W2(P̃tρ0, P̃tρ
′
0) ≤ e−ctW2(ρ0, ρ

′
0) ≤ e−ct

√
N, c = c(~λ, ξ) > 0 (4.23)

Finally, we combine (4.23) with [BGL01, Lemma 4.2] for a small time δ (denoted T therein) to find (using
Pinsker’s inequality in the first step)

‖P̃t+δρ0 − ν̃β‖2TV ≤ Ent
(
P̃t+δρ0||ν̃β

)
≤ CNe−2ct. (4.24)

([BGL01, Lemma 4.2] is stated for Euclidean space, but all proof ingredients remain available by [Wan14,
Theorem 3.3.2].)

On the other hand, it follows from Part (a) that from any initial X(0) ∈ SN , with probability 1− e−cN ,

we have X(0) ∈ C for T ≤ t ≤ ecN . Taking the convention that P̃tδy = δy for y ∈ SN\C, we write for any
x ∈ SN :

‖P2tδx − νβ‖TV ≤ ‖P2tδx − P̃t(Ptδx)‖TV + ‖P̃t(Ptδx)− ν̃β‖TV + ‖ν̃β − νβ‖TV
≤ e−cN + CNe−ct + e−cN .

Here the bound on ‖P2tδx−P̃t(Ptδx)‖TV follows from the definition of C, which ensures that with probability
e−cN , the ordinary and reflected Langevin dynamics (with shared Brownian motion) agree for t units of time
when started from X(t). The bound on ‖ν̃β − νβ‖TV follows from Part (a).

In particular, for t/(logN) at least a large constant, we deduce that for N large enough,

sup
x∈SN

‖P2tδx − νβ‖TV ≤ 1/4

which concludes the proof.

Remark 4.1.17. The above proof established that any C-strongly topologically trivial sequence HN satisfies
the Bakry-Emery conditions on a small neighborhood of the global optimum for all β ≥ 0. This implies
exponential concentration of overlaps (via concentration of Lipschitz functions). Namely for any ε > 0, with

σ, σ̃
i.i.d∼ νβ for β large, there exists ~q∗ ∈ [0, 1]r depending on HN such that

P[‖~R(σ, σ̃)− ~q∗‖∞ ≤ ε] ≥ 1− e−cN .
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For spin glass Hamiltonians distributed according to some strictly super-solvable ξ, the value ~q∗ can be
chosen deterministically depending only on (~λ, ξ, β). This is because the restricted free energies

1

N
log

∫∫
σ,σ̃∈SN ,

‖~R(σ,σ̃)−~q‖∞≤ε

exp(β(HN (σ) +HN (σ̃)) dσdσ̃.

concentrate exponentially for any ~q and ε > 0.
To take ~q independent of N one may fix a large T > 0, and deterministic X(0) ∈ SN for each N ,

and combine the following two observations. First EW2(PT δX(0), νβ) ≤ Ce−cT
√
N + e−cN since (4.23)

holds with exponentially good probability. Second, one may show via two-replica multi-species analogs of

the Cugliandolo–Kurchan equations [CHS93, CK94, BDG06, DGM07] that ~R(X(T ), X̃(T )) concentrates

exponentially around an N -independent value ~q∗(T ) when X(T ), X̃(T ) are driven by independent Brownian
motions for the same HN . Indeed from [Sel24b, Lemma 3.1 and Subsection 4.2] it suffices to prove these
Cugliandolo–Kurchan equations for soft spherical Langevin dynamics, which follows mechanically from the
approach of [CCM21]. From these observations, taking T → ∞ after N → ∞, this implies that overlaps
concentrate around ~q∗.

Remark 4.1.18. We argued above that the following holds for strictly super-solvable ξ with probability
1−e−cN : the expected hitting time of a radius δ

√
N neighborhood Bδ

√
N (x(~1)) of the global optimum of HN

is at most C(~λ, ξ, δ) for β sufficiently large, uniformly in X(0). Combining these two facts, the Lyapunov

function technique of [BBCG08] implies that the Gibbs measure νβ has Poincaré constant at most C(~λ, ξ)
for β sufficiently large. The relevant Lyapunov function L : SN → R≥1 is essentially an exponential moment

of the hitting time of Bδ
√
N (x(~1)); see [LE23, Proposition 9.13 and Appendix B.4] for a detailed derivation

of this implication.
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4.2 Further preliminaries

Below we provide further notations and background. Subsection 4.2.1 will be assumed throughout the entire
paper. Subsections 4.2.2 and 4.2.3 will be used primarily in Section 4.4.

4.2.1 Geometry of SN
Definition 4.2.1. A linear subspace U ⊆ RN is species-aligned if it is the direct sum of subspaces
Us ⊆ RIs , for s ∈ S .

For z ∈ RN or a species-aligned subspace U ⊆ RN , we define

z⊥ =
{
x ∈ RN : ~R(z,x) = ~0

}
, U⊥ =

{
x ∈ RN : ~R(u,x) = ~0 ∀u ∈ U

}
. (4.25)

Recalling the definitions in Fact 4.1.4, we now explicitly describe the law of the local behavior of HN

around a given σ ∈ SN .

Lemma 4.2.2. Fix σ ∈ SN . The random variables ∇THN (σ), ∇2
T ×THN (σ), and (HN (σ), ~R(G(1),σ),∇radHN (σ))

are mutually independent Gaussians with the following distributions.

(a) Tangential derivative: for each i ∈ T , ∂iHN (σ) ∼ N (0, ξs(i)) and these are independent across i.

(b) Tangential Hessian: W = ∇2
T ×THN (σ) is a symmetric random matrix with independent centered

Gaussian entries on and above the diagonal, where

E[W 2
i,j ] =

(1 + δi,j)ξ
′′
s(i),s(j)

Nλs(i)λs(j)
. (4.26)
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(c) Energy, 1-spin overlap, and radial derivative: (HN (σ), ~R(G(1),σ),∇radHN (σ)) is a centered Gaussian
vector with covariance satisfying

E
[
HN (σ)2

]
= Nξ(~1) , (4.27)

E
[
~R(G(1),σ)~R(G(1),σ)>

]
= N−1Λ−1 , (4.28)

E
[
∇radHN (σ)∇radHN (σ)>

]
= N−1Λ−1/2AΛ−1/2 , (4.29)

E [HN (σ)∇radHN (σ)] = Λ−1/2ξ′ , (4.30)

E
[
~R(G(1),σ)∇radHN (σ)>

]
= N−1diag(Γ(1))Λ−1 . (4.31)

As a consequence,

E [HN (σ)|∇radHN (σ)] = N(ξ′)>A−1Λ1/2∇radHN (σ) , (4.32)

E
[
~R(G(1),σ)|∇radHN (σ)

]
= diag(Γ(1))Λ−1/2A−1Λ1/2∇radHN (σ) , (4.33)

Var [HN (σ)|∇radHN (σ)] = N
(
ξ(~1)− (ξ′)>A−1ξ′

)
. (4.34)

Proof. Due to the symmetry of the sphere it suffices to verify these statements for σ equal to the “r-tuple
north pole,” i.e. σms =

√
λsN for all ms ∈ R, and σi = 0 for all i ∈ T . Then ∇THN (σ), ∇2

T ×THN (σ), and

(HN (σ), ~R(G(1),σ),∇radHN (σ)) can be evaluated as explicit linear combinations of disorder coefficients,
which readily implies the stated covariance structure. In particular, they are mutually independent because
the sets of disorder coefficients contributing to them are disjoint. As an example calculation (see also [McK24,
Section 3.3]),

∂msHN (σ) = λ−1/2
s

∑
p≥1

∑
s1,...,sp

ns(s1, . . . , sp)γs1,...,spG
(p)
ms1 ,...,msp

√
λs1λs2 · · ·λsp ,

where ns(s1, . . . , sp) is the number of times s appears in s1, . . . , sp. This readily implies that

E
[
∂msHN (σ)2

]
= λ−1

s

∑
p≥1

∑
s1,...,sp

ns(s1, . . . , sp)
2γ2
s1,...,sp = λ−1

s (ξ′s + ξ′′s,s) ,

E
[
∂msHN (σ)∂ms′HN (σ)

]
= λ−1/2

s λ
−1/2
s′

∑
p≥1

∑
s1,...,sp

ns(s1, . . . , sp)ns′(s1, . . . , sp)γ
2
s1,...,sp

= λ−1/2
s λ

−1/2
s′ ξ′′s,s′ ,

which implies (4.29). The rest of (4.27) through (4.31) are verified similarly. The formula (4.32) is verified
from the standard fact

E [HN (σ) | ∇radHN (σ)]

= E [HN (σ)∇radHN (σ)]
> E

[
∇radHN (σ)∇radHN (σ)>

]−1∇radHN (σ) ,

and (4.33) follows similarly. Finally (4.34) follows from

Var [HN (σ)|∇radHN (σ)] = E
[
HN (σ)2

]
− E

[
E [HN (σ) | ∇radHN (σ)]

2
]
.

Fact 4.2.3. The volume of SN w.r.t. the (N − r)-dimensional Hausdorff measure HN−r satisfies

1

N
logHN−r(SN ) =

1 + log(2π)

2
+ oN (1) .

Proof. By Stirling’s approximation, the volume of
√
NSN−1 is

2πN/2N (N−1)/2

Γ(N/2)
= eo(N) (πN)N/2

(N/2e)N/2
= eo(N)(2πe)N/2 .
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Thus the volume of SN is

Vol(SN ) = eo(N)
∏
s∈S

(2πe)λsN/2 = eo(N)(2πe)N/2 .

Let HN denote the space of possible Hamiltonians HN , which we identify as (infinite-dimensional) vectors

consisting of their disorder coefficients (G(p))p≥1 concatenated in an arbitrary but fixed order. Also let
SN = {x ∈ RN : ‖x‖22 = N} and for any tensor A ∈ (RN )⊗k, define the operator norm

‖A‖op = max
‖σ1‖2,...,‖σk‖2≤1

|〈A,σ1 ⊗ · · · ⊗ σk〉| .

Proposition 4.2.4 ([HS23a, Proposition 1.13]). For any ξ there exists c > 0, a sequence (KN )N≥1 of
symmetric convex sets KN ⊆HN , and constant C = C(ξ), such that the following holds.

(a) ¶[HN ∈ KN ] ≥ 1− e−cN ;

(b) For all HN ∈ KN , k ≤ 3, and x,y ∈ SN ,∥∥∇kHN (x)
∥∥
op
≤ CN1− k2 , (4.35)∥∥∇kHN (x)−∇kHN (y)

∥∥
op
≤ CN

1−k
2 ‖x− y‖2. (4.36)

Proposition 4.2.5. For symmetric matrices M,M ′ ∈ Rr×r we have (recall (4.8)):

dH
(
spec(M), spec(M ′)

)
≤W∞

(
µ̂(M), µ̂(M ′)

)
≤ ‖M −M ′‖op.

In particular for HN ∈ KN and all x,y ∈ SN :

dH
(
spec(∇2

spHN (x)), spec(∇2
spHN (y))

)
≤ C√

N
‖x− y‖2.

Proof. The first part is immediate from the Weyl inequalities. For the second part,∥∥∇2
spHN (x)−∇2

spHN (y)
∥∥
op

≤
∥∥∇2
T ×THN (x)−∇2

T ×THN (y)
∥∥
op

+
∥∥∥diag(Λ−1/2(∇radHN (x)−∇radHN (y)) � 1T )

∥∥∥
op

≤
∥∥∇2HN (x)−∇2HN (y)

∥∥
op

+
1√

N min~λ
‖diag(∇RHN (x)−∇RHN (y))‖op .

The final term is bounded by

‖diag(∇RHN (x)−∇RHN (y))‖op ≤ ‖∇HN (x)−∇HN (y)‖2
= ‖∇HN (x)−∇HN (y)‖op.

The result now follows from the first part and Proposition 4.2.4.

4.2.2 Elementary linear algebra

Definition 4.2.6. A symmetric matrix M ∈ Rr×r is diagonally signed if Mi,i ≥ 0 and Mi,j < 0 for all
distinct i, j ∈ [r].

Lemma 4.2.7. If M ∈ Rr×r is diagonally signed, then the minimal eigenvalue λmin(M) has multiplicity 1,
and the corresponding eigenvector ~w has strictly positive entries. Moreover,

λmin(M) = sup
~v�~0

min
s∈S

(M~v)s
vs

.
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Proof. [HS23a, Proposition 4.3] shows the final equality, and the proof therein shows that any minimal
eigenvector ~w of M must have strictly positive entries. Since M is symmetric its eigenvectors are orthogonal,
so ~w is unique.

Lemma 4.2.8. If M ∈ Rr×r is diagonally signed, M � 0, and M ′ ∈ Rr×r is defined by M ′i,j = |Mi,j |, then
M ′ � 0.

Proof. By Lemma 4.2.7, the minimal eigenvector ~w of M has strictly positive entries. Let λmin(M) = t ≥ 0.
The equation M ~w = t~w implies that for any s ∈ S ,

(Ms,s − t)ws +
∑
s′ 6=s

Ms,s′ws′ = 0 =⇒ Ms,s = t+
∑
s′ 6=s

|Ms,s′ |
ws′

ws
.

Thus for any ~x ∈ Rr,

〈~x,M ′~x〉 = t‖~x‖22 +
∑
s6=s′
|Ms,s′ |

(√
ws′

ws
xs +

√
ws
ws′

xs′

)2

≥ 0 .

Corollary 4.2.9. If ξ is super-solvable, then (recall (4.11)) A � 0.

Proof. Applying Lemma 4.2.8 to M = diag(ξ′) − ξ′′ � 0 shows M ′ = A − 2diag(ξ′′) � 0, where diag(ξ′′) ∈
Rr×r denotes the diagonal matrix with the same diagonal entries as ξ′′. By Assumption 4.1.1, A � 0.

4.2.3 Random matrix theory

Our calculations will involve standard notions from random matrix theory. For a probability measure
µ ∈ P(R), and with H the open complex upper half-space, its Stiejtles transform m : H → C is the
holomorphic function

m(z) =

∫
µ(dγ)

γ − z
, z ∈ H. (4.37)

If µ is compactly supported with piecewise smooth density ρ(x), it is well known (see e.g. [AGZ10, Chapter
2.4]) that m extends continuously to R at all points of smoothness with m(x) = =(πρ(x)). Here and
throughout, we use <(·) and =(·) respectively to denote the real and imaginary parts of a complex scalar or
vector. Throughout this paper it will also be understood that m(x) = limz∈H,z→xm(z).

Next, fixing ~x ∈ Rr, let ms(z) = ms(z; ~x) ∈ H solve the vector Dyson equation

1 +

(
z +

xs√
λs

+
∑
s′∈S

ξ′′s,s′

λs
ms′(z)

)
ms(z) = 0 , z ∈ H . (4.38)

For each s, let µs be such that ms is the Stieltjes transform of µs, existence and uniqueness of which is
guaranteed by Proposition 4.2.10 below. Then define

µ =
∑
s∈S

λsµs, (4.39)

m(z) = m(z; ~x) =
∑
s∈S

λsms(z). (4.40)

We will sometimes write µ = µξ,~λ(~x) to emphasize the dependence on ξ, ~λ, ~x (or include some arguments but

not others). The next proposition details useful properties of ms and µs. Note that µξ,~λ(~x) depends only on

(ξ′′, ~λ, ~x). In particular this is a finite-dimensional vector (while ξ is in principle infinite-dimensional). We

also let ~λ◦N = (λ◦N,s)s∈S ∈ Rr, where

λ◦N,s =
Ns − 1

N − r
=
|Is| − 1

N − r
. (4.41)

These slightly modified values of ~λN will be useful because they are the exact relative sizes of the species
blocks in MN (see also [McK24, Eq. (2.1)]). Of course ~λ◦N → ~λ as N →∞ since we assume ~λN → ~λ.
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Proposition 4.2.10. For each ~x ∈ Rr, there exists a unique solution (m1, . . . ,mr) to (4.38) consisting of
holomorphic functions ms : H→ H, each given by the Stieltjes transform of some µs ∈ P(R). Moreover for
any compact set K ⊆ (0, 1)r × (0,∞)r×r × Rr there exists C = C(K) such that the following hold whenever

(~λ◦N , ξ
′′, ~x) ∈ K (and

∑
s λ
◦
N,s = 1).

(a) The support sets supp(µs) ⊆ R are contained in [−C,C] and do not depend on s.

(b) Each µs is absolutely continuous, with density ρs having 1/3-Hölder norm at most C, piece-wise smooth
on at most C intervals with disjoint interiors, and otherwise zero.

(c) Each ms( · ; ·) extends to a jointly continuous function H × Rr 7→ H solving (4.38), with 1/3-Hölder
norm at most C.

(d) |ms(z; ~x)| ≥ 1/C for all z ∈ H and ~x ∈ Rr.

(e) For any ε > 0 and any fixed x ∈ SN , conditionally on ∇radHN (x) = ~x, we have the bulk-typicality
(recall (4.10)):

W2

(
µ̂HN (x), µξ,~λ◦N

(~x)
)
≤ ε,

dH
(
supp(µ̂HN (x)), supp(µξ,~λ◦N

(~x))
)
≤ ε.

(4.42)

with probability 1 − e−cN for c = c(ε,K) > 0 and N large enough. (Recall that µ~λ◦N
(~x) is defined by

(4.38), (4.39) with ~λ◦N in place of ~λ.)

Proof. The first three statements follow by [AEK17a, Proposition 2.1, Theorem 2.6, Corollary 2.7] (see the
last sentence of [AEK19a, Theorem 2.4] for relevant local uniformity statements), except for the continuity
in ~x in part (c). This is proved in the Appendix as Theorem 4.A.2 (which also allows ~v ∈ Hr). Part (d)
follows since ms ≈ 0 is impossible in (4.38).

We now explain part (e), which requires a bit more work. Throughout, we argue conditionally on
∇radHN (x) = ~x. To start, the random matrix ∇2

spHN (x) obeys the general conditions of [AEKN19, Theorem

4.7(i)]; in particular its conditional mean (recall Fact 4.1.4) E[∇2
spHN (x)|∇radHN (x) = ~x] = −diag(Λ−1/2~x�

1T ) is bounded in operator norm by a constant (denoted κ4 in [AEKN19]), uniformly for all ~x in any
given compact set (with the precise value κ4 depending on the compact set). This result implies1 that
with probability at least 1 − O(1/N) (with implicit constant uniform over compact sets of ~x), the set
supp(µ̂HN (x)) is contained within an ε/2-neighborhood of supp(µξ,~λ◦N

(~x)). We first improve this probability

to be exponentially close to 1. By the Hoffman–Wielandt lemma (see e.g. [AGZ10, Lemma 2.1.19]), the k-th
eigenvalue of any symmetric matrix is an 1-Lipschitz function of its entries. In our setting, Lemma 4.2.2
implies that conditionally on ~x, the entries of ∇2

spHN (x) are independent Gaussians up to symmetry, each
with variance O(1/N) (indeed Lemma 4.2.2 shows that this variance is exactly determined by ξ and does
not depend on ~x in any way). By concentration of Lipschitz functions of Gaussians, we find that λk =
λk(∇2

spHN (x)) satisfies for any ~x:

P[|λk − E[λk]| ≥ ε/4] ≤ e−c(ε)N .

In particular, if λk, λ
′
k are IID copies, then P[|λk − λ′k| ≥ ε/2] ≤ 2e−c(ε)N by the triangle inequality. With

Ek(ε) the event that d(λk, supp(µξ,~λ◦N
(~x))) ≥ ε, we thus see that

P[Ek(ε)] · (1−O(1/N)) ≤ 2e−c(ε)N .

This is because if Ek(ε) holds for λk but λ′k obeys the conclusion above from [AEKN19, Theorem 4.7(i)],

then |λk − λ′k| ≥ ε/2 must hold. We thus find that P[Ek(ε)] ≤ e−c′(ε)N for N large.
Next, we employ [AEK17b, Corollary 1.10], which shows that the bounded Lipschitz distance dBL between

µ̂HN (x) and µξ,~λ◦N
(~x) tends to 0, with probability 1−O(1/N) and uniform implicit constant over compact sets

1In translating [AEKN19, Theorem 4.7(i)], we use the exact equivalence between size N − r Dyson equations with constant
entries on the partitions (Is − 1) × (Is′ − 1), and size r Dyson equations with weights λ◦N,s. See [AEK19a, Section 11.5] for
more details.
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of ~x. (Here we again use the equivalence between size N−r Dyson equations with block sizes (Is−1)×(Is′−1)
and size r Dyson equations with weights λ◦N,s.) We have seen that both probability measures are supported

in a fixed compact set of R (with probability 1 − e−cN in the former case; this compact set can be taken
uniform over ~x in a compact set). This immediately upgrades convergence in probability within dBL to W2.
Finally, another application of Hoffman–Wielandt shows that the spectral distribution of a symmetric matrix
M ∈ Rd×d is a jointly 1-Lipschitz function of the entries, as a map from Rd×d → W2(R). In particular, it
follows that

D ≡W2(µ̂HN (x), µξ,~λ◦N
(~x))

is a 1-Lipschitz function of the entries of ∇2
spHN (x), and thus concentrates exponentially. We have seen

that D converges in distribution to 0, hence its median m(D) satisfies |m(D)| ≤ ε/2 for large N . Therefore
P[|D| ≤ ε] ≥ 1− e−c(ε)N for large N , yielding the desired W2 convergence claim.

Finally, we deduce convergence in dH. By adjusting ε, it remains to argue that with probability 1−e−c(ε)N ,
each y ∈ supp(µξ,~λ◦N

(~x)) satisfies d(y, supp(µ̂HN (x))) ≤ 2ε, as the opposite direction was shown earlier. We

claim that µξ,~λ◦N
(~x) is “locally dense” in that for any ε > 0 there is δ > 0 (independent of ~x within any given

compact set) such that for all y ∈ supp(µξ,~λ◦N
(~x)), we have

µξ,~λ◦N
(~x)([y − ε, y + ε]) ≥ δ.

Indeed this assertion follows by [AEK19a, Theorem 2.6], which gives a local description of how the density
for µξ,~λ◦N

(~x) behaves near its singularities. (In particular, the local scaling factor hx therein is stated to

be of constant order hx ∼ 1, with implicit constants depending only on norms of model parameters.) This
completes the proof: if y ∈ supp(µξ,~λ◦N

(~x)) satisfied d(y, supp(µ̂HN (x))) ≥ 2ε, we would directly obtain

W2

(
µ̂HN (x), µξ,~λ◦N

(~x)
)
≥ εδ > 0, but this W2 distance has been shown to tend to 0 with exponentially good

probability.

We also have continuity of vector Dyson equation solutions in the various parameters, which is needed
to apply the results of [BBM23]. Sophisticated stability results for the Dyson equation were established for
universality for random matrices in [AEK17a, AEK17b, AEK19a, AEK19b].

Proposition 4.2.11. The map
(ξ′′, ~λ, ~x) 7→ (~m(z), µ(z))

is uniformly continuous on compact subsets of its domain. (That is, for a general symmetric matrix ξ′′ ∈
(0,∞)r×r, vector ~λ ∈ (0, 1)r with

∑
s λs = 1, and vector ~x ∈ Rr. We equip ~m with the compact-open topology

and µ with the W1 distance.)

Proof. Suppose (ξ′′n,
~λn, ~xn) converge to (ξ′′, ~λ, ~x) as n → ∞. Let ~m be a subsequential limit of the corre-

sponding Dyson equation solutions ~mn. Then ~m solves the limiting Dyson equation for (ξ′′, ~λ, ~x) by continuity

of the coefficients. Since the coefficients (ξ′′n,
~λn, ~xn) are uniformly bounded above and below, the supports

of the corresponding spectral measures µn,s are uniformly bounded by [AEK19a]. Hence the imaginary
parts =(mn,s(z)) of their Stieltjes transforms are bounded below by Ω(=(z)), uniformly on compact sets of

(ξ′′, ~λ, ~x, z). In particular, the limit ~m is still a function from the strict upper half-plane H to itself. By

uniqueness in Proposition 4.2.10, we find that ~m is the solution to the limiting Dyson equation for (ξ′′, ~λ, ~x).
Since ~m was an arbitrary subsequential limit, and the ~mn are clearly tight, we find that limn ~mn = ~m, say
uniformly on compact subsets of H. Continuity of ~m follows; this is equivalent to continuity of µs and thus
yields continuity of µ.

In light of Proposition 4.2.10(a) and recalling (4.12), for any ~∆ ∈ {−1, 1}r we define

S(~∆) = supp(µ(~x(~∆))). (4.43)

Next we define

Ψ(~x) =

∫
log |γ| [µ(~x)](dγ) . (4.44)
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This will capture the exponential growth rate of

E
[
|det

(
∇2

spHN (σ)
)
|
∣∣ ∇radHN (σ) = ~x

]
which is the main term appearing in the Kac–Rice formula. We show its continuity in Proposition 4.2.15
below, using the following lemmas which will also be useful later.

Lemma 4.2.12. For any (ξ, ~x) and (ξ̃, ~̃x), and some C = C(~λ) > 0,

W∞(µξ(~x), µξ̃(~̃x)) ≤ C
(
‖~x− ~̃x‖∞ + ‖ξ′′ − ξ̃′′‖1/2∞

)
. (4.45)

Moreover for C = C(~λ, ξ) > 0 independent of ~x,

W∞
(
µ(~x),

∑
s∈S

λsδ−xs/
√
λs

)
≤ C. (4.46)

Proof. Let G = (gi,j)i,j∈T ∈ RT ×T be a GOE matrix with E[g2
i,j ] = (1 + δi,j)/N . Let W , W̃ ∈ RT ×T be

defined by

Wi,j =

√
ξ′′s(i),s(j)

λs(i)λs(j)
gi,j , W̃i,j =

√√√√ ξ̃′′s(i),s(j)

λs(i)λs(j)
gi,j ,

and M ,M̃ ∈ RT ×T by M = W − diag(Λ−1/2~x � 1T ), M̃ = W̃ − diag(Λ−1/2~̃x � 1T ). Then, by Proposi-
tion 4.2.5,

W∞(µ̂(M), µ̂(M̃)) ≤ ‖M − M̃‖op ≤ ‖W − W̃ ‖op +
‖~x− ~̃x‖∞√

min~λ
.

It is classical that ‖G‖op ≤ 3 with probability 1− e−cN . By Slepian’s lemma ‖W − W̃ ‖op is stochastically
dominated by

‖ξ′′ − ξ̃′′‖1/2∞
min~λ

‖G‖op,

so with probability 1− e−cN , for suitable C,

W∞(µ̂(M), µ̂(M̃)) ≤ 3‖ξ′′ − ξ̃′′‖1/2∞
min~λ

+
‖~x− ~̃x‖∞√

min~λ
≤ C

(
‖~x− ~̃x‖∞ + ‖ξ′′ − ξ̃′′‖1/2∞

)
≡ C

=⇒ µ̂(M)([t+ C,∞)) ≥ µ̂(M̃)([t+ 2C,∞)), ∀t ∈ R.

By Propositions 4.2.10(e) and 4.2.11, for any ε > 0, with probability 1− e−cN

W2(µ̂(M), µξ(~x)),W2(µ̂(M̃), µξ̃(~̃x)) ≤ εC.

In particular for any ε (depending on ξ, ~x, ξ̃, ~̃x) and t ∈ R we have

µξ(~x)([t,∞)) ≥ µ̂(M)([t+ C,∞))− ε, µ̂(M̃)([t+ 2C,∞)) ≥ µξ̃(~̃x)([t+ 3C,∞))− ε.

Combining the above displays gives

µξ(~x)([t,∞)) ≥ µξ̃(~̃x)([t+ 3C,∞))− 2ε, ∀ε > 0.

By similar reasoning the same inequality holds with (ξ, ~x) and (ξ̃, ~̃x) interchanged. This completes the proof
(with C replaced by 3C) since ε is arbitrary. The second part (4.46) follows by similar reasoning since in
the corresponding matrix model, the centered Gaussian contribution has spectral norm at most C(ξ) with
probability 1− e−cN .
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The following definition of distributions with bounded density and support will be convenient to ensure
continuity of integrals against singular log potentials; it also reappears in Section 4.5.

Definition 4.2.13. The probability distribution µ ∈ P(R) is C-regular if supp(µ) ⊆ [−C,C] and µ has
density at most C with respect to Lebesgue measure.

Lemma 4.2.14. For any C, ε > 0 there exists δ > 0 such that if µ, µ̃ are C-regular and W1(µ, µ̃) ≤ δ then∣∣∣∣∫ log |λ|dµ(λ)−
∫

log |λ|dµ̃(λ)

∣∣∣∣ ≤ ε.
Proof. Define the truncation logK(x) = min(K,max(−K, log x)). It is easy to see that logK(x) is LK-
Lipschitz for some constant LK , so for δ ≤ ε

2LK
we have∣∣∣∣∫ logK |λ|dµ(λ)−

∫
logK |λ|dµ̃(λ)

∣∣∣∣ ≤ LK ·W1(µ, µ̃) ≤ ε/2.

For K ≥ log(C) and |x| ≤ C, we have

fK(x) ≡ log(|x|)− logK(|x|) = (K + log(|x|)) · 1|x|≤e−K .

C-regularity implies ∣∣∣∣∫ fK(λ)dµ(λ)−
∫
fK(λ)dµ̃(λ)

∣∣∣∣ ≤ 2C

∣∣∣∣∣
∫ e−K

−e−K
K + log |x| dx

∣∣∣∣∣
= −4C(x log x− x+Kx)|e

−K

x=0

= 4Ce−K .

It remains to choose K so 4Ce−K ≤ ε/2 and then take δ ≤ ε/2LK as above.

Proposition 4.2.15. Ψ(~x) is continuous in (ξ′′, ~λ, ~x), uniformly on compact sets of (ξ′, ξ′′, ~λ, ~x) with ξ
non-degenerate.

Proof. This is immediate from Propositions 4.2.10(b) and 4.2.11, and Lemmas 4.2.12, 4.2.14.

Organization The remainder of the paper is structured as follows. In Section 4.3 we determine the
annealed complexity of critical points (Theorem 4.3.2). In Section 4.4 we solve the resulting variational
problem, identifying the 2r potential types of critical points for super-solvable ξ and showing that no others
occur (Proposition 4.4.1). In Section 4.5 we connect Kac–Rice estimates to non-existence of approximate
critical points (Theorem 4.5.2). In Section 4.6 we complete the proof of strong topological trivialization
(Theorem 4.1.13) through the shrinking bands recursion explained in the introduction. In Section 4.7 we
present further implications of Theorem 4.5.2 to approximate local maxima and marginal states in the
single-species case (e.g. Corollary 4.7.6). Finally in Appendix 4.A we study solutions to the vector Dyson
equation, obtaining joint 1/3-Hölder continuity (Theorem 4.A.2), a detailed characterization of the boundary
behavior (e.g. Theorem 4.A.5 and Proposition 4.A.7), and an explicit formula for the main determinant term
appearing in the Kac–Rice computation (Theorem 4.A.9).

4.3 Expected critical point counts

In this section we determine the annealed critical point statistics of HN to leading exponential order.
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4.3.1 Formula for the complexity functional

It will be crucial that only an exponentially small fraction of critical points in the annealed sense are atypical
in the sense below, which closely resembles the definition of Crtgood,εN .

Definition 4.3.1. We say x ∈ SN is respectively ε-energy-typical, ε-overlap-typical, and ε-bulk-typical if
with ~x = ∇radHN (x) it satisfies the three conditions (recall (4.11)):∣∣∣∣ 1

N
HN (x)− (ξ′)>A−1Λ1/2~x

∣∣∣∣ ≤ ε,∥∥∥~R(G(1),x)− Λ−1/2diag(Γ(1))A−1Λ1/2~x
∥∥∥
∞
≤ ε ,

W2 (µ̂HN (x), µ(~x)) ≤ ε and dH

(
spec
HN

(x), supp(µ(~x))

)
≤ ε.

If these conditions are not satisfied, x is respectively ε-energy-atypical, ε-overlap-atypical, and ε-bulk-
atypical. We say x is ε-typical if all three typicality conditions hold, and ε-atypical otherwise.

Given a setD ⊆ Rr×R, let CrtN (D) denote the set of critical points σ forHN with (∇radHN (σ), HN (σ)/N) ∈
D. Also, for D ⊆ Rr, let Crt

(ε)
N (D) the set of critical points with ∇radHN (σ) ∈ D which are ε-atypical. Re-

calling (4.44), define the complexity functionals F : Rr → R and F : Rr × R→ R by

F (~x) =
1

2

(
1−

∑
s∈S

λs log ξs(~1)− ‖A−1/2Λ1/2~x‖22
)

+ Ψ(~x) , (4.47)

F (~x,E) = F (~x)− (E − (ξ′)>A−1Λ1/2~x)2

2(ξ(~1)− (ξ′)>A−1ξ′)
. (4.48)

The following main result of this section characterizes the annealed critical point complexity of HN in terms
of these functionals.

Proposition 4.3.2. Fix ~λ and non-degenerate ξ. Let D ⊆ Rr × R be the closure of its non-empty interior.
Then,

lim
N→∞

1

N
logE|CrtN (D)| = sup

(~x,E)∈D
F (~x,E). (4.49)

Moreover, for D ⊆ Rr equal to the closure of its non-empty interior and ε > 0, there exists c = c(ξ, ε) > 0
such that

lim sup
N→∞

1

N
logE|Crt(ε)N (D)| ≤ sup

~x∈D
F (~x)− c. (4.50)

4.3.2 Proof of Proposition 4.3.2

Below, we focus on proving (4.49) and then explain the necessary changes to reach (4.50). For fixed ~x ∈ Rr,
let MN = MN (~x) ∈ RT ×T be a Gaussian matrix with distribution

MN ∼ L(∇2
spHN (σ) | ∇radHN (σ) = ~x).

(Here L(·|·) denotes a conditional law; since ∇radHN (σ) is a linear function of HN , there is no difficulty in
defining regular conditional laws.) This can be written explicitly as follows. Let W be the random matrix
with law given by (4.26). By Fact 4.1.4,

MN
d
= W − diag(Λ−1/2~x � 1T ) . (4.51)

We let µ̂MN
= µ̂(MN ) denote the (random) spectral measure of this matrix. We further define the finite-N

vector Dyson equation

1 +

(
z +

xs√
λs

+
∑
s′∈S

λ◦N,sξ
′′
s,s′

λ2
s

mN,s′(z)

)
mN,s(z) = 0 , z ∈ H . (4.52)
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with unique solution ~mN (z) = (mN,s(z))s∈S . (This is the matrix Dyson equation from e.g. [BBM23, Section
1.10] with M(z) = diag(~mN (z) � 1T ).) We let µMN ,s be the measure with Stieltjes transform mN,s and

µMN
=
∑
s∈S

λ◦N,sµMN ,s.

This ~mN (z) and µMN
exist and are unique by [EKS19, Proposition 5.1 (i),(ii)]. In the next proposition, we

give the required conditions to apply [BBM23, Theorem 4.1].

Proposition 4.3.3. Given ~λ, δ, a bounded family of ~x ∈ Rr and a uniformly non-degenerate family of ξ,
the following hold uniformly over the families for some C, c > 0:

(a) P[supp(µ̂MN
) ⊆ [−C,C]] ≥ 1− e−cN .

(b) W1

(
E[µ̂MN

], µMN

)
≤ N−c.

(c) P
[
W1

(
µ̂MN

,Eµ̂MN

)
≥ δ
]
≤ e−cN .

(d) limN→∞ P[µ̂MN
([−N−5, N−5]) > 0] = 0.

(e) There exists an entrywise continuous-in-~x coupling of the matrices MN (~x).

(f) For all ~x ∈ Rr,
E [|det(MN (~x))|] ≤ CN (‖~x‖∞ + 1)N .

Proof. Point (a) follows by Proposition 4.2.10(a)(e). Point (b) is a standard result on stability of the vector
Dyson equation, see [BBM23, Proof of Corollary 1.9.B], except that (b) is usually shown for a variant of
µMN

solving a Dyson equation with additional O(1/N) terms on the diagonal entries ξ′′i,i. This discrepancy
causes negligible error N−c as shown in [BBM23, Proposition 3.1] and [BBM24, Lemma 3.1], so the claim
does follow (see also [McK24, Section 3.1] for further discussion of this purely technical issue). By [GZ00,
Lemma 1.2(b)], for any 1-Lipschitz test function f the map

(Wi,j)1≤i<j≤k 7→
∫
f(λ)µ̂MN

(dλ)

is O(1)-Lipschitz. In particular, writing Wi,j =
√

(1 + δi,j)ξ′′s(i),s(j)/λs(i)λs(j)gi,j for i.i.d. gaussians gi,j , and

applying gaussian concentration of measure,

P
[∣∣∣∣∫ f(λ)µ̂MN

(dλ)−
∫
f(λ)Eµ̂MN

(dλ)

∣∣∣∣ ≥ δ′] ≤ e−c(δ′)N .
for any δ′ > 0. Point (c) then follows by union bounding over O(1) test functions f . Point (d) follows
by averaging over a small global shift of MN by the identity matrix. Indeed since ξ is non-degenerate, we
can express the law of MN as the sum of two independent matrices, one of which is N−2gIT for a scalar
Gaussian g ∼ N (0, 1). Then point (d) holds even after conditioning on the other summand, since each of the
N eigenvalues has conditional probability O(N−2) to lie in [−N−5, N−5]. Point (e) is clear. Finally point
(f) easily follows from the deterministic inequality

|det(MN )| ≤
(
‖MN‖2F
N − r

)(N−r)/2

which is a consequence of the arithmetic mean-geometric mean inequality.

Proof of Proposition 4.3.2. Define

ΨN (~x) =
1

N
logE|det(MN (~x))|,

FN (~x) =
1

2

(
1−

∑
s∈S

λsξ
s(~1)− ‖A−1/2Λ1/2~x‖22

)
+ ΨN (~x) .
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Let ϕX be the density of random variable X w.r.t. Lebesgue measure. By the Kac–Rice formula (see e.g.
[AT09, Chapter 11]),

E|CrtN (D)| =
∫
SN

∫
Rr

(
E
[
|det∇2

spHN (σ)|1{(~x,HN (σ)/N) ∈ D}∣∣∣ ∇spHN (σ) = 0,∇radHN (σ) = ~x
]

× ϕ∇spHN (σ)(0)ϕ∇radHN (σ)(~x)

)
d~x dHN−r(σ) ,

where HN−r denotes the (N − r)-dimensional Hausdorff measure on SN . By spherical invariance, the
integrand does not depend on σ, so the integral over HN−r simply contributes a volume factor given by
Fact 4.2.3. By Fact 4.1.4 and Lemma 4.2.2,

E
[
|det∇2

spHN (σ)|1{(~x,HN (σ)/N) ∈ D}
∣∣∣ ∇spHN (σ) = 0,∇radHN (σ) = ~x

]
= E [|detMN (~x)|]P

[
(~x,HN (σ)/N) ∈ D

∣∣∣ ∇radHN (σ) = ~x
]

(4.53)

= eo(N)E [|detMN (~x)|]
∫
R

1{(~x,E) ∈ D}

× exp

(
−N(E − (ξ′)>A−1Λ1/2~x)2

2(ξ(~1)− (ξ′)>A−1ξ′)

)
dE.

We further have

ϕ∇spHN (σ)(0) =
∏
s∈S

(2πξs(~1))−(|Is|−1)/2

=⇒ 1

N
logϕ∇spHN (σ)(0) = −

log(2π) +
∑
s∈S λs log ξs(~1)

2
+ oN (1) . (4.54)

and

ϕ∇radHN (σ)(~x) = (2π)−r/2
√

det Λ

detA
exp

(
−N

2
‖A−1/2Λ1/2~x‖22

)
.

Thus, up to additive oN (1) error, using Fact 4.2.3 in the second step gives

1

N
logE|CrtN (D)| ≈ 1

N
logHN−r(SN ) +

1

N
logϕ∇spHN (σ)(0) +

1

N
log

∫
D
E|detMN (~x)|

× exp

(
−N

2
‖A−1/2Λ1/2~x‖22 −

N(E − (ξ′)>A−1Λ1/2~x)2

2(ξ(~1)− (ξ′)>A−1ξ′)

)
d(~x,E)

≈ 1

2

(
1−

∑
s∈S

λs log ξs(~1)
)

+
1

N
log

∫
D

exp(NΨN (~x)) (4.55)

× exp

(
−N

2
‖A−1/2Λ1/2~x‖22 −

N(E − (ξ′)>A−1Λ1/2~x)2

2(ξ(~1)− (ξ′)>A−1ξ′)

)
d(~x,E). (4.56)

We next analyze the behavior of ΨN via [BBM23, Corollary 1.9.A], where the necessary conditions hold by
Proposition 4.3.3. This result expresses the asymptotic value of ΨN based on the solution to the finite-N
vector Dyson equation (4.52). In fact (4.52) is exactly equivalent to the limiting Dyson equation (4.38)

with ~λ replaced by ~λ◦N from (4.41) (see e.g. the discussion in [AEK19a, Section 11.5]). Therefore [BBM23,
Corollary 1.9.A] shows that uniformly on compact sets, up to oN (1) error:

ΨN (~x) ≈
∫

log |γ|[µ~λ◦N (~x)](dγ).

Recalling Propositions 4.2.11 and 4.2.15 shows that, again uniformly on compact sets:∫
log |γ|[µ~λ◦N (~x)](dγ) ≈

∫
log |γ|[µ(~x)](dγ) = Ψ(~x).
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We next deduce (4.49) via Laplace’s method similarly to [BBM23, Theorem 4.1]. (The latter result is not
directly applicable as it is stated with additional technical requirements, but the proof can be routinely
adapted.) For compact D, local uniformity of the approximations just above allows replacement of ΨN (~x)
by its limit Ψ(~x) in (4.55) up to oN (1) error. Since Ψ(~x) is continuous by Proposition 4.2.15, Laplace’s
method then immediately gives (4.49) for compact D. It remains to show that (4.49) respects exhaustion by
compact sets, both for finite N and after passing to the limit.

The needed statement at finite N is that

lim
R→∞

lim sup
N→∞

1

N
logE[|CrtN (Rr+1\DR)|] = −∞ (4.57)

where DR = (−R,R)r+1. Similarly to [BBM23, Lemma 4.3], this follows from the non-asymptotic bound
E[|det(MN (~x))|] ≤ (C max(‖~x‖∞, 1))N , since when either ‖~x‖∞ ≥ R or |E| ≥ R the quadratic term (4.56)

contributes an overwhelming e−Ω(NR2) factor. Said bound is shown exactly as in [McK24, Lemma 3.7], by
writing MN (~x) = WN +AN (~x) for deterministic AN and centered Gaussian WN . Namely one can separate
MN (~x) with the deterministic estimate |det(MN (~x)|N ≤ 2N (‖WN‖Nop + ‖AN (~x)‖Nop), and use the simple

bound P[‖WN‖op ≥ t] ≤ e−cN(t−C)+ (which follows because ‖WN‖op is typically O(1) and is O(1)-Lipschitz
in its independent Gaussian entries) to control the random part.

We also need to show that F (~x,E) tends to −∞ as max(‖~x‖∞, |E|)→∞. This follows because Ψ(~x) ≤
C(max(‖~x‖∞, 1)) due to (4.46), which is dominated by the quadratic terms of F (~x,E). Together with (4.57),
this allows us to deduce (4.49) for general D from the compact D case via exhaustion. Namely one restricts
to the compact set D ∩ [−R,R]r+1 and sends R → ∞ after N → ∞ (exactly as in e.g. [BBM23, Proof of
Theorem 4.1]). This completes the first part of the proof.

Moving onto (4.50), we separately address the cases of energy, overlap, and bulk-atypicality. Energy-
atypicality follows directly from (4.49), as the term involving E in (4.48) is nonzero. For overlap-atypicality,

let Eo
ε (σ) denote the event that σ is ε-overlap-atypical, and Crt

(ε,o)
N (D) be the set of critical points with

∇radHN (σ) ∈ D which are ε-overlap-atypical. (Recall that for (4.50), D is a subset of Rr rather than Rr×R.)
By the Kac–Rice formula,

E|Crt(ε,o)
N (D)| =

∫
SN

∫
D

(
E
[
|det∇2

spHN (σ)|1{Eo
ε (σ)}

∣∣∣ ∇spHN (σ) = 0,∇radHN (σ) = ~x
]

ϕ∇spHN (σ)(0)ϕ∇radHN (σ)(~x)

)
d~x dHN−r(σ).

By calculations similar to above, up to additive oN (1) error

1

N
logE|Crt(ε,o)

N (D)|

≈ 1

2

(
1−

∑
s∈S

λs log ξs(~1)

)
+

1

N
log

∫
D

exp

(
NΨ(~x)− N

2
‖A−1/2Λ1/2~x‖22

)
× P

[
Eo
ε (σ)

∣∣∣ ∇radHN (σ) = ~x
]
d~x.

By (4.28), each entry of ~R(G(1),σ) has variance bounded above by 1/(N min~λ). Since ~R(G(1),σ) and
∇radHN (σ) are jointly gaussian, this remains true after conditioning on ∇radHN (σ). In light of (4.33), this
implies

P
[
Eo
ε (σ)

∣∣∣ ∇radHN (σ) = ~x
]
≤ e−cN .

This implies (4.50) for overlap-typicality.
The main case that needs to be addressed is bulk-atypicality. Let Eb

ε (σ) be the event that σ is ε-bulk-

atypical and Crt
(ε,b)
N (D) be the set of critical points with∇radHN (σ) ∈ D which are ε-bulk-atypical. Similarly
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to above,

E|Crt(ε,b)
N (D)|

=

∫
SN

∫
D

(
E
[
|det∇2

spHN (σ)|1{Eb
ε (σ)}

∣∣∣ ∇spHN (σ) = 0,∇radHN (σ) = ~x
]

× ϕ∇spHN (σ)(0)ϕ∇radHN (σ)(~x)

)
d~x dHN−r(σ),

and so up to oN (1) additive error

1

N
logE|Crt(ε,b)

N (D)| ≈ 1

2

(
1−

∑
s∈S

λs log ξs(~1)

)
+

1

N
log

∫
D

exp

(
−N

2
‖A−1/2Λ1/2~x‖22

)
× E

[
|det∇2

spHN (σ)|1{Eb
ε (σ)}

∣∣∣ ∇radHN (σ) = ~x
]
d~x.

Unlike above, 1{Eb
ε (σ)} and the Hessian determinant are not independent. Instead, by Cauchy–Schwarz,

the last expectation is bounded by

E
[
|det∇2

spHN (σ)|2
∣∣∣ ∇radHN (σ) = ~x

]1/2
P
[
Eb
ε (σ)

∣∣∣ ∇radHN (σ) = ~x
]1/2

.

By [BBM23, Theorem A.2],

E
[
|det∇2

spHN (σ)|2
∣∣∣ ∇radHN (σ) = ~x

]1/2
= eo(N)E

[
|det∇2

spHN (σ)|
∣∣∣ ∇radHN (σ) = ~x

]
= eo(N) exp(NΨN (~x)),

and by Proposition 4.2.10(e) and 4.2.11,

P
[
Eb
ε (σ)

∣∣∣ ∇radHN (σ) = ~x
]1/2

≤ e−cN/2.

Combining and arguing as above completes the proof (with c/2 in place of c).

4.4 Solving the variational problem

Due to Proposition 4.3.2, in order to establish Theorem 4.1.11 it remains to maximize F (~x) over Rr. In this
section we prove parts (a) and (b) of this theorem, regarding super-solvable ξ. The strictly sub-solvable case
(c) will be proved in Subsection 4.5.3.

Proposition 4.4.1. Assume ξ is strictly super-solvable. Then F (~x) ≤ 0 for all ~x ∈ Rr, with equality at

precisely the 2r points ~x(~∆) for ~∆ ∈ {−1, 1}r.

We also state the following regularity property of F , which implies that its maximum is attained at a
stationary point.

Lemma 4.4.2. The function F is continuously differentiable in ~x, and

lim
R→∞

sup
‖~x‖∞≥R

F (~x) = −∞ .

Moreover the latter limit is uniform on bounded, uniformly non-degenerate ξ.

Proof. Continuous differentiability follows from Lemma 4.4.4 below and Lemma 4.2.12. For R = ‖~x‖∞, we
have Ψ(~x) . logR while 〈Λ1/2~x,A−1Λ1/2~x〉 & R2, which establishes the decay at infinity.
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Proof of Theorem 4.1.11 parts (a), (b). The result is immediate from Propositions 4.3.2 and 4.4.1 for strictly
super-solvable ξ. The proof of (4.17) for solvable ξ follows since ξ 7→ sup~x∈R Fξ(~x) is continuous at any
non-degenerate ξ. Indeed F is locally uniformly continuous in non-degenerate ξ on compact ~x-sets by
Proposition 4.2.15.

We also prove the following fact which will be useful in later sections.

Lemma 4.4.3. If ξ is strictly super-solvable, there exists ε > 0 such that for any ~∆ ∈ {−1, 1}r, [−ε, ε] ∩
S(~∆) = ∅.

4.4.1 Stationarity condition

We next identify all stationary points of F . It will be convenient to perform the below derivative calculations
in the variable ~v = Λ1/2~x (recall (4.11)). To this end, we define:

F (~v) = F (~x),

Ψ(~v) = Ψ(~x),

µ(~v) = µ(~x),

us(z;~v) = ms(z; ~x),

~u(z;~v) = ~m(z; ~x).

Here we recall ms(z; ~x) is defined above (4.38) and define ~m(z; ~x) = (ms(z; ~x))s∈S . Thus,

F (~v) =
1

2

(
1−

∑
s∈S

λs log ξs(~1)− ‖A−1/2~v‖22
)

+ Ψ(~v) . (4.58)

The Dyson equation (4.38) is equivalent (after some rearrangement) to

λsz + vs = − λs
us(z;~v)

−
∑
s′∈S

ξ′′s,s′us′(z;~v) . (4.59)

The next lemma gives exact formulas for Ψ, F and their gradients. These seem to be new and extend
known results in the single-species case (see e.g. (4.112) and the discussion below). We believe they are
of independent interest, and might lead to more explicit thresholds in e.g. [McK24, Theorem 2.5]. (This
would still require optimization over the complicated set of vectors ~u corresponding to some ~v ∈ Rr; see
Lemma 4.4.8 below.) The majority of the proof is carried out in Appendix 4.A.

Note that below and throughout, we always use 〈~a,~b〉 =
∑r
s=1 asbs to denote a bilinear form rather than

a complex inner product, even when ~a,~b are complex vectors. Also recall that <(·) denotes the real part of
a complex number or vector.

Lemma 4.4.4. The functions Ψ, F are C1 and satisfy, with ~u = ~u(0;~v),

Ψ(~v) =
1

2
<(〈~u, ξ′′~u〉)−

∑
s∈S

λs log |us|, (4.60)

F (~v) =
1

2

(
1−

∑
s∈S

λs log ξs(~1)− 〈~v,A−1~v〉+ <(〈~u, ξ′′~u〉)

)
−
∑
s∈S

λs log |us|, (4.61)

∇Ψ(~v) = −<(~u), (4.62)

∇F (~v) = −A−1~v −<(~u). (4.63)

Proof. The formulas (4.60) and (4.62) follow from Theorem 4.A.9 and Lemma 4.A.28. Then (4.61) and
(4.63) follow as straightforward consequences.
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For the rest of this section, we let ~u = ~u(0;~v) ∈ Hr. Note that (4.59), specialized to z = 0, gives

vs = −λs
us
−
∑
s′∈S

ξ′′s,s′us′ . (4.64)

We next describe the condition for ~v to be a stationary point of F .

Lemma 4.4.5. If ∇F (~v) = ~0, then for all s ∈ S , either <(us) = 0 or |us| =
√
λs/ξ′s = 1/

√
ξs(~1) (recall

(4.5)).

Proof. We have

λs
us

+
∑
s′∈S

ξ′′s,s′us′ = −vs = <(A~u)s = <

(
ξ′sus +

∑
s′∈S

ξ′′s,s′us′

)
,

where the first equality is (4.64), the second is (4.63), and the third is the definition (4.11) of A. Taking real
parts of both sides implies <(λs/us) = <(ξ′sus), which implies the conclusion.

We will see that the maximizers of F described in Proposition 4.4.1 correspond to us = ±1/
√
ξs(~1). The

primary remaining difficulty is to show all other remaining stationary points are not local maxima.

4.4.2 Non-maximality of stationary points with pure-imaginary us

The following main result of this subsection rules out the first case identified in Lemma 4.4.5 for strictly
super-solvable ξ. From it, we will easily conclude (in Corollary 4.4.11 below) that all maximizers of F are
as in Proposition 4.4.1.

Proposition 4.4.6. Suppose ξ is strictly super-solvable. If ∇F (~v) = ~0 and <(us) = 0 for some s ∈ S , then
~v is not a local maximum of F .

We will need as input from Appendix 4.A the following two lemmas. For ~u ∈ Hr define the matrices

M(~u) = diag

(
λs
u2
s

)
s∈S

− ξ′′, M(~u) = diag

(
λs
|us|2

)
s∈S

− ξ′′. (4.65)

Lemma 4.4.7. At all ~v ∈ Rr such that M(~u) is invertible, the function ~v 7→ ~u(0;~v) is differentiable and
∇~v~u(0;~v) = M(~u)−1.

Proof. Follows from Lemma 4.A.4.

The equation (4.64) relates ~v to its associated ~u, which is well-defined by Proposition 4.2.10. Because
~v ∈ Rr while ~u ∈ Hr, one roughly expects that those ~u corresponding to some ~v ∈ Rr lie within an
r-dimensional real submanifold of Hr. The next lemma describes this set of ~u.

Lemma 4.4.8. Let ~u∗ ∈ Hr. There exists ~v ∈ Rr such that ~u∗ = ~u(0;~v) if and only if one of the following
conditions holds.

(i) ~u∗ ∈ Rr and M(~u∗) � 0.

(ii) ~u∗ ∈ Hr, M(~u∗) � 0, and M(~u∗)=(~u∗) = 0.

Moreover, in case (ii), M(~u∗) is invertible.

Proof. Follows from Theorem 4.A.5(b) and Corollary 4.A.6.

Lemma 4.4.9. Suppose ξ is strictly super-solvable. If M(~u) is singular, then |us| > 1/
√
ξs(~1) for some

s ∈ S .
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Proof. Suppose otherwise; then diag(λs/|us|2)s∈S � diag(ξ′), so

M(~u) � diag(ξ′)− ξ′′ � 0 .

However, M(~u) is singular, contradiction.

Further define

M̂(~u) = diag

(
λs
|us|2

)
s∈S

+ ξ′′.

Lemma 4.4.10. If M(~u) � 0, then M̂(~u) � 0.

Proof. Let Dξ′′ be the diagonal matrix with (s, s) entry ξ′′s,s. We will apply Lemma 4.2.8 with matrices

M̂(~u)− 2Dξ′′ and M(~u). Note that the diagonal entries of both matrices coincide, as

(M̂(~u)− 2Dξ′′)s,s = M(~u)s,s =
λs
|us|2

− ξ′′s,s

and the off-diagonal entries are related by

(M̂(~u)− 2Dξ′′)s,s′ = ξ′′s,s′ = |M(~u)s,s′ |.

Lemma 4.2.8 thus implies M̂(~u)− 2Dξ′′ � 0, which by Assumption 4.1.1 implies the result.

Proof of Proposition 4.4.6. The hypothesis <(us) = 0 for some s implies that ~u /∈ Rr, since us 6= 0 by
Proposition 4.2.10. Therefore Lemma 4.4.8 case (ii) applies, so M(~u) � 0 is singular and M(~u) is invertible.
Differentiation of (4.63) using Lemma 4.4.7 then gives

∇2F (~v) = −A−1 −<(M(~u)−1) . (4.66)

Let I ⊆ [r] be the set of indices s with |us| 6= 1/
√
ξs(~1), which is nonempty by Lemma 4.4.9. By

Lemma 4.4.5, we have <(us) = 0 for all s ∈ I. Moreover, Lemma 4.4.10 implies M̂(~u) � 0. We will
construct a vector ~w ∈ Rr such that ~w>(∇2F (~v))~w > 0, which implies ~v is not a local maximum. We work
in the subspace RI ⊆ Rr, consider ~a ∈ RI to be chosen later, and set

~w = −M(~u)~a = M̂(~u)~a.

Here the second equality uses that ~a ∈ RI and that us is pure imaginary for s ∈ I. Importantly, all entries
of ~w are real.

Abbreviate M = M(~u), M = M(~u), M̂ = M̂(~u) and let D = A − M̂ . Note that D is diagonal and its
entry Ds,s = ξ′s − λs

|us|2 is nonzero if and only if s ∈ I. Let D† denote the Moore–Penrose inverse of M and

PI =
∑
s∈I ~es~e

>
s be the projection onto I. Then

~w>(∇2F (~v))~w = −~w>A−1 ~w −<(~w>M−1 ~w)

= −~a>M̂A−1M̂~a−<(~a>M~a)

= −~a>M̂A−1M̂~a+ ~a>M̂~a

= −~a>(A−D)A−1(A−D)~a+ ~a>(A−D)~a

= ~a>D(D† −A−1)D~a

= ~a>DA−1
(

(M̂ +D)D†(M̂ +D)− (M̂ +D)
)
A−1D~a

= ~a>DA−1
(
M̂D†M̂ + M̂PI + PIM̂ − M̂

)
A−1D~a . (4.67)

Recall that A, M̂ agree on rows indexed by [r] \ I. So, if ~y ∈ RI and ~z = A−1~y, then for any s ∈ S \ I,

(M̂~z)s = (A~z)s = ys = 0.
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Thus RI is an invariant subspace for M̂A−1, i.e. M̂A−1RI ⊆ RI . Since A and M̂ are both full rank (by

Corollary 4.2.9 and Lemma 4.4.10), in fact M̂A−1RI = RI is a bijection on RI , and the same holds for

M̂A−1D.
Since we showed earlier in this proof that M is singular, Lemma 4.4.9 implies that there exists s ∈ I such

that Ds,s > 0. Using the bijectivity just established, we choose ~a such that M̂A−1D~a = ~es. Then

~a>DA−1M̂D†M̂A−1D~a = ~e>s D
†~es = D†s,s > 0 .

Since s ∈ I we further have

~a>DA−1
(
M̂PI + PIM̂ − M̂

)
A−1D~a = ~e>s PIM̂

−1~es + ~e>s M̂
−1PI~es − ~e>s M̂−1~es

= ~e>s M̂
−1~es > 0 .

Summing and recalling (4.67), we conclude that ~w>(∇2F (~v))~w > 0 as desired.

Corollary 4.4.11. If ~v ∈ Rr maximizes F , then ~v = ~v(~∆) ≡ Λ1/2~x(~∆) for some ~∆ ∈ {−1, 1}r. Conversely,

each ~v(~∆) is a stationary point of F with F (~v(~∆)) = 0.

Proof. Lemma 4.4.2 implies that if ~v maximizes F then it is a stationary point. Lemma 4.4.5 and Proposi-

tion 4.4.6 imply that |us| = 1/
√
ξs(~1) for all s ∈ S . Thus M(~u) = diag(ξ′) − ξ′′ � 0 is not singular. By

Lemma 4.4.8, we have ~u ∈ Rr, so us = ±1/
√
ξs(~1). The 2r possible choices of ~u are indexed by ~∆ ∈ {−1, 1}r

and given by

u(~∆)s = −∆s/

√
ξs(~1) . (4.68)

Substituting ~u(~∆) into (4.64) shows that ~v = ~v(~∆). For the converse, note that M(~u(~∆)) = diag(ξ′)−ξ′′ � 0,

so Lemma 4.4.8 case (i) implies that ~u(~∆) = ~u(0;~v(~∆)). We can verify from the formulas for ~u(~∆) and ~v(~∆)
that

~v(~∆) = −A~u(~∆) . (4.69)

Thus, by Lemma 4.4.5,
∇F (~v(~∆)) = −A−1~v(~∆)−<(~u(~∆)) = 0 ,

so ~v(~∆) is a stationary point.

Finally, we verify that F (~v(~∆)) = 0 for all ~∆ by directly using (4.61). Since ~u(~∆) ∈ Rr, the quadratic
terms combine to give:

1

2

(
〈~u(~∆), ξ′′~u(~∆)〉 − 〈~v(~∆), A−1~v(~∆)〉

)
(4.69)

= 〈~u(~∆), (ξ′′ −A)~u(~∆)〉/2

(4.11)
= −〈~u(~∆),diag(ξ′)~u(~∆)〉/2

(4.68)
= −1/2.

This cancels the first term in (4.61). Meanwhile recalling (4.68), the logarithmic terms give

−
∑
s∈S

λs log
(
|us|
√
ξs(~1)

)
= 0.

Combining completes the proof.

Proof of Proposition 4.4.1. Lemma 4.4.2 implies that F possesses at least one global maximizer. The preced-
ing results imply that the only possibilities are the 2r points ~v(~∆), and we have just computed F (~v(~∆)) = 0

for all ~∆. This completes the proof.
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Proof of Lemma 4.4.3. By Proposition 4.2.10 and e.g. [AGZ10, Chapter 2.4], µ(~x(~∆)) has piecewise smooth
density given by

ρ(γ) =
1

π
=(m(γ; ~x(~∆))) =

1

π
=(u(γ;~v(~∆))) ,

where u(γ;~v(~∆)) =
∑
s λsus(γ;~v(~∆)). So, it suffices to show ~u(γ;~v(~∆)) is real for all |γ| ≤ ε. It is clear

from (4.59) that

~u(γ;~v(~∆)) = ~u(0;~v(~∆) + γ~λ) .

Recall M(~u(~∆)) = diag(ξ′) − ξ′′ � 0. Thus, M(~u) � 0 for ~u in an open neighborhood N ⊆ Rr of ~u(~∆).

Hence solving (4.64) near ~u(~∆) via inverse function theorem bijectively maps N to an open neighborhood

N ′ ⊆ Rr of ~v(~∆). By Lemma 4.4.8 case (i), if ~u ∈ N maps to ~v ∈ N ′ under (4.64), then ~u = ~u(0;~v). In

particular, for suitably small ε > 0, we have ~v(~∆) +γ~λ ∈ N ′ for all |γ| ≤ ε. Thus ~u(0;~v(~∆) +γ~λ) is real.

4.4.3 Discussion of proof technique

Lemma 4.4.5 identifies approximately 3r stationary points of F : for each species s, we may choose whether

<(us) = 0, |us| = 1/
√
ξs(~1) has positive real part, or |us| = 1/

√
ξs(~1) has negative real part (though these

do not always all exist, see Figure 4.4.1c). As we saw in the above proof, the 2r stationary points where

us = ±1/
√
ξs(~1) are global maximizers and the rest are saddle points of index at least 1. The main task in

the proof of Proposition 4.4.1 was to rule out the extraneous critical points; in this subsection we motivate
our method for doing so.

In the single-species case r = 1, in the topologically trivial regime F is convex on the interval [−2
√
ξ′′, 2
√
ξ′′]

and concave on its complement, and the maximum 0 is attained in the latter set; see Figure 4.4.1a. The
boundary points ±2

√
ξ′′ correspond to the radial derivative values where 0 enters or exits the limiting bulk

spectrum of ∇2
spH(x), and can be detected by the Stieltjes transform m(0;x) becoming non-real. (In fact,

F ′′ is discontinuous at these points.) This characterization of the convexity and concavity of F allows us to
easily identify which of the critical points given by Lemma 4.4.5 are local maximizers.

However, a similar “region by region” convexity analysis will not work with multiple species. Similarly
to the one-species case, ∇2F is discontinuous on a surface of radial derivative vectors ~x where 0 enters or
exits the limiting bulk spectrum of ∇2

spH(x), and this can be detected by ~m(0; ~x) (or equivalently ~u(0;~v))
becoming non-real. This boundary divides Rr into several regions and is depicted in Figures 4.4.1b and
4.4.1c as the blue curve. A natural approach to ruling out the extraneous critical points would be to show
that, analogously to above, F is locally concave outside this boundary (in the regions containing the 2r true
maxima) and locally nonconcave inside it. However, this characterization is surprisingly not true. While
F is indeed locally concave outside the boundary — if M(~u) � 0, then (4.66) implies ∇2F (~v) � 0 — it is
possible for F to also be locally concave inside it, for example in the purple regions in Figure 4.4.1c.

This counterexample rules out attempts to argue globally about convexity. This led us to the more direct
approach of finding, at each extraneous critical point, a direction along which ∇2F is positive.

4.5 Approximate critical point control from Kac–Rice estimates

By Markov’s inequality, negativity of the annealed Kac–Rice estimate (4.50) implies that HN has no ε-
atypical critical points (with high probability). The following main result of this section shows this implica-
tion is robust in some sense: the same Kac–Rice estimate also implies non-existence of certain approximate
critical points.

Proposition 4.5.1. For strictly super-solvable ξ and any υ > 0 there exists ε = ε(ξ, υ) such that with
probability 1− e−cN , all ε-approximate critical points are υ-good (recall Definition 4.1.10).

Our approach proceeds as follows. Given HN and δ > 0, define the rerandomization

HN,δ(x) =
√

1− δ HN (x) +
√
δ H ′N (x) (4.70)

155



(a) One species, ξ′ = 3, ξ′′ = 1

(b) Two species, ~λ = (0.5, 0.5), ξ′ = (4, 4), ξ′′ =
( 1 0.5
0.5 1 )

(c) Two species, ~λ = (0.3, 0.7), ξ′ = (4.5, 4.5), ξ′′ =
( 1 2.4
2.4 1 )

Figure 4.4.1: Figure 4.4.1a: the complexity functional F of a 1-species model is shown. F is tangent to
the x-axis at two global maxima marked by green X’s. The red X is a local minimum. The two dashed
vertical lines mark the transition from local convexity to concavity, and F ′′ is discontinuous at these
points.

Figures 4.4.1b and 4.4.1c: points of interest are shown in the domain R2 of the complexity
functionals F for two different 2-species models. The green X’s are global maxima where F equals 0,
while the red X’s are stationary points that are not local maxima.
The blue boundary is analogous to the dashed vertical lines in Figure 4.4.1a, and is where ~m(0; ~x)
transitions from real and nonreal. In the four regions outside this boundary, ~m(0; ~x) is real, and in the
region inside it ~m(0; ~x) is non-real. By Lemma 4.4.8 and continuity of ~x 7→ ~m(0; ~x) (see Theorem 4.A.2),
this boundary is also the set of ~x for which ~m(0; ~x) is real and M(~m(0; ~x)) is singular.
In Figure 4.4.1b, F is locally non-concave inside this boundary, but in Figure 4.4.1c F is also locally
concave in the shaded purple regions. Note also that in Figure 4.4.1c, there are only three red X’s
instead of five; the 3r stationary points identified by Lemma 4.4.5 do not necessarily all exist.

for H ′N an independent copy of HN . Let CrtN,δ be the set of critical points for HN,δ. Our goal will be to

show that if ‖∇spHN (x)‖2 ≤ ε
√
N and HN lies in a typical set (of probability 1− e−cN ), then for suitable
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δ, ι tending to 0 with ε,
E
[
|CrtN,δ ∩Bι√N (x)|

∣∣ HN

]
≥ e−oδ(N)

This implies that if HN has an ε-critical point that is not υ-good (for some υ also tending to 0 with ε), then
the rerandomized Hamiltonian HN,δ has on average at least e−oδ(N) critical points which are not υ/2-good.
Combining with Theorem 4.1.11, which shows the number of such critical points is exponentially small, will
then yield Proposition 4.5.1.

In fact, this argument proves the following much more general result, which we believe is of significant
independent interest. Let J consist of all compact subsets of R, equipped with the Hausdorff metric. We
consider a non-empty subset

D ⊆ Rr × Rr × R× J ×W1(R),

where the right-hand product is equipped with the supremum metric over its five factors.

Given ι, ε ≥ 0, we define the set CrtD,ε,υN (HN ) ⊆ SN of ε-approximate critical points x ∈ SN for HN

which are υ-far from being described by an element of D, i.e. which satisfy

d
((
∇radHN (x), ~R(x,G(1)),

HN (x)

N
, spec
HN

(x), µ̂HN (x)
)
,D
)
≥ υ. (4.71)

Recall (4.10) for definitions of specHN (·) and µ̂HN (·). As usual, the distance from a point to a set is the

infimal point-to-point distance; recall also the definition of ∇rad near Fact 4.1.4. Note that CrtD,ε,ιN (HN ) is
an infinite set with positive probability unless ε = 0.

Theorem 4.5.2. Suppose ξ,D, ε, υ, c0 are such that for N large enough,

E
∣∣CrtD,0,υ/2N (HN )

∣∣ ≤ e−c0N . (4.72)

Then for some small ε > 0 depending only on (ξ, υ, c0), for some c > 0 and all N large enough:

P
[∣∣CrtD,ε,υN (HN )

∣∣ ≥ 1
]
≤ e−cN .

Proof of Proposition 4.5.1 from Theorem 4.5.2: Let D be the size 2r set:

D = D(ξ) =
{(
~x(~∆), ~R(~∆), E(~∆), S(~∆), µ(~x(~∆))

)
: ~∆ ∈ {−1, 1}r

}
.

Then Theorem 4.1.11(b) implies the condition (4.72) for any υ > 0, for some correspondingly small c > 0.
Therefore we may apply Theorem 4.5.2 which completes the proof.

We note that although D is defined in near-maximal generality above, examining just one of its 5 com-
ponents yields interesting consequences. For instance Section 4.7 considers only the radial derivative.

4.5.1 Technical properties of the conditional vector Dyson equation

In this somewhat technical subsection, we study the vector Dyson equation corresponding to (4.70). Note
that when both HN and H ′N are treated as random, the relevant Dyson equation is exactly as in our usual
setting explained in Subsection 4.2.3. However if one first conditions on HN , then (4.70) yields a different
vector Dyson equation with an apriori somewhat different solution that depends on HN .

We show below that with extremely high probability over HN , the latter “conditional” solution is uni-
formly close to that of the unconditional equation. This is crucial because, since we do wish to condition
on HN in our main argument, we need to apply the asymptotic determinant results from [BBM23] to this
conditioned vector Dyson equation. The main idea is that with or without conditioning, concentration of
the empirical spectrum of HN,δ implies it is well-described by the Dyson equation’s solution with very high
probability. Hence these solutions must in fact be similar, with high probability over HN .

Recall the definition of C-regular probability measure from Definition 4.2.13. We next define a class of
C-regular random matrix models, which have C ′-regular spectral measure in some sense; see Lemma 4.5.4
just below.
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Definition 4.5.3. The (law of the) random symmetric matrix MN ∈ RN×N is C-regular if it is given by
MN = WN +AN where:

(a) AN is deterministic and ‖AN‖op ≤ C.

(b) WN is a centered Gaussian matrix with independent entries on and above the diagonal.

(c) Each entry of WN has variance in
[

1
CN ,

C
N

]
.

Given a C-regular random matrix MN , for each z ∈ H we let GN (z) ∈ CN×N be the unique solution to
the equation

IN + (zIN −AN + E[WNGN (z)WN ])GN (z) = 0 (4.73)

with the constraint that the imaginary part =(GN (z)) is a strictly positive definite matrix. We let µMN
∈

P(R) be the (unique) probability measure with Stieltjes transform Tr(GN (z))/N . Such GN (z) and µMN

exist and are unique by e.g. [EKS19, Proposition 5.1 (i),(ii)].

Lemma 4.5.4. If MN is C1-regular, then µMN
is C2-regular for C2 depending only on C1. Further, for any

event E with P[E] ≥ 1/2,

W1

(
µMN

,E
[
µ̂MN

])
≤ δN , (4.74)∣∣∣∣ 1

N
logE [1E · | detMN |]−

∫
log |λ|dµMN

(λ)

∣∣∣∣ ≤ δN (4.75)

for a sequence δN → 0 depending only on C1.

Proof. The first assertion follows from [AEK17a, Theorem 2.6]. Next, (4.74) follows from [EKS19, Theorem
2.1(4b)] and [BBM23, Proposition 3.1] as in [BBM23, Proof of Corollary 1.9.B]. The second part (4.75) is
a rewriting of [BBM23, Corollary 1.9.A] except for the presence of the event E. This additional ingredient
follows by the same proof since e.g. at the end of [BBM23, Proof of Theorem 1.2], the probabilities of all
good events ELip, Egap, Eb are shown to tend to 1. Indeed as P[E] ≥ 1/2, the factor 1E only affects said lower
bound by an additive O(1/N).

Lemma 4.5.5. Suppose MN = WN +AN and M ′N = W ′N +A′N are C1-regular and WN
d
= W ′N . Then

W1

(
E[µ̂MN

],E[µ̂M ′N ]
)
≤ 1√

N
‖AN −A′N‖F .

Proof. By coupling WN = W ′N and then using the Hoffman–Wielandt lemma (see e.g. [AGZ10, Lemma
2.1.19]), one finds:

W2

(
E[µ̂MN

],E[µ̂M ′N ]
)2 ≤ 1

N
‖AN −A′N‖2F .

The Cauchy–Schwarz inequality implies that W1 distance is smaller than W2 distance, completing the
proof.

Given µ ∈ P(R), let µ(C) be the pushforward of µ under x 7→ min(C,max(−C, x)).

Lemma 4.5.6. Suppose MN = WN + AN is C1-regular. Then for some ε0 > 0 and any C2, δ > 0, there
exists C3 = C3(C1, C2, δ) such that with N sufficiently large:

P
[
W1

(
µ̂

(C2)
MN

,E[µ̂
(C2)
MN

]
)
≥ δ
]
≤ C3e

−c(C1,C2,δ)N
1+ε0

.

Proof. For any 1-Lipschitz test function f , it is shown in condition (L) in [BBM23, Equation (1.11)] that
the concentration

P
[∣∣∣Eµ̂MN [f ]− E

[
Eµ̂MN [f ]

]∣∣∣ ≥ δ/10
]
≤ C3e

−c(C1,C2,δ)N
1+ε0

. (4.76)

Here our ε0 is their ε0 − ζ; in our setting this statement follows by a Herbst argument as in [BBM23,
Proof of Corollary 1.9.B]. Since x 7→ min(C2,max(−C2, x)) is 1-Lipschitz, the composition f (C2)(x) ≡
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f
(

min(C2,max(−C2, x))
)

is as well. To obtain the claimed Wasserstein bound, recall that the W1 distance
makes P([−C2, C2]) a compact metric space, and coincides with the bounded Lipschitz metric:

W1(µ, µ̃) = sup
f :R→R
Lip(f)≤1

(
Eµ[f ]− Eµ̃[f ]

)
. (4.77)

Hence for any δ > 0 and C2, we may choose a finite δ/10-net N ⊆ P([−C2, C2]) with respect to W1. Then
for each distinct pair µi, µj ∈ N , we may choose a 1-Lipschitz fi,j : R→ R such that |Eµi [fi,j ]−Eµj [fi,j ]| =
W1(µi, µj). Since |N | is independent ofN , the event in (4.76) holds for all fi,j simultaneously with probability

1−C ′3e−c(C1,C2,δ)N
1+ε0

. Finally, we choose i, j so that W1(µi, µ̂
(C2)
MN

) ≤ δ/10 and W1(µj ,Eµ̂(C2)
MN

) ≤ δ/10. On
the event that (4.76) applies to fi,j , we thus find:

W1

(
µ̂

(C2)
MN

,E[µ̂
(C2)
MN

]
)
≤W1(µ̂

(C2)
MN

, µi) + W1

(
µi, µj

)
+ W1(µj ,Eµ̂(C2)

MN
)

≤ |Eµi [fi,j ]− Eµj [fi,j ]|+
δ

5
(4.77)

≤
∣∣Eµ̂(C2)

MN [fi,j ]− E
[
Eµ̂

(C2)

MN [fi,j ]
]∣∣+

2δ

5
(4.76)

≤ δ/2.

This completes the proof, since the value |N | depends only on C2 and δ, hence can be absorbed into the
value C3.

For our Kac–Rice application, we will fix some HN ∈ KN (recall Proposition 4.2.4) and condition also on
~a(x) = ∇radHN,δ(x), where HN,δ(x) is as in equation (4.70). Let us assume ‖~a(x)‖∞ ≤ C, which holds with
probability 1 − e−cN for some constant C by Proposition 4.2.4. Then the law of ∇2

spHN,δ(x) conditionally
on ~a(x) is a C1-regular matrix

∇2
spHN,δ(x) =

√
δ∇2
T ×TH

′
N (x)︸ ︷︷ ︸

WN

+
√

1− δ∇2
T ×THN (x)− diag(Λ−1/2~a(x) � 1T )︸ ︷︷ ︸

AN

.

We write µδHN ,~a,x ∈ P(R) for the probability measure with Stieltjes transform the corresponding solution

to (4.73) for ∇2
spHN,δ(x). Also let µξ,~a = µ1

HN ,~a,x
. However, we emphasize that µδHN ,~a,x makes sense even

for ~a 6= ∇radHN,δ(x). In fact in the arguments below, we will obtain control on µδHN ,~a,x by estimating it
locally uniformly in ~a, and only substituting ~a = ~a(x) at the end. First we show that for fixed ~a, the
measure µδHN ,~a,x concentrates sharply around µξ,~a. The idea is to apply Lemma 4.5.6 both before and
after conditioning on HN : since it yields concentration of the spectral measure in both cases, they must
concentrate around approximately the same measure.

Lemma 4.5.7. There is some ε0 > 0 such that for any C, δ > 0 there is C ′, c > 0 such that the following
holds. For each fixed x ∈ SN and fixed C-bounded ~a ∈ Rr,

P
[
HN ∈ KN and W1

(
µδHN ,~a,x, µξ,~a

)
≥ δ
]
≤ C ′e−cN

1+ε0

for N sufficiently large.

Proof. Lemma 4.5.4 shows µξ,~a is C2-regular. Moreover if HN ∈ KN and ‖~a‖∞ ≤ C, it implies that µδHN ,~a,x
is C2-regular. Let Mδ

N ≡ ∇2
spHN,δ(x); then applying (4.74) conditionally on HN shows

W1

(
E[µ̂Mδ

N
|HN ], µδHN ,~a,x

)
≤ δ/4.

Applying Lemma 4.5.6 also conditionally on HN gives:

P
[
HN ,

HN,δ

2
∈ KN and W1

(
µ̂Mδ

N
,E[µ̂Mδ

N
|HN ]

)
≥ δ/4

]
≤ C ′e−cN

1+ε0
/4.
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Here
HN,δ

2 ∈ KN was used to imply µ̂Mδ
N

= µ̂
(C2)

Mδ
N

. Lemma 4.5.6 applied without conditioning on HN similarly

yields

P
[
HN ,

HN,δ

2
∈ KN and W1

(
µ̂Mδ

N
,E[µ̂Mδ

N
]
)
≥ δ/4

]
≤ C ′e−cN

1+ε0
/4.

Finally since E[µ̂Mδ
N

] = E[µ̂MN
], it follows from (4.74) (now applied unconditionally) that

W1

(
E[µ̂MN

], µξ,~a
)
≤ δ/4.

Combining using the triangle inequality yields

P
[
HN ,

HN,δ

2
∈ KN and W1

(
µδHN ,~a,x, µξ,~a

)
≥ δ
]
≤ C ′e−cN

1+ε0
/2.

It remains to observe that the event W1

(
µδHN ,~a,x, µξ,~a

)
≥ δ is determined by HN , and that

P
[
HN,δ

2
∈ KN |HN

]
≥ P[H ′N ∈ KN ] ≥ 1/2 (4.78)

for any HN ∈ KN . The former inequality in (4.78) follows by writing HN,δ/2 =
√

1−δ
2 HN +

√
δ

2 H
′
N because

√
1−δ
2 +

√
δ

2 ≤ 1. Indeed since KN is a symmetric convex set it contains the origin, so if HN , H
′
N ∈ KN then

also HN,δ/2 ∈ KN . The latter inequality in (4.78) is one of the defining properties of KN in Proposition 4.2.4,
since H ′N is an i.i.d. copy of HN .

Next in Lemma 4.5.8 and Proposition 4.5.10, we exhaust all bounded ~a in Lemma 4.5.7. Combined with
the continuity shown in Lemma 4.5.5, this shows validity of Lemma 4.5.7 uniformly in bounded ~a.

Lemma 4.5.8. For any C, ε > 0, with probability 1− e−cN , HN ∈ KN and

sup
x∈SN ,‖~a‖∞≤C

W1

(
µδHN ,x,~a, µξ,~a

)
≤ ε.

Proof. Let NN be an N−10-net for SN and AN an N−10-net for the C-bounded vectors ~a. Note that
|NN ×AN | ≤ NO(CN). Since P[HN ∈ KN ] ≥ 1− e−cN , union-bounding over the events in Lemma 4.5.7 over
NN ×AN implies that with probability 1− e−c′N ,

sup
x∈NN ,~a∈AN

W1

(
µδHN ,x,~a, µξ,~a

)
≤ ε/2. (4.79)

Next assuming again that HN ∈ KN , for any x̂ ∈ SN and C-bounded ~̂a, let x,~a be the nearest points in
NN ,AN . Let M δ

N = Mδ
N (x), M̂δ

N = M δ
N (x̂) be the associated random Riemannian Hessians of HN,δ given

HN . Then Lemma 4.5.5 implies
W1

(
E[µ̂Mδ

N
],E[µ̂

M̂δ
N

]
)
≤ N−3.

Recalling the deterministic bound (4.74), we have

W1

(
µMδ

N
, µ
M̂δ
N

)
≤ 2δN +N−3

whenever HN ∈ KN . Combining with (4.79) completes the proof, as µMδ
N

= µδHN ,x,~a.

For x ∈ SN , define the distorted Hessian

JN (x) ≡ Ξ � ∇2
spHN (x) , Ξ = (ξ′)−1/2 ⊗ (ξ′)−1/2 ∈ Rr×r. (4.80)

This is again C-regular conditionally on ~a = ∇radHN (x), and we let µ̃ξ,~a be the corresponding solution to
(4.73).

Definition 4.5.9. The set KN (ε) ⊆ KN consists of all HN ∈HN satisfying:
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(a) HN ∈ KN .

(b) For all x ∈ SN , with MN = ∇2
spHN (x),

W1(µ̂MN
, µξ,∇radHN (x)) ≤ ε.

(c) For all x ∈ SN , with M̃N = JN (x),

W1(µ̂
M̃N

, µ̃ξ,∇radHN (x)) ≤ ε.

(d) For all x ∈ SN and ‖~a‖∞ ≤ C we have

W1

(
µδHN ,x,~a, µξ,~a

)
≤ ε.

Proposition 4.5.10. For any ε > 0, we have P[HN ∈ KN (ε)] ≥ 1− e−c(ε)N .

Proof. Part (a) follows from Proposition 4.2.4. Part (d) follows by Lemma 4.5.8. A similar argument implies
parts (b) and (c).

4.5.2 Main argument

We fix a small constant δ and set

(ε, α, η, ι) =
(
δ10, δ1/3, δ1/10, δ1/100

)
. (4.81)

Lemma 4.5.11. Fix HN ∈ KN (ε). For each y ∈ SN and C-bounded ~a, with N sufficiently large, let Ey be
an event satisfying

inf
y∈SN

P
[
Ey

∣∣∣ (∇spHN,δ(y),∇radHN,δ(y), HN

)]
≥ 1/2.

Then including 1Ey within the determinant expectation for ∇2
spHN,δ(y) has a negligible effect, in the sense

that uniformly in y:∣∣∣∣∣ 1

N
logE

[
1Ey ·

∣∣ det∇2
spHN,δ(y)

∣∣ ∣∣∣ (∇spHN,δ(y) = 0,∇radHN,δ(y) = ~a,HN

)]
(4.82)

−
∫

log |λ|dµξ,~a(λ)

∣∣∣∣∣ ≤ oδ(1).

Proof. By Lemma 4.2.2, ∇2
T ×THN,δ(y) and ∇HN,δ(y) are independent. Recalling (4.70) the conditional

law of ∇2
spHN,δ(y) agrees with that of

√
1− δ∇2

T ×THN (y) +
√
δ∇2
T ×TH

′
N (y)− diag(Λ−1/2~a � 1T )

which is C(δ)-regular for HN ∈ KN . Upper-bounding the left-hand side of (4.82) by∣∣∣∣∣ 1

N
logE

[
1Ey ·

∣∣det∇2
spHN,δ(y)

∣∣ ∣∣∣ (∇spHN,δ(y) = 0,∇radHN,δ(y) = ~a,HN

)]
−
∫

log |λ|dµδHN ,x,~a(λ)

∣∣∣∣∣+

∣∣∣∣∫ log |λ|dµδHN ,x,~a(λ)−
∫

log |λ|dµξ,~a(λ)

∣∣∣∣ ,
we can apply Lemma 4.5.4 to bound the first term and Lemma 4.2.14 (using part (d) of Definition 4.5.9) to
the second.

The next lemma gives a Taylor expansion estimate for ‖∇spHN (y)‖2. In it, we let γx→y : [0, 1]→ SN be
the shortest path geodesic with γx→y(0) = x and γx→y(1) = y (say, whenever y ∈ Bα√N (x) so the shortest
path is clear). Note that γ′x→y(0) is approximately y − x; the result below holds with this replacement as
well, but for the application γ′x→y(0) will be more convenient since it is in the tangent space TxSN .
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Lemma 4.5.12. Let HN ∈ KN . For y ∈ Bα√N (x) ∩ SN and bounded ~v ∈ Rr, we have

‖~v � ∇spHN (y)‖2 ≤ ‖~v � ∇spHN (x) + ~v � ∇2
spHN (x) · γ′x→y(0)‖2 + Cα2

√
N . (4.83)

Proof. Let Pt : Tγx→y(t)SN → TxSN be the associated parallel transport map on tangent spaces. This is a

product of isometries on subspaces of each RIs , so

‖~v � ∇spHN (γ(t))‖2 = ‖~v � Pt
(
∇spHN (γ(t))

)
‖2.

Moreover,
d

dt

[
~v � Pt

(
∇spHN (γx→y(t))

)] ∣∣
t=0

= ~v � ∇2
spHN (γx→y(t))γ′x→y(t) .

It remains to apply Taylor’s theorem to ~v �Pt
(
∇spHN (γ(0))) with derivative bounds from Proposition 4.2.4

as HN ∈ KN .

Lemma 4.5.13. Fix HN ∈ KN (ε) and x such that

‖∇spHN (x)‖2 ≤ ε
√
N . (4.84)

Then in expectation over H ′N , there are at least e−oδ(N) points y ∈ Bα√N (x) ∩ SN such that

|HN (x)−HN,δ(y)| ≤ ι2N, (4.85)

∇spHN,δ(y) = 0, (4.86)

‖∇radHN (x)−∇radHN,δ(y)‖∞ ≤ ι2, (4.87)

‖∇2
spHN (x)−∇2

spHN,δ(y)‖op ≤ ι. (4.88)

Proof. Throughout the proof we fix and condition on HN ∈ KN (ε). Then with high conditional probability,
the events (4.85), (4.87), and (4.88) all occur (recall from (4.81) that ι is much larger than α and δ). Let E1

be the event that (4.85) and (4.87) hold, and E2,y the event that (4.88) holds.
By considering only the contribution from E1 ∩ E2,y and recalling Lemma 4.2.2 part (a), we find that

the expected number of such critical points is at least

(2πδ)−
N−r

2

∏
s∈S

(ξs)
Ns−1

2

∫
y∈Bα√N (x)∩SN

(
exp

(
−(1− δ)

2δ
‖(ξ′)−1/2 � ∇spHN (y)‖22

)
1E1

(4.89)

× min
‖~a−∇radHN (x)‖∞≤ι2

E
[
1E2,y ·

∣∣det∇2
spHN,δ(y)

∣∣
∣∣∣ (∇spHN,δ(y) = 0,∇radHN,δ(y) = ~a,HN

)])
dy

If in addition to HN one conditions on any (HN,δ(y),∇radHN,δ(y)) satisfying E1, we claim the conditional
probability of E2,y (i.e. (4.88)) is at least 1/2. Indeed, the conditional mean of ∇2

spHN,δ(y) is given by√
1− δ∇2

spHN,δ, plus an additive shift of operator norm O(ι2) � ι (coming from linear regression via

Lemma 4.2.2). The conditionally random part of ∇2
spHN,δ(y) consists of an additive

√
δ∇2
T ×TH

′
N (y), which

has operator norm O(
√
δ)� ι with high probability.

Hence Lemma 4.5.11 (which holds uniformly in y) implies that the latter part of the integrand is, for
each ~a such that ‖~a−∇radHN (x)‖∞ ≤ ι2:

exp

(
N

∫
log |λ| [µξ,∇radHN (x)](dλ)± oι(N)

)
. (4.90)

Indeed, (4.75) shows it is suitably close to exp
(
N
∫

log |λ| [µξ,~a](dλ)± oι(N)
)

and combining Lemmas 4.5.5
and 4.2.14 allows us to replace ~a by ∇radHN (x). It remains to integrate the other term, namely the origin
density of ∇spHN,δ(y) conditional on HN :

(2πδ)−
N−r

2

∏
s∈S

(ξs)
Ns−1

2 exp

(
−(1− δ)

2δ
‖(ξ′)−1/2 � ∇spHN (y)‖22

)
. (4.91)
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Using (4.83) with ~v = (ξ′)−1/2 and ‖u+ v‖22 ≤ (1 + ι)‖u‖22 + (C/ι)‖v‖22 we get:

‖(ξ′)−1/2 � ∇spHN (y)‖22 ≤ (1 + ι)‖(ξ′)−1/2 � ∇2
spHN (x) · γ′x→y(0)‖22 +

C(ε2 + α4)

ι
N .

Recalling (4.91), we integrate over a subset of y ∈ Bα√N (x) chosen as follows. Let T1(x) be the span of the
eigenvectors of JN (x) (recall (4.80)) with eigenvalues inside [−η, η], and T2(x) the orthogonal complement
in the tangent space TxSN . Since HN ∈ KN (ε) and µξ,~a is C1-regular uniformly in C-bounded ~a, we have
dim(T1(x)) ≤ O(Nη).

Write γ̃′x→y(0) = (ξ′)1/2 � γ′x→y(0). Let S(x) be the Minkowski sum of a radius α2
√
N/2 ball S1(x) ⊆

T1(x) and a radius α
√
N/2 ball S2(x) ⊆ T2(x). We consider y for which γ̃′x→y(0) ∈ S(x) and accordingly

write γ̃′x→y(0) = s1 + s2 for si ∈ Si(x). It is easy to see that the map y → γ′x→y(0) is a diffeomorphism on
y ∈ Bα√N (x) with Jacobian determinant 1± oα(1) uniformly. We will thus freely switch to integration over
γ′x→y(0), which is equivalent to integration over γ̃′x→y(0) after picking up a factor∏

s∈S

(ξs)(|Is|−1)/2 = eo(N) ·
∏
s∈S

(ξs)λsN/2.

Continuing,

‖JN (x) · γ̃′x→y(0)‖22 = ‖JN (x) · (s1 + s2)‖22
= ‖JN (x) · s1‖22 + ‖JN (x) · s2‖22
≤ Cη2α4N + ‖JN (x) · s2‖22.

From (4.81), we have η2α4 � δ so the first term will be negligible below. By definition of S2(x), the vector
v2 = JN (x) · s2 ranges over a superset of the ball of radius αη

√
N/C in S2(x). Since αη �

√
δ from (4.81),

this captures at least 1/2 of the Gaussian integral mass for (4.91). Writing S1,2 for the product S1(x)×S2(x),
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we find that

(2πδ)−
N−r

2

∏
s∈S

(ξs)−
Ns−1

2

∫
Bα
√
N (x)

exp

(
−(1− δ)

2δ
‖(ξ′)−1/2 � ∇spHN (y)‖22

)
dy

≥ (2πδ)−
N−r

2

∏
s∈S

(ξs)−λsN

×
∫
S1,2

exp

(
−(1 + ι)‖JN (x) · (s1 + s2)‖22 − C(ε2 + α4)N/ι

2δ

)
ds2ds1

= (2πδ)−
N−r

2

∏
s∈S

(ξs)−λsN exp

(
− C(ε2 + α4)N

2δι

)
×
∫
S1,2

exp

(
−‖(1 + ι)JN (x) · (s1 + s2)‖22

2δ

)
ds2ds1

≥ (2πδ)−
N−r

2

∏
s∈S

(ξs)−λsN exp

(
− C(ε2 + α4)N

2δι
− (1 + ι)Cη2α4N

δ

)
×
∫
S1,2

exp

(
−‖(1 + ι)JN (x) · s2‖22

2δ

)
ds2ds1

≥
∏
s∈S

(ξs)−λsN exp(−ιN)Vol(S1(x))
∣∣∣ det

(
JN (x)

∣∣
S2(x)

)−1 ∣∣∣
×

∫
v2∈S2(x),

‖v2‖2≤αη
√
N/C

(2πδ)−
N−r

2 exp

(
−‖(1 + ι)v2‖22

2δ

)
dv2

≥
∏
s∈S

(ξs)−λsN exp(−ιN)Vol(S1(x))
∣∣∣det

(
JN (x)

∣∣
S2(x)

)−1 ∣∣∣ (1 + ι)−
N−r

2 /2. (4.92)

Recalling (4.81) and that dim(T1(x)) ≤ O(Nη), we find Vol(S1(x)) ≥ αO(Nη) ≥ e−ιN . Uniformly over
HN ∈ KN (ε) and x ∈ SN , from Definition 4.5.9 part (c) we have

lim
δ→0

lim
N→∞

∣∣∣∣ 1

N
log det

(
JN (x)

∣∣
S2(x)

)
−

(∫
log |λ| [µξ,∇radHN (x)](dλ)−

∑
s∈S

λs log(ξs)

)∣∣∣∣ = 0.

Indeed up to factors of eoδ(N), uniformly over these sets we have

det
(
JN (x)

∣∣
S2(x)

)
≈ E

[
det (JN (x))

∣∣ ∇radHN (x)
]

= E
[
det
(
∇2

sp(HN (x))
) ∣∣ ∇radHN (x)

] ∏
s∈S

(ξs)−λsN

≈ exp

(
N

∫
log |λ| [µξ,∇radHN (x)](dλ)

) ∏
s∈S

(ξs)−λsN .

Thus (4.92) equals

e−oδ(N) exp

(
−N

∫
log |λ| [µξ,∇radHN (x)](dλ)

)
.

This cancels the expected determinant given approximately by (4.90), leaving e−oδ(N) and completing the
proof.

Remark 4.5.14. We restricted attention to small ‖s1‖2 above because this causes ‖∇2
spHN (x) · s1‖22 to

be negligible. The trade-off is that Vol(S1(x)) becomes smaller. However since dim(T1(x)) ≤ O(Nη), this
volumetric factor is also irrelevant because all small parameters were polynomially related.
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Using Lemma 4.5.13, we now deduce Theorem 4.5.2 from the start of this section.

Proof of Theorem 4.5.2. Let KN (ε, υ) consist of those HN ∈ KN (ε) such that |CrtD,ε,υN (HN )| ≥ 1. Let

HN ∈ KN (ε, υ) and let x ∈ CrtD,ε,υN (HN ) be an ε-critical point satisfying (4.71). For ε small enough that
(recalling (4.81)) ι ≤ υ/C, we claim that Lemma 4.5.13 implies

E
[∣∣CrtD,0,υ/2N (HN )

∣∣ |HN

]
≥ e−oε(N) · 1{HN ∈ KN (ε, υ)}. (4.93)

Indeed (4.87) and (4.85) handle the radial derivative and energy errors between x and y. Proposition 4.2.5
is used exploit the hypothesis (4.88); the resulting W∞ estimate controls both the distances in J (Hausdorff

distance between the spectral supports) and in W1(R). Finally the overlap with G(1) is controlled by the
simple bound

y ∈ Bα√N (x) ∩ SN =⇒ ‖~R(x,G(1))− ~R(y,G(1))‖ ≤ O(α)� υ,

where we used that HN ∈ KN (ε) ⊆ KN implies ‖G(1)‖ ≤ O(‖∇HN (0)‖) ≤ O(
√
N).

Averaging (4.93) over HN and applying the hypothesis (4.72), we find

e−c0N ≥ E
∣∣CrtD,0,υ/2N (HN )

∣∣ ≥ e−oε(N) · P[HN ∈ KN (ε, υ)].

Choosing ε to also be sufficiently small depending on c0 and rearranging yields P[HN ∈ KN (ε, υ)] ≤ e−cN .
Recalling that P[HN ∈ KN (ε)] ≥ 1− e−cN by Proposition 4.5.10 completes the proof.

4.5.3 Failure of annealed topological trivialization for sub-solvable ξ

We showed in Section 4.4 that annealed topological trivialization occurs for super-solvable ξ (recall Def-
inition 4.1.6). In this subsection we prove the strictly sub-solvable case (c) of Theorem 4.1.11, which is
equivalent by Proposition 4.3.2 to the following. Recall the reparameterized form F of the complexity
functional F defined in Subsection 4.4.1.

Proposition 4.5.15. If ξ is strictly sub-solvable, then sup~v∈Rr F (~v) > 0.

We will require a computation from our concurrent paper [HS24] as well as Theorem 4.5.2. The point is
that in [HS24], we gave an explicit algorithm to construct approximate critical points for HN whenever ξ is
strictly sub-solvable. Applying Theorem 4.5.2 then shows F is non-negative at the radial derivative of such
points (which is computed explicitly therein). While we cannot show this input makes F strictly positive,
we do show it is not a stationary point of F , which suffices.

The algorithm from [HS24] relies on a certain coordinate-wise increasing C1 path Φ : [0, 1] → [0, 1]r.
In short, it proceeds by outward exploration in RN starting from 0, greedily optimizing HN in each step
similarly to [Sub21a] (though implemented with approximate message passing as in [Mon21, AMS21, Sel24a]).
The function Φ determines the schedule at which exploration occurs in the r species (which is trivial in the
single-species setting). The optimal choice of Φ obeys stationarity conditions, which were established in
[HS23a] and exploited in [HS24]. In particular the optimal Φ exhibits a phase transition when ξ shifts from
super-solvable to sub-solvable (which in fact motivated the present paper).

Φ does not seem to have an explicit formula in the sub-solvable case, but is given by any maximizer
of a (ξ, ~λ)-dependent functional A defined in [HS23a, Equation (1.6)]. (As explained in Remark 4.1.9, the

fact that these companion results technically use deterministic external field instead of Gaussian G(1) is
inconsequential.) Φ satisfies the normalization 〈~λ,Φ′(q)〉 = 1 for all q ∈ [0, 1], and moreover Φ′s(1) > 0 for
all s ∈ S . The input from [HS24] is as follows.

Proposition 4.5.16 ([HS24, Proposition 3.3]). For non-degenerate and strictly super-solvable ξ, and Φ as
above, and any ε > 0, with probability 1 − e−cN there exists an ε-approximate critical point x∗ ∈ SN such
that

‖Λ1/2∇radHN (x∗)− ~v∗(Φ)‖2 ≤ ε, (4.94)
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where ~v∗(Φ) = (v∗,s(Φ))s∈S is given by

v∗,s(Φ) = λsf
−1
s +

∑
s′∈S

ξ′′s,s′fs′ ; (4.95)

fs =

√
Φ′s(1)

(ξs ◦ Φ)′(1)
. (4.96)

Proposition 4.5.15 is a direct consequence of the following result.

Theorem 4.5.17. If ξ is non-degenerate and strictly sub-solvable, then for any Φ as above, we have F (~v∗) ≥
0 and ∇F (~v∗) 6= ~0. Hence sup~v∈Rr F (~v) > 0, i.e. the annealed complexity is strictly positive.

Proof. We apply Theorem 4.5.2 with

D = {Λ−1/2~v∗(Φ)} × Rr × R× J ×W1(R).

(I.e. we consider only the radial derivative and ignore the remaining components of D.) The high-probability
existence of x∗ obeying (4.94) for arbitrarily small ε, combined with continuity of F , yields F (~v∗) ≥ 0.

Let ~u∗ = −~f . We claim that ~u(0;~v∗) = ~u∗. Due to the formula (4.95), ~u∗ satisfies (4.64), so by
Lemma 4.4.8 case (i) it suffices to check M(~u∗) � 0. This follows by Lemma 4.2.7, as Φ′(1) � 0 and
M(~u∗)Φ

′(1) = ~0 by inspection.
Next, Lemma 4.4.5 implies that stationary points with ~u ∈ Rr satisfy u2

s = 1
ξs(~1)

. Hence if ~v∗ were

stationary, rearranging using the definition (4.96) of fs would directly yield

f2
s =

Φ′s(1)

(ξs ◦ Φ)′(1)
=

1

ξs(~1)
∀s ∈ S

=⇒
(
diag(ξ′)− ξ′′

)
Φ′(1) = 0.

Since Φ′(1) � 0, Lemma 4.2.7 implies diag(ξ′)− ξ′′ � 0, contradicting that ξ is strictly sub-solvable.
We conclude that∇F (~v∗) 6= ~0. Combined with the fact that F (~v∗) ≥ 0 immediately yields sup~v∈Rr F (~v) >

0 as desired.

Remark 4.5.18. We expect that for all (or at least almost all) strictly sub-solvable ξ one has

F (~v∗) > F (~v∗, E∗) > 0,

where E∗ = A(Φ) ≈ HN (x∗)/N is the associated energy of Φ as described in [HS23a, Equation (1.6)].2

However both inequalities seem much more involved to prove. Given the branching tree construction of
algorithmic maximizers in [HS24], it is natural to speculate that F (~v∗, E∗) strictly increases along the tree-
descending part q ∈ [q0, 1] of any Φ satisfying the conclusions of [HS23a, Theorem 3].

Remark 4.5.19. As we recalled in Proposition 4.1.14, our work [HS24] actually constructs exp(δN) points
x∗ satisfying the conditions of Proposition 4.5.16, with all pairwise distances at least

√
N/C(ξ). If one had ε

sufficiently small given δ, then Theorem 4.5.2 would imply that F (~v∗) > 0. However [HS24] only guarantees
δ > 0 is positive for each ε, which does not yield strict inequality. On the other hand as explained in the
introduction, it does imply quenched failure of strong topological trivialization.

Finally we show that ~v∗ above corresponds to the top of the bulk spectrum of ∇2
spHN (x∗) equalling zero.

Informally, this means x∗ is on the verge of being a local maximum. More formally, it is an ε-marginal local
maximum as defined in Section 4.7.

Proposition 4.5.20. For ~v∗ as above, max supp(µξ(~v∗)) = 0.

2As written therein E∗ = A(p,Φ; q0); both p : [0, 1] → [0, 1] and q0 ∈ [0, 1] are implicitly determined by Φ via [HS23a,
Theorem 3].
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Proof. Consider a path ~u(t) = (1 + t)−1~u∗ for t ≥ 0 and with u∗,s = −fs as above. We verified above that
M(~u∗) � 0, and from the definition (4.65) of M it follows that M(~u(t)) � 0 for all t ≥ 0. By Lemma 4.4.8
this means that for all t ≥ 0, ~u(t) = ~u(0;~v(t)) for some ~v(t) ∈ Rr.

For t sufficiently large, (4.59) yields vs(t) ≤ −λs/us ≤ −C for large C = C(ξ) > 0. At this point, (4.46)
implies

W∞
(
µ(~v(t)),

∑
s∈S

λsδ−vs/λs

)
≤ C

whence max supp(µ(~v(t)) < 0.
Since ~v(t) ∈ Rr, it follows that µ(~v(t)) always has density 0 at 0. By a continuity argument via

Lemma 4.2.12, if max supp(µ(~v∗)) > 0 held, then there would exist t such that max supp(µ(~v(t)) = δ for
arbitrarily small δ > 0. It follows by [AEK19a, Eq. (2.15)] that µ(~v(t)) must have positive density at 0 for
such t when δ is taken sufficiently small, a contradiction.

For the opposite direction, suppose that max supp(µ(~v∗)) < 0. Then 0 /∈ supp(µ(~v∗)), which implies
that M(~u∗) is invertible by Proposition 4.A.7 or Lemma 4.A.25. However M(~u∗)Φ

′(1) = ~0 so this cannot
hold.

4.6 Locating the critical points

In this section, we complete the proof of Theorem 4.1.13 by combining the description of ε-approximate
critical points from Proposition 4.5.1 with a recursive argument that localizes all approximate critical points.
Throughout this section we assume ξ is strictly super-solvable.

In Subsection 4.6.1, we define the type ~∆ ∈ {−1, 1}r of an approximate critical point based on its radial
derivative. It follows by the previous section that with high probability, all critical points have a well-defined
type. Next in Subsection 4.6.2 we explain the conditional law of HN on subspherical bands. This lets us
analyze the recursive algorithm of Subsection 4.6.3. In Subsection 4.6.4 we deduce that all approximate
critical points of each type ~∆ are localized inside a single small (random) subset of SN . Subsection 4.6.5 uses
this to deduce existence and uniqueness of type of (exact) critical point. Finally Subsection 4.6.6 determines
the exact index of each critical point by gradually perturbing ξ and arguing that eigenvalues do not cross 0.

4.6.1 Critical points of type ~∆

Our argument will separately localize each critical point of type ~∆ ∈ {−1, 1}r, defined as follows.

Definition 4.6.1. Let υ = oε(1) be given by Proposition 4.5.1. Say x ∈ SN is a ε-critical point of type
~∆, or alternatively a (ε, ~∆)-critical point, if it is an ε-critical point (recall Definition 4.1.5) and

‖∇radHN (x)− ~x(~∆)‖∞ ≤ υ . (4.97)

Fact 4.6.2. There exists ε0 = ε0(ξ) such that with probability 1− e−cN the following holds. For all ε ≤ ε0,

all ε-critical points of HN are (ε, ~∆)-critical points for a unique ~∆ ∈ {−1, 1}r.

Proof. Immediate from Proposition 4.5.1. The signs ~∆ are unique since for small ε, the υ-balls around the
~x(~∆) are disjoint.

Definition 4.6.3 (Species-wise rescaling). Let v ∈ RN such that vs 6= 0 for all s ∈ S . For ~q ∈ [0, 1]r,
~∆ ∈ {−1, 1}r, define scale(v; ~∆, ~q) to be the vector u ∈ RN with

us = ∆s

√
qsλsN

vs
‖vs‖2

.

That is, u is the vector parallel to v in each species with ~R(u,u) = ~q, whose species-s component
is correlated (resp. anti-correlated) with that of v if ∆s = 1 (resp. −1). The following corollary of

Proposition 4.5.1 shows that (ε, ~∆)-critical points have nearly constant correlation with ∇HN (0) = Γ(1) �
G(1), the 1-spin part of HN .
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Corollary 4.6.4. For any ε > 0, there exists υ = oε(1) such that with probability 1 − e−cN the following

holds. For any (ε, ~∆)-critical point x, let y be its species-wise projection onto ∇HN (0), i.e.

ys =
〈xs, (∇HN (0))s〉
‖(∇HN (0))s‖22

(∇HN (0))s

for all s ∈ S . Then ∥∥∥y − scale
(
∇HN (0); ~∆,∇ξ(~0)/∇ξ(~1)

)∥∥∥
2
≤ υ
√
N .

Proof. We can write

ys =
〈xs,G(1)

s 〉
‖G(1)

s ‖22
G(1)
s =

〈xs,G(1)
s 〉

‖G(1)
s ‖2

· G(1)
s

‖G(1)
s ‖2

.

By Proposition 4.5.1, with probability 1−e−cN all (ε, ~∆)-critical point x satisfies 〈xs,G(1)
s 〉 = ∆sγs√

ξ′s
·λsN(1+

oε(1)), and by a standard concentration bound ‖G(1)
s ‖2 =

√
λsN(1+oε(1)). So up to 1+oε(1) multiplicative

error

ys =
∆sγs√
ξ′s
·
√
λsN

G(1)
s

‖G(1)
s ‖2

= ∆s

√
∂sξ(~0)

∂sξ(~1)
λsN

G(1)
s

‖G(1)
s ‖2

.

The result follows because

scale
(
∇HN (0); ~∆,∇ξ(~0)/∇ξ(~1)

)
= scale

(
G(1); ~∆,∇ξ(~0)/∇ξ(~1)

)
.

4.6.2 Conditional band models

Our arguments rely on a self-similarity in law obtained by restriction to a band. The point is that bands
inside SN are still of the same form as our original model, with Ns replaced by Ns − 1 and ξ replaced by a
new mixture function. This lets us apply the preceding results of this paper to said bands. This idea has
been used extensively in recent work by Subag, e.g. [Sub24, Sub21b, Sub23b].

For the below definitions, U is a species-aligned subspace (recall Definition 4.2.1), which in our applica-
tions will always be of dimension O(1). Let

BN =
{
x ∈ RN : ‖xs‖22 ≤ λsN ∀s ∈ S

}
be the convex hull of SN . Over the course of the recursive argument, we will be interested in the landscape
of various Hamiltonians in the following domains where we project out the subspace U . The original model
corresponds to U = ∅.

Definition 4.6.5. Let SUN = SN ∩ U⊥ and BUN = BN ∩ U⊥ (recalling the notation (4.25)).

Definition 4.6.6. Let m ∈ BUN such that ms 6= 0 for all s ∈ S . The band of SUN centered at m is

BandU (m) =
{
σ ∈ SUN : ~R(σ −m,m) = ~0

}
.

Note that for ~q = ~R(m,m) ∈ [0, 1]r and U ./m = span(U,m1, . . . ,ms),

BandU (m) = (~1− ~q)1/2 � SU./mN +m . (4.98)

We will be interested in the following bands, whose centers are rescalings of ∇HN (0) (projected to U⊥).

Definition 4.6.7. For ~q ∈ [0, 1]r and ~∆ ∈ {−1, 1}r, define

mU
~∆,~q

(HN ) = scale(projU⊥∇HN (0); ~∆, ~q) , BandU~∆,~q(HN ) = BandU (mU
~∆,~q

(HN )) .

We will abbreviate these mU
~∆,~q

and BandU~∆,~q when HN is clear. The following corollary shows that all

critical points of HN in SUN lie near one of these bands, given by a specific ~q.
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Corollary 4.6.8. There exists υ = oε(1) such that the following holds. Let U be a species-aligned subspace of

dimension O(1). With probability 1− e−cN , all (ε, ~∆)-critical points of the restriction of HN to the manifold
SUN lie within υ

√
N of BandU~∆,~q(HN ), where ~q = ∇ξ(~0)/∇ξ(~1).

Proof. Immediate from Corollary 4.6.4. Since U has dimension O(1), HN restricted to SUN is a multi-species
spin glass whose species dimensions N ′s = Ns −O(1) still satisfy N ′s/N → λs. Thus restricting the model to
SUN does not affect the result.

Finally let U ′ = U ./mU
~∆,~q

. We define the centered band Hamiltonian HU
N,~∆,~q

(σ) : SU ′N → R by

HU
N,~∆,~q

(σ) = HN

(
(~1− ~q)1/2 � σ +mU

~∆,~q

)
−
〈
projU⊥∇HN (0), (~1− ~q)1/2 � σ +mU

~∆,~q

〉
. (4.99)

The following lemma shows that conditional on projU⊥∇HN (0), HU
N,~∆,~q

is itself a multi-species spin glass.

Note that the last term of (4.99) is constant for σ ∈ SU ′N , and that (~1−~q)1/2 �σ+mU
~∆,~q

ranges over BandU~∆,~q

as σ ranges over SU ′N . Thus HU
N,~∆,~q

is the remaining randomness of HN on this band.

Lemma 4.6.9. Conditionally on projU⊥∇HN (0), HU
N,~∆,~q

is a centered Gaussian process on SU ′N with co-

variance

E[HU
N,~∆,~q

(σ)HU
N,~∆,~q

(ρ)] = Nξ~q(~R(σ,ρ)) , where

ξ~q(~x) = ξ
(

(~1− ~q)� ~x+ ~q
)
−
〈
∇ξ(~0), (~1− ~q)� ~x+ ~q

〉
.

Proof. For σ ∈ SUN , we have

HN (σ) = 〈projU⊥∇HN (0),σ〉+HN,≥2(σ) ,

where HN,≥2 consists of the interactions of degree at least 2. These two constituent functions are, respec-

tively, projU⊥∇HN (0)-measurable and independent of projU⊥∇HN (0), while mU
~∆,~q

and BandU~∆,~q are both

projU⊥∇HN (0)-measurable. Since

HU
N,~∆,~q

(σ) = HN,≥2

(
(~1− ~q)1/2 � σ +mU

~∆,~q

)
,

this is a centered Gaussian process. Moreover, HN,≥2 has covariance

E[HN,≥2(σ)HN,≥2(ρ)] = Nξ≥2(~R(σ,ρ)) , where ξ≥2(~x) = ξ(~x)− 〈∇ξ(~0), ~x〉 .

The covariance formula for HU
N,~∆,~q

now follows because for σ,ρ ∈ SU ′N , we have σ,ρ ∈ (mU
~∆,~q

)⊥, and so

~R
(

(~1− ~q)1/2 � σ +mU
~∆,~q

, (~1− ~q)1/2 � ρ+mU
~∆,~q

)
= (~1− ~q) � ~R(σ,ρ) + ~q .

4.6.3 Recursive algorithm

We now consider a recursive critical point finding algorithm. Roughly speaking, Corollary 4.6.8 shows that
all (ε, ~∆)-critical points of HN lie near a band Band1(~∆) = Band∅~∆,~q, for a deterministic ~q. Lemma 4.6.9 shows

that HN restricted to this band is conditionally another multi-species spin glass. So, Corollary 4.6.8 implies
all (ε, ~∆)-critical points lie near a sub-band Band2(~∆) ⊆ Band1(~∆). Repeating this argument, all (ε, ~∆)-

critical points of HN lie near a nested sequence of bands SN ⊇ Band1(~∆) ⊇ Band2(~∆) · · · , and we will show

these bands’ diameters shrink to 0. After a large constant number of recursions, this shows all (ε, ~∆)-critical
points lie in a region of diameter oε(

√
N), and the well-conditionedness of ∇2

spHN (by Proposition 4.5.1)
shows there is at most one critical point in this region.

We now define the recursive bands, starting with sequence of radii of their centers. Define ~R0 = ~0 and
recursively

~Rk+1 = ∇ξ(~Rk)/∇ξ(~1) .
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Because ξ is coordinate-wise increasing, the sequence ~Rk is coordinate-wise increasing up to some limit in
[0, 1]r. The following lemma, which relies on super-solvability of ξ, shows this limit is ~1. That is, the band
centers approach the surface SN of BN and the band diameters limit to zero.

Lemma 4.6.10 ([HS24, Lemma 2.3]). We have that limk→∞ ~Rk = ~1.

Fix ~∆ ∈ {−1, 1}r. Let m0(~∆) = 0 and Band0(~∆) = SN . Recursively for k ≥ 1 define

mk(~∆) = mk−1(~∆) + scale(gk−1(~∆); ~∆, ~Rk − ~Rk−1) ,

gk(~∆) = projUk(~∆)⊥∇HN (mk(~∆)) ,

Uk(~∆) = span(mj
s(~∆))1≤j≤k,s∈S ,

Bandk(~∆) = SN ∩
(
mk(~∆) + Uk(~∆)⊥

)
.

(4.100)

Note that because gks(~∆) ∈ Uk(~∆)⊥ for all s ∈ S , we havemk(~∆) ∈ (mk−1(~∆)+Uk−1(~∆)⊥), so Bandk(~∆) ⊆
Bandk−1(~∆). Also, by induction ~R(mk(~∆),mk(~∆)) = ~Rk for each k ≥ 0, so analogously to (4.98),

Bandk(~∆) = φk,~∆(SUk(~∆)
N ) , where φk,~∆(σ) = (~1− ~Rk)1/2 � σ +mk(~∆) . (4.101)

Define the band Hamiltonian H̃N,~∆,k : SUk(~∆)
N → R by

H̃N,~∆,k(σ) = HN

(
φk,~∆(σ)

)
−
〈
gk−1(~∆), φk,~∆(σ)

〉
+

k−1∑
i=1

〈
gi(~∆)− gi−1(~∆),mi(~∆)

〉
, (4.102)

whose meaning is explained in Lemma 4.6.12 below. We first show that the bands Bandk(~∆) can be con-
structed by applying the construction from Definition 4.6.7 recursively. The radius ~qk of the band center in
the next lemma is chosen to be near all (ε, ~∆)-critical points of the Hamiltonian restricted to Bandk(~∆), as
will be explained in Corollary 4.6.14 below.

Lemma 4.6.11. Let ~qk = (~Rk+1 − ~Rk)/(~1 − ~Rk) and note that φ−1

k,~∆
maps Bandk(~∆) to SUk(~∆)

N . Then

φ−1

k,~∆
(Bandk+1(~∆)) = Band

Uk(~∆)
~∆,~qk

(H̃N,~∆,k), where the latter band is defined in Definition 4.6.7.

Proof. Since φ−1

k,~∆
(σ) = (1− ~Rk)−1/2 � (σ −mk(~∆)), we have

φ−1

k,~∆
(mk+1(~∆)) = (~1− ~Rk)−1/2 � scale(gk(~∆); ~∆, ~Rk+1 − ~Rk)

= scale
(
gk(~∆); ~∆, ~qk

)
= m

Uk(~∆)
~∆,~qk

(H̃N,~∆,k) . (4.103)

Let us denote this point m. Moreover,

φ−1

k,~∆
(Bandk+1(~∆)) = φ−1

k,~∆
(φk+1,~∆(SUk+1(~∆)

N )) =

(
~1− ~Rk

~1− ~Rk+1

)1/2

� SUk+1(~∆)
N +m . (4.104)

Also,
Uk+1(~∆) = Uk(~∆) ./mk(~∆) = Uk(~∆) ./ gk(~∆) = Uk(~∆) ./m ,

so elements of SUk+1(~∆)
N are orthogonal to m. This implies the conclusion.

Let Fk(~∆) = (g0(~∆), g1(~∆), . . . gk−1(~∆)). The following lemma shows that conditional on Fk(~∆), H̃N,~∆,k

is a multi-species spin glass. Moreover, all terms on the right-hand side of (4.102) except HN (φk,~∆(σ)) are

constant on SUk(~∆)
N , so H̃N,~∆,k is the remaining randomness of HN on SUk(~∆)

N .
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Lemma 4.6.12. Conditional on Fk(~∆), H̃N,~∆,k is a centered Gaussian process on SUk(~∆)
N with covariance

E
[
H̃N,~∆,k(σ)H̃N,~∆,k(ρ)

]
= Nξk(~R(σ,ρ)) ,

where

ξk(~x) = ξ
(

(~1− ~Rk)� ~x+ ~Rk
)
−
〈
∇ξ(~Rk−1), (~1− ~Rk)� ~x+ ~Rk

〉
+

k−1∑
i=1

〈
∇ξ(~Ri)−∇ξ(~Ri−1), ~Ri

〉
.

Proof. We induct on k. Assume the claim holds for k and let m = scale(gk(~∆); ~∆, ~qk) as in (4.103).

Lemma 4.6.9 implies that conditional on (Fk(~∆), PUk(~∆)⊥∇H̃N,~∆,k(0)) the function H̃◦
N,~∆,k

: SUk(~∆)./m
N → R

given by

H̃◦
N,~∆,k

(σ) = H̃N,~∆,k

(
(~1− ~qk)1/2 � σ +m

)
−
〈
PUk(~∆)⊥∇H̃N,~∆,k(0), (~1− ~qk)1/2 � σ +m

〉
is a centered Gaussian process. We calculate that

projUk(~∆)⊥∇H̃N,~∆,k(0) = projUk(~∆)⊥(~1− ~Rk)1/2 �
(
∇HN (mk(~∆))− gk−1(~∆)

)
= (~1− ~Rk)1/2 � (gk(~∆)− gk−1(~∆)) .

Thus conditioning on (Fk(~∆), PUk(~∆)⊥∇H̃N,~∆,k(0)) is equivalent to conditioning on Fk+1(~∆). Also, (4.104)

shows Uk(~∆) ./m = Uk+1(~∆). For all σ ∈ SUk+1(~∆)
N ,

φk,~∆

(
(~1− ~qk)1/2 � σ +m

)
= (~1− ~Rk+1)1/2 � σ + (~1− ~Rk)1/2 �m+mk(~∆) ,

and this equals φk+1,~∆(σ) = (~1− ~Rk+1)1/2 � σ +mk+1(~∆) because

(~1− ~Rk)1/2 �m = scale(gk(~∆); ~∆, ~Rk+1 − ~Rk) = mk+1(~∆)−mk(~∆) .

Moreover 〈
PUk(~∆)⊥∇H̃N,~∆,k(0), (~1− ~qk)1/2 � σ +m

〉
=
〈

(~1− ~Rk)1/2 � (gk(~∆)− gk−1(~∆)), (~1− ~qk)1/2 � σ +m
〉

=
〈
gk(~∆)− gk−1(~∆), (~1− ~Rk+1)1/2 � σ +mk+1(~∆)−mk(~∆)

〉
=
〈
gk(~∆)− gk−1(~∆), φk+1,~∆(σ)

〉
−
〈
gk(~∆)− gk−1(~∆),mk(~∆)

〉
.

Combining the above,

H̃◦
N,~∆,k

(σ) = HN (φk+1,~∆(σ))−
〈
gk−1(~∆), φk+1,~∆(σ)

〉
+

k−1∑
i=1

〈
gi(~∆)− gi−1(~∆),mi

〉
−
〈
gk(~∆)− gk−1(~∆), φk+1,~∆(σ)

〉
+
〈
gk(~∆)− gk−1(~∆),mk(~∆)

〉
= H̃N,~∆,k+1(σ) .

This proves that conditional on Fk+1(~∆), H̃N,~∆,k is a centered Gaussian process on SUk+1(~∆)
N . The covariance

formula is shown by similarly verifying that

ξk

(
(~1− ~qk)� ~x+ ~qk

)
−
〈
∇ξk(~0), (~1− ~qk)� ~x+ ~qk

〉
= ξk+1

(
(~1− ~qk+1)� ~x+ ~qk+1

)
This completes the induction.
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We next verify that if ξ is strictly super-solvable, then so is ξk. This fact is key for our recursion.

Proposition 4.6.13. For each k, the model ξk is strictly super-solvable.

Proof. The definition ~Rk = ∇ξ(~Rk−1)/∇ξ(~1) rearranges to

∇ξ(~1)−∇ξ(~Rk−1) = (~1− ~Rk)�∇ξ(~1) . (4.105)

Thus,

∇ξk(~1) = (~1− ~Rk)� (∇ξ(~1)−∇ξ(~Rk−1)) = (~1− ~Rk)2 �∇ξ(~1) , (4.106)

∇2ξk(~1) = (~1− ~Rk)⊗2 �∇2ξ′′(~1) . (4.107)

Combining the above gives

diag(∇ξk(~1)) = (~1− ~Rk)⊗2 � diag(∇ξ(~1)) � (~1− ~Rk)⊗2 �∇2ξ′′(~1) = ∇2ξk(~1) .

Finally the next corollary explains the choice of radius ~qk. Combined with Lemma 4.6.11, this explains
the choice of radii ~Rk in the construction of the bands Bandk(~∆): ~Rk+1 is chosen so that Bandk+1(~∆) is the

sub-band of Bandk(~∆) orthogonal to gk which lies near all approximate critical points of type ~∆.

Corollary 4.6.14. With probability 1− e−cN , all (ε, ~∆)-critical points of H̃N,~∆,k on Uk(~∆) lie within υ
√
N

of Band
Uk(~∆)
~∆,~qk

(H̃N,k,~∆) for some υ = oε(1).

Proof. Since ξk is strictly super-solvable by Proposition 4.6.13, Corollary 4.6.8 applies. Recalling (4.105),
we have

∇ξk(~0) = (~1− ~Rk)� (∇ξ(~Rk)−∇ξ(~Rk−1))

= (~1− ~Rk)�
(

(∇ξ(~1)−∇ξ(~Rk−1))− (∇ξ(~1)−∇ξ(~Rk))
)

= (~1− ~Rk)� (~Rk+1 − ~Rk)�∇ξ(~1) .

Recalling (4.106), this implies ∇ξk(~0)/∇ξk(~1) = (~Rk+1 − ~Rk)/(~1 − ~Rk) = ~qk. The result follows from
Corollary 4.6.8.

4.6.4 Localization of approximate critical points

For S ⊆ RN and ι > 0, let Bι(S) ⊆ RN denote the set of points whose distance to S is at most ι. The

following proposition localizes all (ε, ~∆)-critical points of HN . Note that by Fact 4.6.2, all ε-critical points
of HN are described by this proposition.

Proposition 4.6.15. For any constant k ∈ N, ε > 0, there exists ιk = oε(1) (depending on k) such that

with probability 1− e−cN , all (ε, ~∆)-critical points of HN lie in Bιk
√
N (Bandk(~∆)).

We begin by relating the (ε, ~∆)-critical points of HN to those of H̃N,~∆,k.

Lemma 4.6.16. For any k ≥ 1, ε > 0, ~∆ ∈ {−1, 1}r the following holds. If σ ∈ Bandk(~∆) is an (ε, ~∆)-

critical point of HN , then φ−1

k,~∆
(σ) ∈ SUk(~∆)

N is a (ε, ~∆)-critical point of H̃N,~∆,k.

Proof. Let ~x(~∆, ξ) ∈ Rr be the radial derivative defined in (4.12), where we make the dependence on ξ

explicit. By definition of (ε, ~∆)-approximate critical point,

‖∇HN (σ)− Λ−1/2~x(~∆, ξ) � σ‖2 ≤ υ
√
N .

We write σ = φk,~∆(ρ) for ρ ∈ SUk(~∆)
N . Let ∇Uk(~∆)⊥ denote the Euclidean gradient projected into the

subspace Uk(~∆)⊥. Because this projection is 1-Lipschitz, we also have

‖∇Uk(~∆)⊥HN (σ)− Λ−1/2~x(~∆, ξ) � projUk(~∆)⊥σ‖2 ≤ υ
√
N . (4.108)
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Taking this gradient of (4.102) yields

∇Uk(~∆)⊥H̃N,~∆,k(ρ) = (~1− ~Rk)1/2 � ∇Uk(~∆)⊥HN (φk,~∆(ρ)) = (~1− ~Rk)1/2 � ∇Uk(~∆)⊥HN (σ) ,

as the gradient contribution from gk−1(~∆) projects to zero. Moreover,

projUk(~∆)⊥σ = projUk(~∆)⊥φk,~∆(ρ) = (~1− ~Rk)1/2 � ρ .

From (4.106) and (4.107), it readily follows that

~x(~∆, ξk) = (~1− ~Rk)� ~x(~∆, ξ) .

Thus (4.108) implies

υ
√
N ≥ ‖(~1− ~Rk)−1/2 � ∇Uk(~∆)⊥H̃N,~∆,k(ρ)− (Λ−1/2~x(~∆, ξ)� (~1− ~Rk)1/2) � ρ‖2

= ‖(~1− ~Rk)−1/2 � (∇Uk(~∆)⊥H̃N,~∆,k(ρ)− Λ−1/2~x(~∆, ξk) � ρ)‖2

≥ ‖∇Uk(~∆)⊥H̃N,~∆,k(ρ)− Λ−1/2~x(~∆, ξk) � ρ‖2 .

So, ρ = φ−1

k,~∆
(σ) is an (ε, ~∆)-critical point of H̃N,~∆,k.

Proof of Proposition 4.6.15. Throughout we assume HN ∈ KN , which holds with probability 1 − e−cN by
Proposition 4.2.4. We induct on k. Suppose the claim holds for k, so all (ε, ~∆)-critical points of HN lie in

Bιk
√
N (Bandk(~∆)). Let σ be one such critical point, and let ρ ∈ Bandk(~∆) be its projection in Bandk(~∆).

Because HN ∈ KN , ρ is a (ε′, ~∆)-critical point of HN for some ε′ = ok(1).

By Lemma 4.6.16, τ = φ−1

k,~∆
(ρ) ∈ SUk(~∆)

N is a (ε′, ~∆)-critical point of H̃N,k,~∆. By Corollary 4.6.14, (with

probability 1− e−cN )

τ ∈ Bυ√N (Band
Uk(~∆)
~∆,~qk

(H̃N,k,~∆))

for some υ = oε′(1) = oε(1). By Lemma 4.6.11,

φk,~∆(Band
Uk(~∆)
~∆,~qk

(H̃N,k,~∆)) = Bandk+1(~∆) ,

so (letting Ck be the Lipschitz constant of φk,~∆)

ρ = φk,~∆(τ ) ∈ BCkυ
√
N (Bandk+1(~∆)) .

It follows that σ ∈ Bιk+1

√
N for ιk+1 = Ckυ + ιk. Over this argument we union bounded over k + 1 = O(1)

events with probability 1− e−cN , so the conclusion holds with probability 1− e−cN .

4.6.5 Existence and uniqueness of exact critical points

So far we have established that all (ε, ~∆)-critical points of HN are close together. This easily implies that

each ~∆ has at most 1 associated (exact) critical point.

Definition 4.6.17. Let ε > 0 be a sufficiently small constant independent of N . A ~∆-critical point x~∆ of

HN is a critical point that is also a (ε, ~∆)-critical point (i.e. whose radial derivative ∇radHN (x~∆) satisfies
(4.97)).

Proposition 4.6.18. With probability 1− e−cN , for each ~∆ ∈ {−1, 1}r there is at most one ~∆-critical point
of HN .
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Proof. Let x~∆,x
′
~∆

be two such critical points of HN . Then they are both (ε, ~∆) critical points for small
ε > 0. By Fact 4.6.2 and Proposition 4.6.15, we find that for any δ > 0 independent of N ,

‖x~∆ − x
′
~∆
‖2 ≤ δ

√
N

holds with probability 1 − e−cN . Moreover (4.50) and Lemma 4.4.3 together imply that with the same
probability, the spherical Hessians of HN at both points are C(ξ) well-conditioned, with all eigenvalues
inside ±[C−1, C]. For δ small enough and HN ∈ KN , this is impossible since C-well-conditioned critical
points cannot be arbitrarily close together (as can be shown by Taylor expanding along a geodesic as in
Lemma 4.5.12).

To show existence we appeal to Morse theory, which shows the total number of critical points is almost
surely at least 2r just from the geometry of SN .

Proposition 4.6.19. Almost surely, HN has at least 2r critical points on SN . Hence by Fact 4.6.2 and
Proposition 4.6.18, with probability 1− e−cN , HN has a unique ~∆-critical point of each type ~∆ ∈ {−1, 1}r,
and no other critical points.

Proof. It suffices to show the first claim. Recall that any sphere has two non-zero homology groups, each of
dimension 1. Hence by the Künneth formula, the sum of the dimensions of the homology groups for SN is
2r. Finally by the Morse inequalities (see e.g. [Mil63]), this sum lower bounds the number of critical points
of any Morse function, in particular HN .

Putting everything together, we obtain most of Theorem 4.1.13.

Proof of Theorem 4.1.13 except for part (b). Existence and uniqueness of each x~∆ have just been shown. As
above, (4.50) and Lemma 4.4.3 imply the well-conditioning. Proposition 4.6.15 implies part (a). Part (c) is
immediate from part (a) since all approximate ground states of HN ∈ KN are approximate critical points.

Remark 4.6.20. As an alternative to the Morse inequalities, we could instead use [HS24, Proposition

3.2] which, for each ~∆ ∈ {−1, 1}r and ε > 0, explicitly constructs a (~∆, ε)-approximate critical point

x̃~∆ ∈ SN (with probability 1 − e−cN ). Since the limiting spectral support S(~∆) is bounded away from
0 by Proposition 4.4.3, Proposition 4.5.1 implies that for ε small enough, each x̃~∆ has well-conditioned
Hessian. Then Newton’s method can be used to locate a nearby exact critical point x~∆. This route is more
cumbersome than the one taken above, but has a chance to work in situations where the number of critical
points in the trivial regime is larger than the lower bound from the Morse inequalities.

4.6.6 The index of each critical point

Finally we compute the index of each critical point, which is the only remaining part of Theorem 4.1.13.
We use a “critical point following” argument, showing that critical points move stably as HN is gradually
deformed into a linear function, while their indices remain fixed. This can easily be turned into an efficient
algorithm to locate each x~∆ as mentioned in the introduction, as the proof of [MS23, Lemma 3.1] used below
is via projected gradient descent on ‖∇HN (·)‖22 (i.e. Newton’s method).

Proposition 4.6.21. For any (~λ, ξ) and ι > 0 there is ε > 0 such that the following holds. Suppose
HN ∈ KN , and ∇2

spHN (x) is an ι-well-conditioned ε-approximate critical point. Then there exists an exact

critical point y ∈ SN such that ‖x− y‖2 ≤ C(~λ, ξ, ι)ε
√
N .

Proof. This follows by [MS23, Lemma 3.1] applied to ∇HN ; the constants Jn, Ln,Mn are bounded as
HN ∈ KN . (The stated result is for a single sphere, but the extension to a finite products of spheres poses
no issues.)

Proof of Theorem 4.1.13(b). Fix (~λ, ξ). Writing H̃N for the degree two and higher terms in HN , for t ∈ [0, 1]
we set

HN,t = 〈G(1),x〉+ tH̃N (x).
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The marginal distribution of HN,t thus corresponds to the mixture ξ(t)(~x) = (1 − t2)ξ′(0) � ~x + t2ξ(~x). It
is easy to see that if ξ is strictly super-solvable then so is ξ(t) for each t ∈ [0, 1]. Moreover the proof of
Lemma 4.4.3 holds uniformly on (ξ(t))t∈[0,1], implying that for some c > 0,

St(~∆) ∩ [−c, c] = ∅

holds simultaneously for all t ∈ [0, 1] and ~∆ ∈ {−1, 1}r. In particular, our results then imply the following.

Fix a small unit fraction δ > 0 depending on (~λ, ξ, c), and let x~∆,kδ be the corresponding critical point for

HN,kδ (which exists with probability 1− e−cN ). Then for k ≥ 0, if HN , H̃N ∈ KN :

‖∇spHN,(k+1)δ(x~∆,kδ)‖2 ≤ Cδ
√
N,

spec
(
∇2

spHN,(k+1)δ(x~∆,kδ)
)
∩ [−c/2, c/2] = ∅. (4.109)

For HN , H̃N ∈ KN , the above two estimates imply via Proposition 4.6.21 the existence of a nearby critical
point y~∆,(k+1)δ for HN,(k+1)δ such that, for a constant C1 = C1(~λ, ξ, c):

|〈y~∆,(k+1)δ − x~∆,kδ,G
(1)〉| ≤ C1δ, (4.110)

‖∇2
spHN,(k+1)δ(y~∆,(k+1)δ)−∇

2
spHN,kδ(x~∆,kδ)‖op ≤ C1δ. (4.111)

Recalling (4.12) and (4.14), it follows from (4.110) that y~∆,(k+1)δ = x~∆,(k+1)δ is a critical point of the same

~∆. Combining (4.109) and (4.111), we see that ∇2
spHN,(k+1)δ(x~∆,(k+1)δ) and ∇2

spHN,kδ(x~∆,kδ) have the same

number of positive eigenvalues for each δ. Taking k = 0, it is easy to see that this number is
∑
s:~∆s=−1Ns.

Taking kδ = 1 shows that the same holds for ∇2
spHN (x~∆) as desired.

4.7 Estimates for approximate critical points in single-species mod-
els

In this section we detail further consequences of Lemma 4.5.13 which are of independent interest, and
of relevance for several concurrent works. Below, we restrict our attention to single-species models without
external field (i.e. r = 1, ξ′(0) = 0) for which the relevant Kac–Rice estimates are known from previous work.

In particular we consider mixture functions of the form ξ(t) =
∑P
p=2 γ

2
pt
p for γ2, . . . , γP ≥ 0. We assume

for sake of normalization that ξ(1) = 1 and similarly to Definition 4.1.6, we write ξ′ = ξ′(1), ξ′′ = ξ′′(1) and
α2 = ξ′′ + ξ′ − (ξ′)2 (unrelated to (4.81)). Recall from [AB13] the thresholds:

E±∞(ξ) ≡
2ξ′
√
ξ′′ ±

√
4ξ′′(ξ′)2 − (ξ′′ + ξ′)

(
2 (ξ′′ − ξ′ + (ξ′)2)− α2 log ξ′′

ξ′

)
ξ′ + ξ′′

.

One always has α ≥ 0, with equality exactly in the pure case ξ(t) = tp for some p. In this case, the thresholds

E±∞ agree at the value E∞(p) = 2
√

p−1
p from [ABČ13].

We give the relevant Kac–Rice result in Proposition 4.7.3 below after recalling some definitions and results
from [AB13]. For open D,Drad ⊆ R we let CrtN (D;Drad) ⊆ SN consist of all critical points with

HN (x)/N ∈ D, ∇radHN (x) ∈ Drad.

As in Equation (1.21) therein, for γ ∈ (0, 1) define sγ ∈ (−
√

2,
√

2) as the rescaled semicircular law quantile
satisfying:

γ =
1

π

∫ −sγ
−
√

2

√
2− x2 dx.

Moreover, define the function

Θ(s) =

(
−|s|
√
s2 − 2

2
+ log

(
|s|+

√
s2 − 2√
2

))
1|s|≥

√
2 ≤ 0. (4.112)
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The critical point complexity functional at
(
HN (x)/N,∇radHN (x)

)
≈
(
y, s
√

2ξ′′
)

and its quadratic upper
bound are given by:

F (s, y) =
1

2

(
log

ξ′′

ξ′
+ s2 − y2 − 2ξ′′

α2

(
s− yξ′√

2ξ′′

)2

+ Θ(s)

)
,

F̃ (s, y) =
1

2

(
log

ξ′′

ξ′
+ s2 − y2 − 2ξ′′

α2

(
s− yξ′√

2ξ′′

)2
)
.

(4.113)

(If α = 0, we interpret −0/0 = 0 and −x/0 = −∞ for x > 0.)
Indeed the following holds as a direct consequence of Proposition 4.3.2, see also the proof of [AB13,

Theorem 1.3]. (In fact our scaling of ∇radHN (x) by
√

2ξ′′ is chosen to enforce agreement with the latter
formula).

Proposition 4.7.1. For any γ ∈ (0, 1) and open D,Drad ⊆ R:

lim
N→∞

1

N
logE

∣∣CrtN(D ;Drad

)∣∣ = sup
y∈D,

s
√

2ξ′′∈Drad

F (s, y).

Define the set
S = Sξ = {(s, y) ∈ R2 : F̃ (s, y) ≥ 0}.

We now make an important observation on the function F̃ .

Proposition 4.7.2. The function F̃ is negative definite, i.e. S is a centered ellipsoid (which degenerates to
a line-segment if α = 0). Moreover the major axis of S has “positive” slope in [0, π/2].

Proof. We begin with negative definiteness, assuming α > 0 as the pure case is easy. Note the first three
terms of F̃ (s, y) are a quadratic of type (1, 1), while the last term subtracts a positive-semidefinite quadratic.

Hence F̃ cannot be positive definite, so it suffices to prove it has positive discriminant. After some easy
computation, the discriminant’s positivity reduces to proving that

(2ξ′′ − α2)((ξ′)2 + α2)
?
> 2ξ′′(ξ′)2.

Dividing by α2, this reduces to showing α2 > 2ξ′′ − (ξ′)2. This in turn rearranges to ξ′′ > ξ′ which is clear.
The latter assertion holds as if (s, y) ∈ S with sy ≤ 0 then also (s,−y), (−s, y) ∈ S.

In the next proposition, we use the notation GS(ξ) = p-limN→∞maxx∈SN HN (x)/N for the ground state
energy.

Proposition 4.7.3. For any υ > 0, and for ι small enough depending on (ξ, υ):

lim
N→∞

1

N
logE

∣∣CrtN((−∞, E−∞ − υ) ; (
√

2ξ′′(1)− ι,∞)
)∣∣ < −c(ξ, υ) < 0. (4.114)

Furthermore, either GS(ξ) ≤ E+
∞ or

lim
N→∞

1

N
logE

∣∣CrtN((E+
∞ + υ,∞) ; (−∞,

√
2ξ′′(1) + ι)

)∣∣ < −c(ξ, υ) < 0. (4.115)

Proof. We assume α > 0 as otherwise the statement is easy. Note that
√

2ξ′′(1) in the statement corresponds

to s =
√

2. By inspection, the line s =
√

2 intersects the boundary of S at (E−∞,
√

2), (E+
∞,
√

2). The
remainder of the proof is an elementary two-dimensional geometry argument depicted in Figure 4.7.1.3

First, because the major axis of S has positive slope in [0, π/2], the point in S with minimal y coordinate
must have negative s coordinate, while the point in S with maximal s coordinate must have positive y

3In many cases E−∞ ≥ 0, but the picture is drawn to emphasize that we do not require it. The red region is non-empty only
when GS(ξ) ≤ E+

∞.
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Figure 4.7.1: A diagram of the ellipsoid S, used in the proof of Proposition 4.7.3. If the tangent line to S at
(E+
∞,
√

2) has positive slope, then the red region is empty and we conclude (4.115). If not, all local maxima
correspond to the blue region, hence have energy at most E+

∞ + oN (1). This implies that GS(ξ) ≤ E+
∞.

coordinate. For all points on the boundary of S between these two points, in particular (E−∞,
√

2), the
tangent line to S has positive slope. Therefore

S ∩
(

(−∞, E−∞)× (
√

2,∞)
)

= ∅,

which easily implies the first claim.
For the second claim, suppose in the first case that the the tangent line to (E+

∞,
√

2) has slope in [0, π/2].
Then the result follows similarly to the first part of the proof. However as shown in the diagram, it may be
that this tangent slope is strictly negative, in (π/2, π). In this case, we observe (see e.g. Proposition 4.7.4
below) that with probability at least 1 − e−cN , all local maxima of HN have s ≥

√
2 − oN (1). And if the

tangent slope at (E+
∞,
√

2) is negative,

S ∩
(
R× (

√
2,∞)

)
⊆ (−∞, E+

∞)× R.

Since the global maximum of HN is a local maximum, we conclude GS(ξ) ≤ E+
∞, completing the proof.

The following fact was used above.

Proposition 4.7.4 ([Sub21a, Lemma 3]). For any ε > 0, there exists c, δ such that

P
[

sup
x∈SN

∣∣λbδNc(∇2
spHN (x))−

√
2ξ′′(1)∇radHN (x)

∣∣ ≤ ε] ≥ 1− e−cN .

Proposition 4.7.4 also justifies the following definitions. The last is motivated in part by [FSU21], which
suggests that optimization algorithms for general mean-field disordered systems ought to get stuck in ε-
marginal local maxima.

Definition 4.7.5. We say the ε-critical point x ∈ SN is:

• An ε-approximate local maximum if ∇radHN (x) ≥
√

2ξ′′(1)− ε.

• An ε-approximate local non-maximum if ∇radHN (x) ≤
√

2ξ′′(1) + ε.

• An ε-marginal local maximum if both preceding estimates hold: |∇radHN (x)−
√

2ξ′′(1)| ≤ ε.
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We now use Lemma 4.5.13 to control the energy levels at which such ε-critical points can exist. (One
could also directly apply Theorem 4.5.2, but this leads to some notational burden.)

Corollary 4.7.6. Fix any υ > 0. For sufficiently small ε, with probability 1 − e−cN all ε-marginal local
maxima satisfy

E−∞ − υ ≤ HN (x)/N ≤ E+
∞ + υ. (4.116)

In fact the lower bound holds for all ε-approximate local maxima, while the upper bound holds for all ε-
approximate local non-maxima.

Proof. We proceed in two similar cases, first showing the left-hand side of (4.116) for ε-approximate local
maxima.

Case 1: lower bound LetKmax
N (ε, υ) consist of thoseHN ∈ KN (ε) for which there exists an ε-approximate

local maximum x ∈ SN with
HN (x)/N ≤ E−∞ − υ.

We apply Lemma 4.5.13 as in the proof of Proposition 4.5.1. We find that for some ι = oε(1),

E
∣∣CrtN((−∞, E−∞ − υ/2) ; (

√
2ξ′′(1)− ι,∞)

) ∣∣ ≥ e−oε(N) · P[HN ∈ Kmax
N (ε, υ)]. (4.117)

Again using Proposition 4.5.10, it suffices to show the left-hand side above is at most e−c(ξ,υ)N for ε sufficiently
small, which is the statement of (4.114). This proves the left-hand inequality of (4.116) in the claimed sense.

Case 2: upper bound Let Knonmax
N (ε, υ) consist of those HN ∈ KN (ε) for which some ε-local non-

maximum x ∈ SN satisfies
HN (x)/N ≥ E+

∞ + υ.

Again using Lemma 4.5.13, we find

E
∣∣CrtN((E+

∞ + υ/2,∞) ; (−∞,
√

2ξ′′(1) + ι)
)∣∣ ≥ e−oε(N) · P[HN ∈ Knonmax

N (ε, υ)]. (4.118)

In the case that (4.115) holds, the proof is as in the first case. If GS(ξ) ≤ E+
∞, then the upper bound holds

trivially.

We briefly summarize the applications of Corollary 4.7.6 in our concurrent works. See the individual
papers for more detail. As partially mentioned in Remark 4.5.18, our work [HS24] uses approximate message
passing to construct ε-marginal local maxima at the algorithmic threshold energy ALG for any strictly sub-
solvable ξ. For r = 1, Corollary 4.7.6 thus implies that ALG ∈ [E−∞, E

+
∞], generalizing the fact that ALG = E∞

for pure models. Separately, [Sel24b] proves that spherical Langevin dynamics at large inverse temperature
β rapidly climbs to and stays above the energy of the lowest lying ε-approximate local maximum, up to error
oβ→∞(1). Corollary 4.7.6 thus gives E−∞ − oβ(1) as an explicit energy lower bound.

Finally we present a consequence for approximate critical points of finite index. Recall from [AB13]
the positive thresholds (Ek)k≥0, defined so that Ek is the larger of two zeros for the index k critical point
complexity function θk,ξ (where we have implicitly negated HN to make all energies positive). [AB13]
deduced from Markov’s inequality that HN has no index k critical points at energies strictly above Ek, and
we extend this to approximate critical points. Note that we consider positive energy values, so our signs are
switched.

Corollary 4.7.7. Let E > Ek for fixed k and let ε(E, k) be sufficiently small. Then with probability 1−e−cN ,
all ε-approximate critical points x with HN (x)/N ≥ E have index at most k. Furthermore if k = 1, then
all such x are within distance η

√
N from a local maximum where η = η(E, k, ε)→ 0 as ε→ 0 for each fixed

E, k.

Proof. It follows from the smoothness and monotonicity properties for θk,ξ in [AB13, Proposition 1] that
for some δ(E, k) > 0, the expected number of critical points x ∈ SN with λk(∇2

spHN (x)) ≥ −2δ is at most

e−cN . Another similar application of Lemma 4.5.13 for sufficiently small ε implies with probability 1− ec′N ,
all ε-approximate critical points x ∈ SN satisfy λk(∇2

spHN (x)) ≤ −δ. This completes the proof. For the

second claim, note that when k = 1, we have just showed supp
(
∇2

spHN (x)
)
∩ [−δ, δ] = ∅. Hence for ε small

compared to δ, Proposition 4.6.21 yields the result.
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Appendix

4.A Properties of solutions to the vector Dyson equation

In this appendix, we establish properties of the vector Dyson equation (4.59) that we use in the paper. It

will be useful to rename ~v + z~λ to ~v and allow ~v to vary in all of Hr. Thus we study the equation

vs = −λs
us
−
∑
s′∈S

ξ′′s,s′us. (4.119)

The right-hand side of (4.119) is a function of ~u, which we will denote ~v(~u). There will be no confusion

with the notations ~v(~∆), ~u(~∆) (defined in Corollary 4.4.11 and equation (4.68)), which do not appear in this
appendix.

Lemma 4.A.1 ([HFS07, Section 3]). For any ~v ∈ Hr, there exists a unique solution ~u = ~u(~v) ∈ Hr to
(4.119).

As a result, for z ∈ H the solution ~u(z;~v) to the Dyson equation (4.38) is given by

~u(z;~v) = ~u(~v + z~λ). (4.120)

The first result of this Appendix establishes continuity of ~u(·) in ~v. This extends the 1/3-Hölder continuity in
z proved in [AEK17a], which corresponds for us to varying ~v along certain 1-dimensional subspaces. See also
[AEK20, Section 10] for continuity properties in ξ. We note that, importantly, these works treat extremely
general models with a continuum of “species” parametrized by a probability measure. By contrast we will
not hesitate to use the assumption that r is finite (e.g. in (4.126)).

Theorem 4.A.2. The solution ~u(~v) to (4.119) identified by Lemma 4.A.1 extends to a 1/3-Hölder continuous
function ~u : Hr → Hr.

Thus the identification (4.120) remains true as z tends to the real line. I.e. as z → γ ∈ R, the limit

~u(γ;~v) of ~u(z;~v) (well-defined by Proposition 4.2.10) equals ~u(~v + γ~λ).
The proof of Theorem 4.A.2 consists of two steps. We first show =~u is 1/3-Hölder, and then we extend this

to <~u. The first step is handled similarly to [AEK17a], though care must be used to handle ~v with imaginary
parts of very different sizes. In the second step, we start by deducing via Stieltjes transforms that ~u can
be extended in a Hölder continuous way within certain 1-dimensional subspaces. To glue these extensions
together, we employ results from harmonic analysis on the boundary behavior of harmonic functions. In
particular the consistency of these extensions on different lines intersecting at a common point ~v ∈ Rr follows
from the existence of non-tangential limits.

Remark 4.A.3. By continuity of ~v(·), for any ~v ∈ Hr the point ~u = ~u(~v) defined by Theorem 4.A.2 is
a solution to the Dyson equation ~v = ~v(~u). However, for ~v ∈ Hr \ Hr, this solution is not necessarily the
unique preimage of ~v in Hr.

For ~u ∈ Hr, recall from (4.65) the definitions:

M(~u) = diag

(
λs
u2
s

)
− ξ′′, M(~u) = diag

(
λs
|us|2

)
− ξ′′.
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Lemma 4.A.4. For any ~v ∈ Hr such that M(~u(~v)) is invertible, ~u(·) is differentiable at ~v and ∇~u(~v) =
M(~u(~v))−1.

Our next result determines the images ~u(Hr) and ~u(Rr). In particular, this characterizes which (~v, ~u)
pairs solving (4.119) for ~v ∈ Hr are genuine solutions obtainable as limits of solutions with ~v ∈ Hr.

Theorem 4.A.5. Let ~u∗ ∈ Hr.

(a) There exists ~v ∈ Hr such that ~u∗ = ~u(~v) if and only if M(~u∗) � 0 and M(~u∗)=(~u∗) � ~0.

(b) There exists ~v ∈ Rr such that ~u∗ = ~u(~v) if and only if one of the following conditions holds.

(i) ~u∗ ∈ Rr and M(~u∗) � 0.

(ii) ~u∗ ∈ Hr, M(~u∗) � 0, and M(~u∗)=(~u∗) = 0.

Corollary 4.A.6. If ~u∗ ∈ Hr and there exists ~v ∈ Hr such that ~u∗ = ~u(~v), then M(~u∗) is invertible.

Next in Proposition 4.A.7, we show that singularity of M(~u(~v)) (which by the previous corollary requires
~v ∈ Rr) corresponds to 0 being an edge/cusp of associated spectral measures, and give a precise description
of each case. For any ~χ ∈ Rr>0 with ‖~χ‖1 = 1, the restriction of ~u(·) onto the line ~v+ z~χ, z ∈ H is a rescaled
Stieltjes transform of a suitable random matrix. Indeed, this restriction solves

vs + χsz = − λs
us(~v + z~χ)

−
∑
s′∈S

ξ′′s,s′us′(~v + z~χ).

We set

ξ̃′′s,s′ =
λsλs′ξ

′′
s,s′

χsχs′
, m̃s(z;~v) =

χs
λs
us(~v + z~χ), x̃s =

vs
√
λs

χs
, (4.121)

which we note match ξ′′s,s′ , ms, xs when ~χ = ~λ. Then the Dyson equation rearranges to

x̃s√
λs

+ z = − 1

m̃s(z;~v)
−
∑
s′∈S

ξ̃′′s,s′

λs
m̃s′(z;~v).

Comparing with (4.38), we find that ~̃m(z;~v) is the limiting Stieltjes transform of the random matrix

M̃N (~̃x) = W̃ − diag(Λ−1/2~̃x � 1T ), (4.122)

where W̃ has law (4.26) but with ξ̃′′ in place of ξ′′. Denote the associated limiting spectral measure (cf.
(4.39)) by

µ̃~χ(~v) ≡ µ~χ(~̃x) (4.123)

We recall from [AEK17a, Theorem 2.6] that µ̃~χ(~v) is supported on a finite union of intervals, which is
the closure of {γ ∈ R : ~u(~v + γ~χ) ∈ Hr}, with edges at the boundary of its support and finitely many cusps

within the support at which ~u(~v + γ~χ) ∈ Rr. We say 0 is a left edge of the support of µ~χ(~̃x) if it is an edge

and (0, c) ⊆ supp µ~χ(~̃x) for small enough c > 0. A right edge is defined similarly. For γ ∈ R and ~χ as above,
we set ~uγ~χ = ~u(~v + γ~χ).

Proposition 4.A.7. Suppose ~v ∈ Rr, ~u = ~u(~v) ∈ Rr, and M(~u) is singular. Fix ~χ ∈ Rr>0 with ‖~χ‖1 = 1.
Then 0 is an edge or cusp of µ̃~χ(~v). In more detail, there exists γ0 > 0 such that for each ∆ ∈ {±1}, one of
the following holds.

(i) For all γ ∈ (0, γ0], ~uγ∆
~χ ∈ Rr and M(~uγ∆

~χ ) � 0.

(ii) For all γ ∈ (0, γ0], ~uγ∆
~χ ∈ Hr.

Moreover case (ii) holds for at least one ∆ ∈ {±1}, and:
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(a) If case (i) holds for ∆ = 1, then 0 is a right edge of µ̃~χ(~v).

(b) If case (i) holds for ∆ = −1, then 0 is a left edge of µ̃~χ(~v).

(c) If case (ii) holds for both ∆ ∈ {±1}, then 0 is a cusp of µ̃~χ(~v).

Finally, which of (a),(b),(c) occurs for a given ~v does not depend on ~χ.

Remark 4.A.8. The ~χ-independence of being an edge or cusp is consistent with Figures 4.4.1b and 4.4.1c.
Recall that in these plots, ~u(0;~v) is real in the four regions outside the blue boundary and nonreal in the
region inside it. An edge corresponds to a point on the blue boundary where a positive-slope line in direction
~χ through ~v crosses from a real region to a nonreal region. A cusp (two in each plot) corresponds to a
point where such a line remains in the nonreal region on either side of ~v. In both pictures, this property is
independent of the slope ~χ.

Our final result computes the annealed exponential growth rate of the determinant of the deformed
Gaussian band matrix MN (~x) defined in (4.51). Namely we give an explicit formula for Ψ(~x), defined in
(4.44). Recall from the proof of Proposition 4.3.2 that this equals

lim
N→∞

1

N
logE|detMN (~x)|.

Recall that 〈~a,~b〉 =
∑r
i=1 aibi denotes a bilinear form rather than a complex inner product, even when ~a,~b

are complex vectors.

Theorem 4.A.9. Let ~x ∈ Rr and ~v = Λ1/2~x. Then

Ψ(~x) =
1

2
<(〈~u(~v), ξ′′~u(~v)〉)−

∑
s∈S

λs log |us(~v)|.

4.A.1 Preliminaries

Lemma 4.A.10. Suppose A ∈ Rr×r is diagonally signed, A � 0, and A′ ∈ Cr×r satisfies:

|A′s,s| ≥ As,s, ∀s ∈ S ;

|A′s,s′ | ≤ |As,s′ |, ∀s 6= s′ ∈ S .
(4.124)

Then:

(a) If A is invertible, A−1 has only positive entries.

(b) If A is invertible, then so is A′ and ‖(A′)−1‖op ≤ ‖A−1‖op.

(c) If at least one inequality in (4.124) holds strictly, then A′ is invertible.

Proof. Suppose A is invertible. Then A � 0, so As,s > 0 for all s ∈ S . Let D = diag(A)1/2, so A =
D(I −B)D for some B ∈ Rr×r with zero diagonal and positive entries off the diagonal, and with I −B � 0.
Let t = λmin(I−B) ∈ (0, 1), so (1− t)I−B � 0. By Lemma 4.2.8 (applied to (1− t)I−B), (1− t)I+B � 0.
Thus (1− t)I � B � −(1− t)I. So,

A−1 = (D(I −B)D)
−1

= D−1(I +B +B2 + · · · )D−1,

as the geometric series converges. Since D and B have positive entries, part (a) follows.

There exists diagonal D̃ ∈ Cr×r such that D2D̃2 = diag(A′), and (4.124) implies |D̃s,s| ≥ 1 for all

s ∈ S . Then A′ = DD̃(I − B̃)D̃D. Note that for all s, s′ ∈ S , |B̃s,s′ | ≤ Bs,s′ , and therefore for all k ≥ 1,

|(B̃k)s,s′ | ≤ (Bk)s,s′ . Thus

(A′)−1 = D−1D̃−1(I + B̃ + B̃2 + · · · )D̃−1D−1,
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as the geometric series converges. For any ~x ∈ Cr, consider ~y ∈ Rr defined by ys = |xs|. Then it is clear
that for all s ∈ S , |((A′)−1~x)s| ≤ (A−1~y)s, so

∥∥(A′)−1
∥∥
op
≤
∥∥A−1

∥∥
op

. This proves part (b).

Finally consider the setting of part (c), where A � 0 is not necessarily invertible and at least one inequality

in (4.124) is strict. Let Ã ∈ Rr×r be the diagonally signed matrix with Ãs,s = |A′s,s| and Ãs,s′ = −|A′s,s′ | for

s 6= s′. Let ~w be the minimal (unit) eigenvector of Ã, which by Lemma 4.2.7 has all positive entries. Then

λmin(Ã) = 〈Ã~w, ~w〉 > 〈A~w, ~w〉 ≥ λmin(A) ≥ 0,

so Ã � 0. Thus Ã is invertible, and by part (b) (with Ã for A) so is A′. This proves part (c).

The following part of the proof of Theorem 4.A.5 will be used repeatedly, so we prove it first. It is related
to [AEK17a, Lemma 4.3] (namely the operator F appearing there is similar to M).

Lemma 4.A.11. For any ~v ∈ Hr, with ~u = ~u(~v) we have M(~u) � 0.

Proof. Taking imaginary parts of (4.119) yields

λs
|us|2

=(us)−
∑
s′∈S

ξ′′s,s′=(us′) = =(vs). (4.125)

Since =(vs) > 0, we have M(~u)=(~u) � 0. This implies M(~u) � 0 by Lemma 4.2.7.

Lemma 4.A.12. If ~u ∈ Hr and M(~u) � 0, then M(~u) is invertible.

Proof. Since M(~u) � 0, λs/|us|2 > ξ′′s,s. So, for any s ∈ S ,∣∣∣∣λsu2
s

− ξ′′s,s
∣∣∣∣ > λs
|us|2

− ξ′′s,s,

where the inequality is strict because ~u ∈ Hr. Taking (A,A′) = (M(~u),M(~u)) in Lemma 4.A.10(c) yields
the claim.

Corollary 4.A.13. For any ~v ∈ Hr, with ~u = ~u(~v), M(~u) is invertible.

Proof. Follows from Lemmas 4.A.11 and 4.A.12.

Lemma 4.A.14. There exists C0 > 0 depending on (~λ, ξ′′) such that for all ~v ∈ Hr, ‖~u(~v)‖∞ ≤ C0.

Proof. Let ~u = ~u(~v). By Lemma 4.A.11, M(~u) � 0, so M(~u)s,s > 0. Thus |us| ≤
√
λs/ξ′′s,s.

4.A.2 Joint continuity of the vector Dyson equation

In this subsection, we let C0 be as in Lemma 4.A.14, let C1 be a sufficiently large constant depend-
ing on (~λ, ξ′′, C0), and similarly take large C2 depending on (~λ, ξ′′, C0, C1) and C3 large depending on

(~λ, ξ′′, C0, C1, C2). Given any S ⊆ S , define

VS = {~v ∈ Hr : |vs| ≤ C1 ∀s ∈ S and |vs| ≥ C1 ∀s /∈ S} ⊆ Hr. (4.126)

We will show Hölder continuity of the restriction of =(~u) to each set VS .

Lemma 4.A.15. For each S ⊆ S , the restriction of ~u : Hr → Hr to VS satisfies ‖=(~u)|VS‖C1/3 <∞.

Lemma 4.A.15 readily implies that ‖=(~u)‖C1/3 < ∞ holds on all of Hr, thus establishing “half of”
Theorem 4.A.2. Namely given ~v,~v′ ∈ Hr, along the path (~v + t(~v′ − ~v))t∈[0,1] the s-th coordinate’s norm
switches between [0, C1] and [C1,∞) at most twice. Hence =(~u(~v))−=(~u(~v′)) can be bounded by applying
Lemma 4.A.15 at most 2r + 1 times along this path.

We prove Lemma 4.A.15 after establishing some helpful intermediate results.
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Lemma 4.A.16. For C1 as described above (i.e. sufficient large depending on (~λ, ξ′′, C0)), the following
holds.

(a) For all s ∈ S, |us| ≥ λs/2C1.

(b) For all s 6∈ S, |us| ≤ 2λs/C1.

Proof. Equation (4.119) implies

|vs| −
∑
s′∈S

ξ′′s,s′ |us′ | ≤
λs
|us|
≤ |vs|+

∑
s′∈S

ξ′′s,s′ |us′ |. (4.127)

In light of Lemma 4.A.14, we have ∑
s′∈S

ξ′′s,s′ |us′ | ≤ C1/2

for suitably large C1 depending only on (~λ, ξ′′). For s ∈ S , the right inequality of (4.127) implies λs/|us| ≤
2C1, which implies part (a). For s 6∈ S , the left inequality implies λs/|us| ≥ C1/2, which implies part
(b).

Lemma 4.A.17. For s, s′ ∈ S,
C−1

2 =(us) ≤ =(us′) ≤ C2=(us).

Proof. Taking imaginary parts of (4.119) yields (4.125). In light of Lemma 4.A.16(a), this implies

4C2
1

λs
=(us) ≥

λs
|us|2

=(us) ≥ ξ′′s,s′=(us′).

Since such an inequality holds for all s, s′ ∈ S the conclusion follows.

Lemma 4.A.18. The function ~u is differentiable on Hr with Jacobian ∇~u(~v) = M(~u(~v))−1 (which is
invertible by Corollary 4.A.13).

Proof. Let ~v ∈ Hr and ~u = ~u(~v) ∈ Hr. Then ~v(~u) = ~v. The function ~v(·) is clearly continuous, so it maps
an open neighborhood N ⊂ Hr of ~u into ~v(N ) ⊂ Hr. By Lemma 4.A.1, this is a bijective map with inverse
~u(·). Moreover ~v(·) is differentiable, with Jacobian

∇~v(~u) = M(~u), (4.128)

and this is invertible by Corollary 4.A.13. The result follows by the inverse function theorem.

Lemma 4.A.19. For each s∗ ∈ S, and distinct ~v, ~̃v ∈ VS,

‖=(us∗(~v))−=(us∗(~̃v))‖2
‖~v − ~̃v‖1/32

≤ C3. (4.129)

Proof. Write ~u = ~u(~v). By Lemma 4.A.18, ∇~u(~v) = M−1(~u). We show that for ~v ∈ VS ,

‖M−1(~u)‖op ≤ C3=(us∗)
−2. (4.130)

To deduce (4.129) from this, first note that for any smooth path γ : [0, 1]→ VS , (4.130) implies∣∣∣∣ ddt[=(us∗(γ(t))
)3]∣∣∣∣ ≤ C3γ

′(t).

This implies =(us∗)
3 is Lipschitz on VS because for any ~v, ~̃v ∈ VS there exists γ as above with

(
γ(0), γ(1)

)
=

(~v, ~̃v) and
∫ 1

0
|γ′(t)|dt ≤ 10r‖~v − ~̃v‖2. Since =(us∗) is uniformly bounded by Lemma 4.A.14, the fact that

=(us∗)
3 is Lipschitz immediately yields (4.129).
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To show (4.130), with ε = C2=(us∗) > 0, we have =(us) ≥ ε for all s ∈ S by Lemma 4.A.17. Define the
matrix

M†s,s′ =

{
|Ms,s| = |λs/u2

s − ξ′′s,s|, s = s′ ∈ S ,

−ξ′′s,s′ , s 6= s′ ∈ S .
.

Thus M† agrees with M off of the diagonal. On the diagonal, we claim that

M†s,s ≥Ms,s + Ω(ε2) · 1s∈S .

This is easy to see geometrically: given |us|, the entry M†s,s varies on a circle, and its radius is
√
λs/|us| � 1

since s ∈ S, and its distance from the center is also ξ′′s,s � 1. By Lemma 4.A.10, it follows that M† is strictly

positive definite since M � 0.
We claim that in fact

M† � Ω(ε2)Ir. (4.131)

Indeed let ~y ∈ Rr be a unit vector and let ~yS ∈ Rr agree with ~y on coordinates in S and have zero coordinates
otherwise. If ‖~yS‖22 ≥ 1/2, then

〈~y,M†~y〉 ≥ 〈~y,M~y〉+ Ω(ε2‖~yS‖22) ≥ Ω(ε2).

Otherwise, suppose ‖~ySc‖22 ≥ 1/2. Define

C ′0 = max
s,s′∈S

ξ′′s,s′ , C ′1 = min
s∈S

{
C2

1

4λs
− ξ′′s,s

}
.

Lemma 4.A.16(b) implies M†s,s ≥ C ′1 for all s /∈ S while M†s,s′ ≥ −C ′0 for all s, s′ ∈ S . So

〈~y,M†~y〉 ≥ C ′1‖~ySc‖22 − rC ′0 ≥ 1

if C1 is suitably large. Combining cases proves (4.131) since ~y was an arbitrary unit vector.
Thus

∥∥(M†)−1
∥∥
op
≤ O(ε−2). Applying Lemma 4.A.10(b) with (A,A′) = (M†,M) shows that ‖M−1‖op ≤

‖(M†)−1‖op, establishing (4.130) as desired.

Proof of Lemma 4.A.15. Let B(R) ⊆ C denote the radius R ball. Note that given any (~v, ~uS) ∈ Hr ×
B(C0)|S|, the complementary vector ~uSc = ~u − ~uS may be defined by the equations in (4.119) for s ∈ Sc.
Restricting the domain slightly to DS = (C\B(C1))r ×B(C0)|S|, this defines a map

ϕS : DS → B(C0)|S
c|.

Note that the restriction MSc of M to coordinates Sc × Sc satisfies ‖MSc(~u)−1‖op ≥ 1 on the domain of ϕS
since C1 is large compared to C0. It follows that ‖∇ϕS‖ ≤ O(1) holds everywhere on DS .

Finally just as in the proof of Lemma 4.A.19, for any pair of points in DS , there is a smooth path
γ : [0, 1]→ DS connecting them with total length at most the Euclidean distance between them. Therefore

ϕS is O(1)-Lipschitz on DS , and so using Lemma 4.A.19, for any ~v, ~̃v ∈ VS

‖~u(~v)− ~u(~̃v)‖2 ≤ ‖~uS(~v)− ~uS(~̃v)‖2 + ‖~uSc(~v)− ~uSc(~̃v)‖2
. ‖~uS(~v)− ~uS(~̃v)‖2 +

(
‖~uS(~v)− ~uS(~̃v)‖2 + ‖~v − ~̃v‖2

)
. ‖~v − ~̃v‖1/32 · (1 + ‖~v − ~̃v‖2).

Recalling that ~u is uniformly bounded now completes the proof.

It follows immediately from the preceding result that =~u extends to a C1/3 function on Hr. It remains
to show the same for <~u. Similarly to [AEK17a, Proposition 5.1], along any given 1-dimensional subspace
of Rr, <~u can be obtained via the Stieltjes transform of the continuous boundary extension of =~u, which
automatically inherits the 1/3-Hölder continuity of =~u. Since we aim to show continuity in ~v ∈ Hr, these
1-dimensional Stieltjes transforms must be patched together. Consistency of the extensions to intersecting
lines in Rr will follow from the existence of non-tangential limits as recalled below.
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Definition 4.A.20. Given v ∈ R and θ ∈ (0, π/2), define the cone

Coneθ(v) =
{
y ∈ H : arg(y − v) ∈ [π/2− θ, π/2 + θ]

}
⊆ H.

Given ~v ∈ Rr and θ1, . . . , θr ∈ (0, π/2), define the product cone

Cone~θ(~v) =

r∏
s=1

Coneθs(vs) ⊆ Hr.

Proposition 4.A.21 ([SW71, Special Case of Theorem 3.24 in Chapter 2]). Let ~u : Hr → Hr be a bounded
harmonic function. Then for almost every ~v ∈ Rr, the following non-tangential limit exists and is
uniformly bounded for all ~θ ∈ (0, π/2)r:

~u(R)(~v) ≡ lim
~y→~v

~y∈Cone~θ(~v)

~u(~y). (4.132)

We call those ~v ∈ Rr with this property regular points for ~u.

It is well-known that a bounded harmonic function on H can be recovered as the Poisson integral of its
boundary values, see e.g. [Rud87, Theorem 11.30(b)]. Below we give an extension to higher dimensions
which suffices for our purposes. Define for y ∈ H, ~y ∈ Hr the univariate and multivariate Poisson kernels:

K(y) =
1

π‖y‖2
, K(~y) =

r∏
s=1

~K(ys). (4.133)

Note that K(y) is a probability density on each shift R + it for t > 0. We view K(y) as a point mass at y if

y ∈ R, and ~K as the corresponding product measure for ~y ∈ Hr.

Proposition 4.A.22. Suppose ~u : Rr → R as defined in Proposition 4.A.21 agrees with a continuous
bounded function ~u(R) : Rr → R almost everywhere. Then ~u extends to a bounded continuous function on
Hr agreeing with ~u(R) on Rr and admitting the Poisson integral representation

~u(~y) =

∫
Rr

~K(~y − ~v)~u(R)(~v) d~v, ~y ∈ Hr. (4.134)

Proof. First, the above definition of the Poisson integral agrees (in the case that ~u(R) is uniformly bounded)
with that of [SW71, Chapter 2 page 67] as an iterated application of univariate Poisson integrals. By r-fold
application of [SW71, Chapter 2 Theorem 2.1(b)], it follows that the right-hand side of (4.134) is continuous

and bounded on Hr. Call this right-hand side ~̃u. Since each probability measure K(ys − vs)dvs converges

weakly to a point mass at <ys as =ys ↓ 0, it follows that ~̃u is continuous on Hr.
It remains to show that ~u and ~̃u agree on Hr. Hence fix ~y ∈ Hr. Since both functions are harmonic and

bounded on Hr, we have the upward-shifted Poisson integral representations for ε ∈ (0,mins =ys):

~u(~y) =

∫
Rr

~K
(
~y − ~v − εi~1

)
~u(~v + εi~1) d~v,

~̃u(~y) =

∫
Rr

~K
(
~y − ~v − εi~1

)
~̃u(~v + εi~1) d~v.

(4.135)

The functions ~u(~v + εi~1) and ~̃u(~v + εi~1) on Rr are uniformly bounded and converge almost everywhere to

the same limit ~u(R) as ε ↓ 0. Moreover for each fixed ~y ∈ Hr, the kernel densities ~K(~y − ~v − εi~1) are all

probability measures, and they converge in total variation to ~K(~y − ~v) as ε ↓ 0. It follows that the ε ↓ 0
limits of the right-hand sides in (4.135) agree. Hence the left-hand sides also agree as desired.

Proof of Theorem 4.A.2. It follows by Lemma 4.A.15 and the following discussion that ~v 7→ =(~u(~v)) is
a uniformly 1/3-Hölder continuous function on Hr. We use [Gar07, Theorem 3.5] which states that if a
bounded holomorphic function ϕ : H→ H satisfies

lim
A→∞

−iAϕ(iA) = W > 0, (4.136)
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then ϕ is the Stieltjes transform of a positive measurable density on R with total integral W , which is given
as as almost-everywhere limit of functions =(ϕ(x + iη)) as η ↓ 0. We consider for each ~y ∈ [1/2, 2]r and
~z∗ ∈ Rr and s ∈ S the function

ϕ~y,s(z) = ~us(~z∗ + z~y), z ∈ H.

Then it is easy to see that the condition (4.136) holds with W = λs/ys.
Consider now the lines `(~z∗, ~y) = {~z∗ + z~y}z∈R for ~y ∈ [1/2, 2]r and ~z∗ ∈ Hr. For each `(~z∗, ~y), taking

the Stieltjes transform of ϕ~y,s gives a function us(· ;~z∗, ~y) : `(~z∗, ~y) → H. Recall that Stieltjes transforms
increase C1/3 norms by at most a constant factor (see e.g. [MR08, Section 22]). Since =~u is uniformly
1/3-Hölder, it follows that each ~u(· ;~z∗, ~y) and in particular its real part has uniformly bounded C1/3 norm
on its corresponding domain `(~z∗, ~y).

Next whenever ~z∗ + z~y ∈ Rr is regular, we have

~u(z;~z∗, ~y) = lim
ε↓0

ϕ~y,s(z + iε) = ~u(R)(~z∗ + z~y).. (4.137)

(The first equality holds by continuity properties of ordinary Stieltjes transforms, and the second by definition

of a regular point.) Thus let ~v,~v′ ∈ Rr be regular points for ~u, and let ~̃v be another regular point such that

with ‖~v − ~v′‖∞ = M , we have ṽs − ~vs ∈ [3M, 4M ] for each s. (Such ~̃v exists by Proposition 4.A.21.) Then
vs−ṽs
vs′−ṽs′

∈ [1/2, 2] for each s, s′ ∈ S , which means there is some `(~z∗, ~y) passing through (~v, ~̃v), and similarly

a `(~z′∗, ~y
′) passing through (~v′, ~̃v). Using 1/3-Hölder continuity on these lines together with (4.137) in the

latter step, we thus obtain:

‖~u(R)(~v)− ~u(R)(~v′)‖ ≤ ‖~u(R)(~v)− ~u(R)(~̃v)‖+ ‖~u(R)(~v′)− ~u(R)(~̃v)‖
≤ O(M1/3) = O(‖~v − ~v′‖∞).

Hence the restriction of ~u(R) to regular ~v ∈ Rr is uniformly C1/3. By Proposition 4.A.21, it follows that
~u(R) admits a bounded continuous extension to all of Rr. By Proposition 4.A.22, ~u extends to a bounded
continuous function on Hr.

Finally we show ~u : Hr → Hr as just defined is uniformly C1/3 on its full domain. Fix ~v,~v′ ∈ Hr. For
each s ∈ S , let Bs(t) be a standard complex Brownian motion. Define the processes

V s(t) = vs + =(vs)Bs(t ∧ τs) and V ′s(t) = v′s + =(v′s)Bs(t ∧ τs)

where τs denotes the first time that =Bs(t) = −1; thus =(V s(τs)) = =(V ′s(τs)) = 0. Note τ ≡ maxs τs <∞
almost surely.

Since ~u is bounded and holomorphic, it follows that ~u(~V (t)) and ~u(~V
′
(t)) are both C-valued martingales.

(This also follows directly from (4.133).) Using the triangle inequality followed by C1/3-boundedness of ~u
on Rr gives

|~u(~v)− ~u(~v′)| ≤ E|~u(~V (τ)))− ~u(~V
′
(τ))|

. E
r∑
s=1

|<(V s(τ))−<(V ′s(τ))|1/3

. E
[ r∑
s=1

|<(vs)−<(v′s)|1/3 +

r∑
s=1

|=(vs)−=(v′s)|1/3|<Bs(τs)|1/3
]
.

The law of <Bs(τs) is well known to be a standard symmetric Cauchy random variable (and does not depend

on ~v or ~v′). In particular it has finite 1/3 moment. Hence we find that ‖~u(~v) − ~u(~v′)‖ ≤ O
(
‖~v − ~v′‖1/3∞

)
,

completing the proof.

Proof of Lemma 4.A.4. Consider a sequence of functions ~uε(~v) = ~u(~v + εi~1). By Lemma 4.A.18, ∇~uε(~v) =
M(~uε(~v))−1. By Theorem 4.A.2 and invertibility of M(~u(~v)), as ε ↓ 0 both ~uε(·) and M(~uε(·))−1 converge
locally uniformly to ~u(·) and M(~u(·))−1. The result now follows by e.g. [Rud76, Theorem 7.17], which states
that if a family of functions and their derivatives each converge uniformly, then the derivative of the limiting
function is the limit of the derivatives.
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4.A.3 Solution space of the vector Dyson equation

In this subsection we prove Theorem 4.A.5 and Proposition 4.A.7. We first establish Theorem 4.A.5 in the
setting ~u∗, ~v ∈ Hr.

Lemma 4.A.23. Let ~u∗ ∈ Hr. There exists ~v ∈ Hr such that ~u∗ = ~u(~v) if and only if M(~u∗) � 0 and
M(~u∗)=(~u∗) � ~0.

Remark 4.A.24. In the setting of this lemma =(~u∗) � ~0, so M(~u∗)=(~u∗) � ~0 implies M(~u∗) � 0 by
Lemma 4.2.7. We have written the lemma in this form for consistency with Theorem 4.A.5.

Proof. If ~u∗ = ~u(~v) for some ~v ∈ Hr, Lemma 4.A.11 shows M(~u∗) � 0, and the proof of that lemma shows
M(~u∗)=(~u∗) � ~0. Conversely, suppose M(~u∗)=(~u∗) � ~0. Define ~v = ~v(~u∗). Then

vs = − λs
|u∗s|2

ū∗s −
∑
s′∈S

ξ′′s,s′u
∗
s′ ,

so =(~v) = M(~u∗)=(~u∗) � ~0. Thus ~v ∈ Hr. By Lemma 4.A.1, ~u∗ = ~u(~v).

Proof of Theorem 4.A.5. We first prove the forward directions of both parts. For part (a), suppose ~u∗ = ~u(~v)
for some ~v ∈ Hr. By Lemma 4.A.23 and continuity of ~u, ~u∗ lies in the closure of the set defined by M(~u∗) � 0
and M(~u∗)=(~u∗) � ~0, which implies the conclusion. For part (b), suppose ~u∗ = ~u(~v) for some ~v ∈ Rr. Taking
imaginary parts of (4.119) yields (4.125), which implies M(~u∗)=(~u∗) = ~0. Since M(~u∗) is diagonally signed
this implies =(~u∗) = ~0 or =(~u∗) � ~0, i.e. ~u∗ ∈ Rr or ~u∗ ∈ Hr. By part (a) we also have M(~u∗) � 0. If
~u∗ ∈ Rr, then M(~u∗) = M(~u∗) � 0, so conclusion (i) holds. If ~u∗ ∈ Hr, conclusion (ii) holds.

We turn to the converses, beginning with part (a). Suppose M(~u∗) � 0 and M(~u∗)=(~u∗) � ~0. Let
~v∗ = ~v(~u∗); we will show that ~u∗ = ~u(~v∗).

Similarly to above, M(~u∗)=(~u∗) � ~0 implies ~u∗ ∈ Rr or ~u∗ ∈ Hr. Suppose first that ~u∗ ∈ Rr, and further
assume M(~u∗) � 0. Recall from (4.128) that ~v has Jacobian ∇~v(~u) = M(~u). Because ~u∗ ∈ Rr, we have
M(~u∗) = M(~u∗) � 0. So, ∇~v is invertible in a neighborhood of ~u∗. By the inverse function theorem, there
is a local inverse ~v−1 of ~v satisfying

∇~v−1(~v∗) = M(~u∗)−1.

By Lemma 4.A.10(a), M(~u∗)−1 has all positive entries. For small ε > 0 define ~vε = ~v∗ + iε~1 and note that

d

dε
~v−1(~vε)

∣∣
ε=0

= iM(~u∗)−1~1 ∈ Hr.

Define ~uε = ~v−1(~vε). Then, for small ε > 0 we have ~uε, ~vε ∈ Hr and ~vε = ~v(~uε). By Lemma 4.A.1,
~uε = ~u(~vε). Taking ε→ 0, continuity of ~u implies ~u∗ = ~u(~v∗).

Next suppose ~u∗ ∈ Rr and M(~u∗) � 0 is singular. For small ε > 0 define ~u(ε) = (1 − ε)~u∗ and
~v(ε) = ~v(~u(ε)). Since M(~u(ε)) � M(~u∗) � 0, we have just shown ~u(ε) = ~u(~v(ε)). Continuity of ~u implies
~u∗ = ~u(~v∗).

Finally, suppose ~u∗ ∈ Hr. As above, for small ε > 0, M(~u(ε)) � 0. Moreover, for any s ∈ S ,

λs

|u(ε)
s |2
=(u(ε)

s )−
∑
s′∈S

ξ′′s,s′=(u
(ε)
s′ ) >

λs
|u∗s|2

=(u∗)−
∑
s′∈S

ξ′′s,s′=(u∗s′) ≥ 0,

so M(~u(ε))=(~u(ε)) � ~0. Lemma 4.A.23 implies ~u(ε) = ~u(~v(ε)). Continuity of ~u implies ~u∗ = ~u(~v∗). This
proves the converse to part (a).

Finally, we turn to the converse to part (b). If either of (i), (ii) holds, then M(~u∗) � 0 and M(~u∗)=(~u∗) �
~0. We have just shown that ~u∗ = ~u(~v∗), where ~v∗ = ~v(~u∗). We easily verify that under (i) or (ii), ~v∗ ∈ Rr,
completing the proof.

Proof of Corollary 4.A.6. Theorem 4.A.5 implies M(~u) � 0, so the result follows from Lemma 4.A.12.
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Proof of Proposition 4.A.7

Recall the notation (4.123), which will be frequently used below. We begin with the first assertion of
Proposition 4.A.7, namely that singularity of M always corresponds to either an edge or cusp.

Lemma 4.A.25. Fix ~χ ∈ Rr>0 with ‖~χ‖1 = 1. Then M(~u(~v)) is singular if and only if 0 is either an edge
or cusp for µ̃~χ(~v).

Proof. First if 0 is an edge or cusp, then [AEK17a, Theorem 2.6] makes it clear that ~u is not locally Lipschitz
in ~v, hence the contrapositive of Lemma 4.A.4 shows M(~u) is singular.

In the other direction, we have seen that singularity of M(~u), for ~u = ~u(~v), implies ~u ∈ Rr. Moreover
since M(~u) is diagonally signed, its singularity implies by Lemma 4.2.7 that there exists ~w � ~0 ∈ Rr with
M(~u)~w = 0. Suppose for sake of contradiction that 0 /∈ supp µ̃~χ(~v). Then by Lemma 4.2.12, and the Stieltjes
transform definition of ~u, it follows that γ 7→ ~uγ~χ(~v) is Lipschitz for γ in a neighborhood of 0 (since log(x) is

Lipschitz away from 0). A first order Taylor expansion of (4.119) (similarly to Lemma 4.A.18) then implies

lim
γ↓0

M(~u)
(
~uγ~χ − ~u

)
/γ = lim

γ↓0

(
~v + γ~χ− ~v

)
/γ = ~χ.

However the left-hand side above is orthogonal to ~w for all γ 6= 0, while 〈~w, ~χ〉 > 0 since both have strictly
positive entries. This is a contradiction and completes the proof.

Given absolutely continuous µ ∈ P(R) and q ∈ (0, 1), let

λ(q)(µ) = sup{λ ∈ R : µ((−∞, λ] ≤ q)}

be its q-th quantile.

Lemma 4.A.26. Suppose diag(~χ−1)(~v − ~v′) ∈ [a, b]r. Then for all q ∈ (0, 1), we have

λ(q)(µ̃~χ(~v′))− λ(q)(µ̃~χ(~v)) ∈ [a, b].

Proof. Immediate by the Weyl inequalities applied to the eigenvalues of the N ×N random matrices (4.122)
whose spectra tend to µ̃~χ(~v′), µ̃~χ(~v). Indeed in this context, the shift from ~v to ~v′ is equivalent to adding a
diagonal matrix with all entries in [a, b].

Lemma 4.A.27. Given any ~u(~v) ∈ Rr with M(~u) singular, the following are equivalent:

(1) For all ε0 > 0 sufficiently small and all ~ε ∈ (0, ε0]r,

~u(~v − ~ε) ∈ Rr.

(2) For all ε0 > 0 sufficiently small, there exists ~ε ∈ (0, ε0]r such that

~u(~v − ~ε) ∈ Rr.

(3) For all ~χ ∈ Rr>0, the density µ̃~χ(~v) has 0 as a left edge.

(4) There exists ~χ ∈ Rr>0 such that the density µ̃~χ(~v) has 0 as a left edge.

Proof. We will show that point (4) implies point (1), and that point (2) implies point (3), which suffices. In
the first direction, if 0 is a left edge for some ~χ, then Lemma 4.A.26 immediately implies point (1).

In the other direction, suppose point (3) does not hold. Singularity of M(~u) implies via Lemma 4.A.25
that 0 is an edge or cusp of µ̃~χ(~v). Hence if 0 is not a left edge for some ~χ, it must be a right edge or a cusp.
In either case, Lemma 4.A.26 then implies that point (2) does not hold. This completes the proof.

Proof of Proposition 4.A.7. Note that parts (1) and (2) of Lemma 4.A.27 are both independent of ~χ. It
follows that 0 being a left edge, right edge, or cusp for µ̃~χ(~v) are also each independent of ~χ. Moreover
the left and analogous right edge characterizations in parts (1), (2) of Lemma 4.A.27 directly correspond to
case (i) of Proposition 4.A.7. This correspondence implies the result.
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4.A.4 Exponential growth rate of random determinant

This subsection is devoted to the proof of Theorem 4.A.9. We adopt the same notation as in Subsection 4.4.1,
setting Ψ(~v) = Ψ(~x) where ~v = Λ1/2~x ∈ Rr.

Lemma 4.A.28. Ψ : Rr → R is continuously differentiable, with ∇Ψ(~v) = −<(~u(~v)).

The following non-rigorous calculation, which we carefully justify below, yields this formula. Due to the
identification (4.120), we may freely switch between the notations ~u( · ; · ) and ~u(·) in what follows.

d

dvs
Ψ(~v) =

1

π

∫
R

log |γ|
∑
s′∈S

λs′=
(
dus′(γ;~v)

dvs

)
dγ

=
1

π

∫
R

log |γ|
∑
s′∈S

λs′=

(
dus′(~v + γ~λ)

dvs

)
dγ

(∗)
=

1

π

∫
R

log |γ|
∑
s′∈S

λs′=

(
dus(~v + γ~λ)

dvs′

)
dγ

=
1

π

∫
R

log |γ|=

(
dus(~v + γ~λ)

dγ

)
dγ

(�)
= − 1

π

∫
R

1

γ
=
(
us(~v + γ~λ)

)
dγ

(?)
= −< (us(~v)) .

(4.138)

Step (∗) uses that ∇u(~v) = M(~u(~v))−1 (recall Lemma 4.A.4) is a symmetric matrix; step (�) integrates
by parts and step (?) is a contour integral. However this is not a rigorous calculation, primarily because
M(~u(~v))−1 may be singular for ~v ∈ Rr.

To make this calculation rigorous, we first work on the line R + iη for η > 0, and then send η ↓ 0 (see
[BBM24, Proposition 4.9] for a similar computation). Recall from Proposition 4.2.10 that the probability
densities µs solving the Dyson equation are uniformly compactly supported for ~v ∈ Rr with ‖~v‖∞ ≤ R. It
follows that for such ~v,

= (us(γ + iη, ~v)) ≤ C(R, η, ξ′′, ~λ)

1 + γ2
,∣∣∣∣=( d

dvs
us(γ + iη, ~v)

)∣∣∣∣ ≤ C(R, η, ξ′′, ~λ)

1 + γ2
.

(4.139)

Let γ ∈ R and η > 0. By Lemma 4.A.4 and (4.120), ∇~u(γ+ iη;~v) = M(~v+ (γ+ iη)~λ)−1 (which is invertible
by Corollary 4.A.13). Moreover this matrix is symmetric, so

1

π

∫
R

log |γ + iη|
∑
s′∈S

λs′=
(
dus′(γ + iη;~v)

dvs

)
dγ

=
1

π

∫
R

log |γ + iη|
∑
s′∈S

λs′=
(
dus(γ + iη;~v)

dvs′

)
dγ

=
1

π

∫
R

log |γ + iη| =
(
dus(γ + iη;~v)

dγ

)
dγ

(†)
= − 1

π

∫
R
<
(

1

γ + iη

)
= (us(γ + iη;~v)) dγ,

(4.140)

Step (†) is an integration by parts which is valid by (4.139). We use the residue theorem to evaluate the last
integral. Note that∫

R
<
(

1

γ + iη

)
= (us(γ + iη;~v)) dγ =

1

2
=
∫
R

(
1

γ + iη
+

1

γ − iη

)
us(γ + iη;~v) dγ.
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The latter integral can be evaluated by completing the contour via a radius R semicircle in H; the contribution
of this semicircle decays to 0 with R since the uniformly compact support of µs implies that |us(z;~v)| ≤
O(1/|z|) for large z and fixed ~v. Hence applying the residue theorem, we complete the calculation (4.140)
and obtain:

1

π

∫
R

log |γ + iη|
∑
s′∈S

λs′=
(
dus′(γ + iη;~v)

dvs

)
dγ = −< (us(2iη;~v))

= −<
(
us(~v + 2iη~λ)

)
.

(4.141)

We complete the proof of Lemma 4.A.28 by taking η ↓ 0 in (4.141). The right-hand side poses no issue
since ~u is 1/3-Hölder continuous by Theorem 4.A.2. For the left-hand side, we differentiate under the integral
sign (which is justified using e.g. compact support of µs):

1

π

∫
R

log |γ + iη|
∑
s′∈S

λs′=
(
dus′(γ + iη;~v)

dvs

)
dγ

=
d

dvs

1

π

∫
R

log |γ + iη|
∑
s′∈S

λs′= (us′(γ + iη;~v)) dγ.

We then take the η ↓ 0 limit for the latter integrand.

Proposition 4.A.29. Locally uniformly over ~v ∈ Rr,

lim
η↓0

∫
R

log |γ + iη|
∑
s′∈S

λs′= (us′(γ + iη;~v)) dγ =

∫
R

log |γ|
∑
s′∈S

λs′= (us′(γ;~v)) dγ

Proof. This follows directly by dominated convergence. The large γ contributions are controlled by (4.139),
while the log 0 singularity is integrable hence causes no issues.

Proof of Lemma 4.A.28. Define

fs(η;~v) =

∫
R

log |γ + iη|
∑
s′∈S

λs′= (us′(γ + iη;~v)) dγ, η ≥ 0.

We have shown above that:

(1) limη↓0 fs(η;~v) = fs(0;~v) holds locally uniformly in ~v.

(2) For η > 0, we have d
dvs
fs(η;~v) = −<(us(~v + 2iη~λ)).

(3) <(us(~v + 2iη~λ)) is continuous on η ≥ 0, locally uniformly in ~v.

Recall from e.g. [Rud76, Theorem 7.17] that if a family of functions and their derivatives each converge
uniformly, then the derivative of the limiting function is the limit of the derivatives. This shows d

dvs
Ψ(~v) =

−<(us(~v)). Finally ~u(·) is continuous by Theorem 4.A.2, concluding the proof.

Proof of Theorem 4.A.9. We claim that

G(~v) = Ψ(~v)− 1

2
< (〈~u(~v), ξ′′~u(~v)〉) +

∑
s∈S

λs log |us(~v)|

vanishes identically on ~v ∈ Rr. We first check that |G(~v)| → 0 as mins |vs| → ∞. In this limit, (4.46) implies
that

W∞
(
µ(~v),

∑
s∈S

λsδ−vs/λs

)
is bounded independently of ~v. Hence Ψ(~v)−

∑
s∈S λs log(|vs|/λs) tends to 0 as mins vs →∞. Furthermore

~u(~v) = ~u(0;~v) → 0 in this limit, so (4.119) implies that in fact usvs → −λs. Thus Ψ(~v) +
∑
s∈S λs log |us|

indeed tends to 0 with mins |vs|.
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Next let T ⊆ Rr denote the set of points at which detM(~u(~v)) = 0. Since detM(~u(~v)) is continuous, for
any ~v /∈ T , we may differentiate G(~v) using Lemma 4.A.4 to obtain ∇G(~v) = ~0. Indeed, letting ~u = ~u(~v),
one directly verifies

∇~v∈Rr
(
−1

2
<〈~u(~v), ξ′′~u(~v)〉+

∑
s∈S

λs log |us(~v)|

)

= <

(
∇~v∈Hr

(
−1

2
〈~u(~v), ξ′′~u(~v)〉+

∑
s∈S

λs log us(~v)

))

= <

(
M(~u)−1∇~u∈Hr

(
−1

2
〈~u, ξ′′~u〉+

∑
s∈S

λs log us

))
= <

(
M(~u)−1 ((λs/us)s∈S − ξ′′~u)

)
= <(~u)

= −∇~v∈RrΨ(~v).

The gradient subscripts indicate whether we consider the expression as a gradient of a smooth function
defined on Rr or of a holomorphic function on Hr.

It follows thatG(~v) is locally constant on Rr\T . Moreover Proposition 4.2.15 implies thatG is continuous.

Finally, Proposition 4.2.10(b) implies that each line ~v(t) = ~v(0)+t~λ intersects T at only finitely many points.
Combining the above implies G(~v) = 0 for all ~v ∈ Rr as desired.
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Part II

Algorithms
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Chapter 5

Algorithmic threshold for
multi-species spherical spin glasses

Abstract – We study efficient optimization of the Hamiltonians of multi-species spherical spin glasses.

Our results characterize the maximum value attained by algorithms that are suitably Lipschitz with

respect to the disorder through a variational principle that we study in detail. We rely on the branching

overlap gap property introduced in our previous work [HS25] and develop a new method to establish it

that does not require the interpolation method. Consequently our results apply even for models with

non-convex covariance, where the Parisi formula for the true ground state remains open. As a special

case, we obtain the algorithmic threshold for all single-species spherical spin glasses, which was previously

known only for even models. We also obtain closed-form formulas for pure models which coincide with

the E∞ value previously determined by the Kac-Rice formula.

5.1 Introduction

This paper studies the efficient optimization of a family of random functions HN which are high-dimensional
and extremely non-convex. The computational complexity of such random optimization problems remains
poorly understood in the majority of cases as most impossibility results concern worst-case rather than
average-case behavior.

We focus on a general class of such problems: the Hamiltonians of multi-species spherical spin glasses.
Mean-field spin glasses have been studied since [SK75] as models for disordered magnetic systems and are
also closely linked to random combinatorial optimization problems [KMRT+07, DMS17, Pan18]. Simply
put, their Hamiltonians are certain polynomials in many variables with independent centered Gaussian
coefficients.

Multi-species spin glasses such as the bipartite SK model [KC75, KS85, FKS87a, FKS87b] open the door
to yet richer behavior and as discussed below remain poorly understood from a rigorous viewpoint. Our
main result gives, for all multi-species spherical spin glasses, an exact algorithmic threshold ALG for the
maximum Hamiltonian value obtained by a natural class of stable optimization algorithms.

For the more well-known single-species spin glasses, the celebrated Parisi formula [Par79, Tal06b, Tal06a,
AC17] gives the limiting maximum value of HN as a certain variational formula. In previous work [HS25] we
obtained the algorithmic threshold for these models restricted to have only even degree interactions, given
by the same variational formula over an extended state space. The central idea was to show HN obeys a
branching version of the overlap gap property (OGP): the absence of a certain geometric configuration of
high-energy inputs [GS17a, Gam21]. The proofs of the Parisi formula [Tal06b, Tal06a, AC17], the branching
OGP in [HS25], and other results (e.g. [GT02, BGT10]) require the so-called interpolation method, which is
known to fail when the model’s covariance is not convex. Due to this limitation of the interpolation method,
the proof of our previous result does not generalize to single-species spin glasses with odd interactions, nor
to multi-species spin glasses. For the same reason, the Parisi formula for the ground state of a multi-species
spin glass is known only in restricted cases [BCMT15, Pan15, BL20, Sub23b, BS22b].
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We develop a new method to establish the branching OGP which does not use the interpolation method.
Instead, we recursively apply a uniform concentration idea introduced in [Sub24]. Consequently we are able
to determine ALG for all multi-species spherical spin glasses, including those whose ground state energy is
not known. As a special case, this removes the even interactions condition from [HS25] for spherical models
and is the first OGP that applies to mean-field spin glasses with odd interactions.

Our results strengthen a geometric picture put forth in [HS25, Section 1.4] that in mean-field random
optimization problems, the tractability of optimization to value E coincides with the presence of densely
branching ultrametric trees within the super-level set at value E. On the hardness side, such trees are
precisely what the branching OGP forbids. On the algorithmic side, it will be clear from our methods (see
the end of Subsection 5.1.5) that efficient algorithms can be designed to descend such trees whenever they
exist, thereby achieving value E.

Our algorithmic threshold for multi-species models is expressed as the maximum of a somewhat different
variational principle. We analyze our algorithmic variational principle in detail, showing that maximizers
are formed by joining the solutions to a pair of differential equations, and are explicit and unique for single-
species and pure models. To our surprise the maximizers are not unique in general, a behavior we term
algorithmic symmetry breaking.

5.1.1 Problem description and the value of ALG

Fix a finite set S = {1, . . . , r}. For each positive integer N , fix a deterministic partition {1, . . . , N} =

ts∈S Is with limN→∞ |Is|/N = λs where ~λ = (λ1, . . . , λr) ∈ RS
>0 sum to 1. For s ∈ S and x ∈ RN , let

xs ∈ RIs denote the restriction of x to coordinates Is. We consider the state space

BN =
{
x ∈ RN : ‖xs‖22 ≤ λsN ∀s ∈ S

}
.

Fix ȟ = (h1, . . . , hr) ∈ RS
≥0 and let 1 = (1, . . . , 1) ∈ RN . For each k ≥ 2 fix a symmetric tensor Γ(k) =

(γs1,...,sk)s1,...,sk∈S ∈ (RS
≥0)⊗k with

∑
k≥2 2k

∥∥Γ(k)
∥∥
∞ < ∞, and let G(k) ∈ (RN )⊗k be a tensor with i.i.d.

standard Gaussian entries. For A ∈ (RS )⊗k, B ∈ (RN )⊗k, define A � B ∈ (RN )⊗k to be the tensor with
entries

(A �B)i1,...,ik = As(i1),...,s(ik)Bi1,...,ik , (5.1)

where s(i) denotes the s ∈ S such that i ∈ Is. Let h = ȟ �1. We consider the mean-field multi-species spin
glass Hamiltonian

HN (σ) = 〈h,σ〉+ H̃N (σ), where (5.2)

H̃N (σ) =
∑
k≥2

1

N (k−1)/2
〈Γ(k) �G(k),σ⊗k〉 (5.3)

=
∑
k≥2

1

N (k−1)/2

N∑
i1,...,ik=1

γs(i1),...,s(ik)G
(k)
i1,...,ik

σi1 · · ·σik

with inputs σ = (σ1, . . . , σN ) ∈ BN . For σ,ρ ∈ BN , define the species s overlap and overlap vector

Rs(σ,ρ) =
〈σs,ρs〉
λsN

, ~R(σ,ρ) = (R1(σ,ρ), . . . , Rr(σ,ρ)) . (5.4)

Let � denote coordinate-wise product. For ~x = (x1, . . . , xr) ∈ RS , let

ξ(~x) =
∑
k≥2

〈Γ(k) � Γ(k), (~λ� ~x)⊗k〉

=
∑
k≥2

∑
s1...,sk∈S

γ2
s1,...,sk

(λs1xs1) · · · (λskxsk).

The random function H̃N can also be described as the Gaussian process on BN with covariance

EH̃N (σ)H̃N (ρ) = Nξ(~R(σ,ρ)).
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It will be useful to define, for s ∈ S ,
ξs(~x) = λ−1

s ∂xsξ(~x).

Our main result is a characterization of the largest energy attainable by algorithms with O(1)-Lipschitz
dependence on the disorder coefficients. To define this class of algorithms, we consider the following distance
on the space HN of Hamiltonians HN . We identify HN with its disorder coefficients (G(k))k≥2, which we
concatenate in an arbitrary but fixed order into an infinite vector g(HN ). We equip HN with the (possibly
infinite) distance

‖HN −H ′N‖2 = ‖g(HN )− g(H ′N )‖2.

In other words we identify H with functions of the form (5.2) and measure distance using the Euclidean
norm on the infinite sequence of coefficients, treating h as constant.1

We equip BN with the `2 distance. For each τ > 0, these distances define a class of τ -Lipschitz functions
AN : HN → BN , satisfying

‖AN (HN )−AN (H ′N )‖2 ≤ τ‖HN −H ′N‖2, ∀ HN , H
′
N ∈HN .

Note that this inequality holds vacuously for pairs (HN , H
′
N ) where the latter distance is infinite. As

explained in [HS25, Section 8], the class of O(1)-Lipschitz algorithms includes gradient descent and Langevin
dynamics for the Gibbs measure eβHN (σ)dσ (with suitable reflecting boundary conditions) run on constant
time scales.2 The behavior of such dynamics has been a major focus of study in its own right, see e.g.
[SZ81, CK94, BG95, BG97b, BDG01, BDG06, BGJ20, DS20, DG21, DLZ21, CCM21, Sel24b].

We will characterize the largest energy attainable by a τ -Lipschitz algorithm, where τ is an arbitrarily
large constant independent of N , in terms of the following variational principle. For 0 ≤ q0 ≤ q1 ≤ 1,
let I(q0, q1) be the set of non-decreasing, continuously differentiable functions f : [q0, q1] → [0, 1]. Let
Adm(q0, q1) ⊂ I(q0, q1)S be the set of coordinate-wise non-decreasing, continuously differentiable functions
Φ : [q0, q1]→ [0, 1]S which satisfy, for all q ∈ [q0, q1],

〈~λ,Φ(q)〉 = q. (5.5)

We say Φ is admissible if it satisfies (5.5). For p ∈ I(q0, 1), Φ ∈ Adm(q0, 1), define the algorithmic functional

A(p,Φ; q0) ≡
∑
s∈S

λs

[
hs
√

Φs(q0) +

∫ 1

q0

√
Φ′s(q)(p× ξs ◦ Φ)′(q) dq

]
(5.6)

where (p× ξs ◦ Φ)(q) = p(q)ξs(Φ(q)). (See the end of this subsection for an interpretation of this formula.)
We can now state the algorithmic threshold for multi-species spherical spin glasses:

ALG ≡ sup
q0∈[0,1]

sup
p∈I(q0,1)

Φ∈Adm(q0,1)

A(p,Φ; q0). (5.7)

The following theorem is our main result. Together with Theorem 5.1.2 in our companion work [HS24],
we find that ALG is the largest energy attained by an O(1)-Lipschitz algorithm. Here and throughout, all

implicit constants may depend also on (ξ, ȟ, ~λ).

Theorem 5.1.1. Let τ, ε > 0 be constants. For N ≥ N0 sufficiently large, any τ -Lipschitz AN : HN → BN
satisfies

P[HN (AN (HN ))/N ≥ ALG + ε] ≤ exp(−cN), c = c(ε, τ) > 0.

Theorem 5.1.2 ([HS24, Theorem 1]). For any ε > 0, there exists an efficient and Oε(1)-Lipschitz algorithm
AN : HN → BN such that

P[HN (AN (HN ))/N ≥ ALG− ε] ≥ 1− exp(−cN), c = c(ε) > 0.
1Technically, under this definition multiple “Hamiltonians” may correspond to the same function BN → R due to redundancy

between coefficients G
(k)
i1,...,ik

and G
(k)
iπ(1),...,iπ(k)

for permutations π. However this does not cause any issues for us. If one

prefers that A(·) depend only on the underlying function, it suffices to average the coefficients over permutations π before
applying A.

2Up to modification on a set of probability at most e−cN , which suffices just as well for our purposes.
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Our proof of Theorem 5.1.2 in [HS24] uses approximate message passing (AMP), a general family of
gradient-based algorithms, following a recent line of work [Sub21a, Mon21, AMS21, AS22, Sel24a].

In fact, in Theorem 5.1.1 we will not require the full Lipschitz assumption on AN . Theorem 5.1.1 holds
for all algorithms satisfying an overlap concentration property (see Definition 5.2.2, Theorem 5.2.3), that
for any fixed correlation p ∈ [0, 1] between the disorder coefficients of H1

N and H2
N , the overlap vector

~R(AN (H1
N ),AN (H2

N )) concentrates tightly around its mean. This property holds automatically for O(1)-
Lipschitz AN due to Gaussian concentration of measure.

Interpretation of the algorithmic functional A Suppose first that ȟ = ~0. We will see (Theorem 5.1.12)
that ALG is maximized at q0 = 0, p ≡ 1, in which case

A(p,Φ; q0) =
∑
s∈S

λs

∫ 1

0

√
Φ′s(q)(ξ

s ◦ Φ)′(q) dq. (5.8)

In a single-species spherical spin glass, we have λ1 = 1 and Φ(q) = q, so (5.8) reduces to the formula

ALG =
∫ 1

0
ξ′′(q)1/2 dq derived in [HS25]. This energy is attained by the algorithm of Subag [Sub21a], which

starts from the origin and explores to the surface of the sphere by small orthogonal steps in the direction of
the largest eigenvector of the local tangential Hessian.

In multi-species models, (5.8) is the energy attained by a generalization of Subag’s algorithm, which is
essentially shown in Proposition 5.3.3. Instead of computing a maximal eigenvector at each step, given the
current iterate xt this algorithm chooses xt+1 to maximize 〈∇2HN (xt), (xt+1 − xt)⊗2〉 on a product of r
small spheres centered at xt. This algorithm may advance through different species at different speeds by
tuning the radii of the spheres at each step, and the function Φ is a “radius schedule” whose image specifies
the path of depths (‖xts‖

2
2/λsN)s∈S traced by the iterates xt. Thus each Φ ∈ Adm(0, 1) corresponds to an

algorithm, and Theorem 5.1.1 essentially states that the algorithmic threshold is the energy attained by the
multi-species Subag algorithm with the best Φ.

The function p arises from a further generalization of this algorithm, which becomes necessary in the
presence of external field ȟ 6= ~0. The idea is to reveal the disorder coefficients of HN gradually (in the sense
of progressively less noisy Gaussian observations, see (5.29)) and in tandem with the iterates xt. Though
counterintuitive, this allows the algorithm to take advantage of the gradients of the newly revealed part of
HN at each step. The iterate xt+1 is now chosen to maximize the sum

〈∇(Ht+1
N −Ht

N )(xt),xt+1 − xt〉+
1

2
〈∇2Ht

N (xt), (xt+1 − xt)⊗2〉 (5.9)

of a gradient contribution from the new component and a Hessian contribution from the previously revealed
components. The function p is an “information schedule” that determines the rate at which entries of HN are
revealed. Moreover, to take advantage of the external field, the algorithm starts from a point x0 correlated
with h whose norm is q0

√
N ; the first term in (5.6) is exactly the value 〈h,x0〉/N (see (5.47)).

Technically it is not obvious whether these generalized Subag algorithms can be directly made suitably
Lipschitz. This is one reason we prove Theorem 5.1.2 using AMP in [HS24].

5.1.2 Description of maximizers to the algorithmic variational problem

In this subsection we describe the detailed properties of the maximizers (p,Φ, q0) of (5.7), culminating in an
explicit description in Theorem 5.1.12 as a piecewise combination of solutions to two ordinary differential
equations.

For intuition, it may help to recall the famous ansatz that spin glass Gibbs measures are asymptotically
ultrametric, corresponding to orthogonally branching trees in RN (see e.g. [MV85, Pan13a, Jag17, CS21]).
When ȟ = ~0, the associated tree is rooted at the origin; otherwise the root’s location is correlated with h
but random. Theorem 5.1.12 below shows that maximizers of A consist of a “root-finding” component and a
“tree-descending” component; the corresponding algorithms first locate an analogous root, and then descend
an algorithmic analog of a low-temperature ultrametric tree.

This description holds under the following generic assumption.
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Assumption 5.1.3. All quadratic and cubic interactions participate in H, i.e. Γ(2),Γ(3) > 0 coordinate-
wise. We will call such models non-degenerate.

Note that ALG is continuous in the parameters ξ, ȟ (for a simple proof, first observe that A and hence
ALG are monotone and subadditive in (ξ, ȟ)). Since Assumption 5.1.3 is a dense condition, to determine
the value of ALG it suffices to do so under this assumption. Under this assumption, we will describe in
detail the maximizing triples (p,Φ; q0), which always exist but need not be unique. Non-degeneracy removes
extraneous symmetries among the maximizers of A when e.g. ξ is a sum of polynomials in disjoint sets of
variables.

Definition 5.1.4. A symmetric matrix M ∈ RS×S is diagonally signed if Mi,i ≥ 0 and Mi,j < 0 for all
i 6= j.

Definition 5.1.5. A diagonally signed matrix M is super-solvable if it is positive semidefinite, and solv-
able if it is furthermore singular; otherwise M is strictly sub-solvable. A point ~x ∈ (0, 1]S is super-
solvable, solvable, or strictly sub-solvable if M∗sym(~x) is, where

M∗sym(~x) = diag

((
∂xsξ(~x) + λsh

2
s

xs

)
s∈S

)
−
(
∂xs,xs′ ξ(~x)

)
s,s′∈S

. (5.10)

We also adopt the convention that ~0 is always super-solvable, and solvable if ȟ = ~0.

Solvability plays a central role in our description below of optimal solutions to the variational problem. In
brief, p reaches 1 exactly at the point where Φ switches from being sub-solvable to super-solvable. Further,
in the sub-solvable region (p,Φ) obeys a first order root-finding ODE, while in the super-solvable region
p = 1 and Φ obeys a second order tree-descending ODE. If ~0 is solvable then there is no root-finding phase,
while if ~0 is strictly sub-solvable then there is no tree-descending phase.

Remark 5.1.6. It is possible to extend the notions of (super, strict sub)-solvability to all of [0, 1]S by using
the alternative characterization from Corollary 5.4.5. However this will not be necessary, as our results only
use these notions for ~x ∈ (0, 1]S ∪ {~0}.

Definition 5.1.7. Suppose ~x ∈ (0, 1]S is super-solvable with 〈~λ, ~x〉 = q1. A root-finding trajectory with
endpoint ~x is a pair (p,Φ) ∈ I(q0, q1) × Adm(q0, q1), for some q0 ∈ [0, q1], satisfying p(q1) = 1, Φ(q1) = ~x,
p(q0) = 0, and for all q ∈ [q0, q1]:

(p× ξs ◦ Φ)′(q)

Φ′s(q)
= Ls ≡

ξs(~x) + h2
s

xs
, ∀s ∈ S . (5.11)

Assuming for now that p,Φs ∈ C1([q0, 1]), (5.11) together with admissibility can be written for each
q ∈ [q0, q1] as the ordinary differential equation

p′(q)ξs(Φ(q)) + p(q)
∑
s′∈S

∂xs′ ξ
s(Φ(q)) Φ′s′(q) = LsΦ

′
s(q), ∀s ∈ S ; (5.12)∑

s∈S

λsΦ
′
s(q) = 1; (5.13)

p′(q),Φ′s(q) ≥ 0. (5.14)

Here ~L is treated as fixed, as it is determined by the boundary condition at q1. We note that the value
q itself does not explicitly appear in equation (5.12), except that Φ(q) determines q via admissibility; thus
admissibility functions as a choice of time-parametrization. In fact (5.12) is equivalent to a well-posed
ordinary differential equation (away from ~0, which it never reaches by Proposition 5.1.9). Moreover as
shown in Proposition 5.1.9(a), solving this ODE from a super-solvable initial condition always yields a valid
root-finding trajectory (e.g. the resulting p is actually non-decreasing on [q0, q1]).
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Proposition 5.1.8. For (p(q),Φ(q)) in compact subsets of [0, 1]× (0, 1]S the equation (5.12) has a unique
solution (p′(q),Φ′(q)) which is Lipschitz in (p(q),Φ(q)) (where the Lipschitz constant may depend on the
compact set).

Proposition 5.1.9. ȟ 6= ~0 if and only if there exists a super-solvable ~x ∈ (0, 1]S . If this holds, for each
such ~x:

(a) Let q1 = 〈~λ, ~x〉 > 0. There is a unique root-finding trajectory (p,Φ) with endpoint ~x. It is obtained by
solving (5.12) backward in time from initial condition p(q1) = 1, Φ(q1) = ~x until reaching p(q0) = 0.
Moreover the resulting p is non-decreasing and concave on [q0, q1].

(b) q0 > 0, and in fact Φs(q0) > 0 if and only if hs > 0.

Definition 5.1.10. Suppose ~x ∈ (0, 1]S ∪{~0} is solvable with 〈~λ, ~x〉 = q1. A tree-descending trajectory
with endpoint ~x is a pair (p,Φ) ∈ I(q1, q2) × Adm(q1, q2) satisfying p ≡ 1, Φ(q1) = ~x, M∗sym(~x)Φ′(q1) = ~0,
‖Φs(q2)‖∞ = 1 and

1

Φ′s(q)

d

dq

√
Φ′s(q)

(ξs ◦ Φ)′(q)
=

1

Φ′s′(q)

d

dq

√
Φ′s′(q)

(ξs′ ◦ Φ)′(q)
(5.15)

for all s, s′ ∈ S and q ∈ [q1, q2]. Moreover, (p,Φ) is targeted if Φ(1) = ~1 (i.e. q2 = 1).

Similarly to (5.12), assuming Φ′′ is defined, (5.15) together with the admissibility constraint∑
s∈S

λsΦ
′′
s (q) = 0 (5.16)

is equivalent to a second order differential equation. We show in Subsection 5.4.6 and Appendix 5.C.3 that
this equation is suitably well-posed and obtain the following results.

Proposition 5.1.11. Suppose Assumption 5.1.3 holds and ~x ∈ (0, 1]S ∪ {~0} is solvable with 〈~λ, ~x〉 = q1.

(a) If ȟ 6= ~0, then ~x ∈ (0, 1]S and q1 > 0. There is a unique ~v ∈ RS
≥0 satisfying

M∗sym(~x)~v = ~0, (5.17)

〈~λ,~v〉 = 1. (5.18)

There is a unique tree-descending trajectory with endpoint ~x, which is obtained by solving (5.15) forward
in time from Φ(q1) = ~x, Φ′(q1) = ~v until reaching ‖Φs(q2)‖∞ = 1.

(b) If ȟ = ~0, then ~x = ~0 and q1 = 0. For any ~v ∈ RS
≥0 satisfying (5.18), there is a unique tree-descending

trajectory with Φ(0) = ~0 and Φ′(0) = ~v, which is obtained by solving (5.15) forward in time from these
conditions until reaching ‖Φs(q2)‖∞ = 1.

The following theorem is our main result describing maximizers of (5.7).

Theorem 5.1.12. Suppose Assumption 5.1.3 holds. Then a maximizer (p,Φ, q0) of (5.7) exists, and all
maximizers are continuously differentiable on [q0, 1]. There exists q1 ∈ [q0, 1] such that Φ(q1) ∈ (0, 1]S ∪{~0}
and furthermore (p,Φ) is the root-finding trajectory with endpoint Φ(q1) on [q0, q1] and a (targeted) tree-
descending trajectory with endpoint Φ(q1) on [q1, 1]. ALG is given by

ALG = A(p,Φ; q0) =
∑
s∈S

λs

[√
Φs(q1)(ξs(Φ(q1)) + h2

s) +

∫ 1

q1

√
Φ′s(q)(ξ

s ◦ Φ)′(q) dq

]
. (5.19)

Finally the value of q1 is described as follows:

(a) If ~1 is super-solvable then q1 = 1, i.e. (p,Φ) is the root-finding trajectory with endpoint ~1.

(b) If ~1 is sub-solvable and ȟ 6= ~0, then q1 ∈ (q0, 1), i.e. (p,Φ) contains both root-finding and tree-descending
trajectories.
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(c) If ȟ = ~0, then ~1 is sub-solvable and q1 = 0, i.e. (p,Φ) is a (targeted) tree-descending trajectory with
endpoint ~0.

Note that in case (b), Φ(q1) ∈ (0, 1]S if hs > 0 for any s. Examples of each of these cases are given in
Figure 5.1.1.

Remark 5.1.13. The choice of state space BN is a natural though arbitrary normalization. For any ~a ∈ RS
>0,

we could just as well consider the state space

BN (~a) =
{
x ∈ RN : ‖xs‖22 ≤ asλsN ∀s ∈ S

}
. (5.20)

Clearly optimizing the model described by ξ, ȟ over this space is equivalent to optimizing the model described
by3

ξ̃(~x) = ξ(~x�
√
~a), ˜̌h = ȟ�

√
~a (5.21)

over BN , so changing the problem in this way does not add any complexity. However, from this point of view
we can see that the requirement Φ(1) = ~1 in Equation (5.7) and Theorem 5.1.12 is merely a consequence
of the normalization. If we wished to optimize over BN (~a), equation (5.7) and Theorem 5.1.12 still hold
with the right endpoint of Φ changed to ~a, which is easily proved by the transformation (5.21). Thus the
non-targeted trajectories in Figure 5.1.1 describe optimal algorithms for other state spaces BN (~a).

Remark 5.1.14. Because the root-finding and tree-descending ODEs are well-posed, the results above give
a natural approach to solve the N -independent problem of approximately maximizing A to ε error. If ~1 is
super-solvable then ALG is given directly by (5.19). If ȟ 6= ~0, then it suffices to brute-force search for the
value Φ(q1) over a δ-net of solvable ~x ∈ [0, 1]S and solve each of the two ODEs above; note that the vector
Φ′(q1) is determined by (5.12). Finally if ȟ = ~0, since q1 = 0 it suffices to brute-force search over all Φ′(0)
satisfying (5.13).

Remark 5.1.15. In models where ~1 is super-solvable, the formula (5.19) simplifies to

ALG =
∑
s∈S

λs
√

Φs(1)(ξs(Φ(1)) + h2
s). (5.22)

As shown in our companion paper [HS23c, Theorem 1.6], this coincides with the true maximum value OPT.
Moreover the models where ~1 is strictly super-solvable are precisely the topologically trivial ones, where
with high probability the number of critical points is exactly 2r, the minimum number possible for a Morse
function on a product of r spheres. This generalizes an observation from [HS25] that in an analogous regime
of single-species models, ALG = OPT and, as shown in [Fyo15, BČNS22], the model is topologically trivial.

Remark 5.1.16. Recall the algorithmic interpretation of (p,Φ, q0) discussed around (5.9). For any q ∈
[q0, q1], the iterate of this algorithm at radii Φ(q) is an approximate maximizer of the Hamiltonian revealed up
to that point (whose disorder coefficients have variance p(q)) on the product of spheres BN (Φ(q)). Indeed the
energy attained by these iterates is calculated in Corollary 5.4.29 and coincides with (5.22) with Φ(q), p(q)ξ
in place of Φ(1), ξ.

5.1.3 Explicit solutions in special cases

While the formulas (5.7), (5.19) for ALG involve the solution to a variational problem, ALG can be written

explicitly in the important special cases of single-species models where r = 1 and ~λ = (1), and pure models
where ξ is a monomial.

3Here and throughout this paper, powers of vectors such as
√
~a are taken coordinate-wise.
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(a) ȟ = (0.4, 1.4), ~1 super-solvable. (b) ȟ = (0.4, 0.4), ~1 sub-solvable. (c) ȟ = (0, 0).

Figure 5.1.1: Examples of Theorem 5.1.12. Consider the model ~λ = ( 1
3
, 2
3
), ξ(x1, x2) = ν(λ1x1, λ2x2), and various

ȟ specified in the captions above, where ν(x1, x2) = x21 + x1x2 + x22 + x41 + x1x
3
2. These are described by parts (a),

(b), and (c) of Theorem 5.1.12, respectively. The top diagrams plot Φ(q) with root-finding components green and
tree-descending components blue. The optimal Φ, which passes through (1, 1), is bold. Figures 5.1.1b and 5.1.1c
show non-targeted trajectories otherwise described by Theorem 5.1.12. In Figure 5.1.1a the black curve comprises the
solvable points and (1, 1) is inside of this curve. In Figure 5.1.1b the outer black curve comprises the solvable points,
which are the possible values of Φ(q1), and (1, 1) is outside of this curve. The inner black curve of Figure 5.1.1b
comprises the corresponding values of Φ(q0). The bottom diagrams plot (q, p(q)) for the optimal p.

Single-species models

In single-species models, ξ(q) is a univariate function and (5.5) implies Φ(q) = q. Let ȟ = (h).

Corollary 5.1.17 (Algorithmic threshold of single-species models). If ξ′(1) + h2 ≥ ξ′′(1), then

ALG = (ξ′(1) + h2)1/2.

The variational formula (5.7) is maximized at q0 = h2

ξ′(1)+h2 , p(q) = q(ξ′(1)+h2)−h2

ξ′(q) for q ∈ [q0, 1]. Otherwise

there is a unique q1 ∈ [0, 1) satisfying ξ′(q1) + h2 = q1ξ
′′(q1), and

ALG = q1ξ
′′(q1)1/2 +

∫ 1

q1

ξ′′(q)1/2 dq.

The variational formula (5.7) is maximized at

q0 =
h2

ξ′′(q1)
, p(q) =

{
qξ′′(q1)−h2

ξ′(q) q ∈ [q0, q1],

1 q ∈ [q1, 1].

Except for the formulas for q0 and p(q), this corollary follows readily from Theorem 5.1.12; note that super-
solvability of ~1 generalizes the inequality ξ′(1) +h2 ≥ ξ′′(1) and solvability of Φ(q1) generalizes ξ′(q1) +h2 =
q1ξ
′′(q1). The formulas for q0 and p(q) follow from (5.83) and (5.81).
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The formula for ALG in Corollary 5.1.17 matches [HS25, Proposition 2.2]. Whereas [HS25] proves this
formula for even ξ, we obtain it in full generality. This formula also matches the ground state energy in full
replica symmetric breaking models as obtained in [CS17, Proposition 2].

Direct proof for single-species models without external field

In the case h = 0, the formula for ALG can be directly recovered from the variational formula (5.7). First,

we should clearly take q0 = 0, so ALG = supp∈I(0,1)

∫ 1

0
(pξ′)′(q)1/2 dq. Then, because∫ 1

t

(pξ′)′(q) dq = ξ′(1)− p(t)ξ′(t) ≥ ξ′(1)− ξ′(t) =

∫ 1

t

ξ′′(q) dq

for all t ∈ [0, 1] with equality at t = 0, the function (pξ′)′ majorizes ξ′′ (see e.g. [Joe92] for precise definitions
of majorization in non-discrete settings). Here we use that ξ′′ is increasing, but do not assume that (pξ′)′

is. By Karamata’s inequality, ∫ 1

0

(pξ′)′(q)1/2 dq ≤
∫ 1

0

ξ′′(q)1/2 dq

with equality at p ≡ 1.

Pure models

Finally we give in Theorem 5.1.18 below an explicit formula for ALG for pure ξ consisting of a single monomial,
and moreover identify the unique maximizer to A. Our proof in Subsection 5.4.7 takes advantage of scale
invariance to relate values of ALG at different radii (see Remark 5.1.13). Recently [Sub23b] used a similar
scale invariance (and other ideas) to compute the free energy in such models under the mild assumption
of convergence as N → ∞. Intriguingly for all pure models, the value ALG agrees with the threshold E∞
arising from critical point asymptotics in [ABČ13] and determined in the multi-species setting by [McK24].

It should be noted that Assumption 5.1.3 on non-degeneracy is false for pure models, so we cannot rely on
the structural results of Theorem 5.1.12. Additionally, note that although the optimal trajectories Φ stated
in Theorem 5.1.18 are not admissible, this does not present a problem; Lemma 5.4.9 shows that admissibility
is just a convenient choice of time parametrization and deviating from it does not affect the value of A.

Theorem 5.1.18. Suppose ȟ = ~0 and

ξ(x1, . . . , xr) =
∏
s∈S

xass

for positive integers a1, . . . , ar with r ≥ 2 and
∑
s∈S as ≥ 3. Define the exponents bs by

bs =
1−

√
as

as+Lλs

2
, s ∈ S (5.23)

where L = L(~a) > 0 is the unique value such that
∑
s∈S asbs = 1. Then ALG and the (p,Φ, q0) maximizing

A are

ALG =
∑
s∈S

λs
√
Las√

as + Lλs
,(

p(q) ,Φ(q), q0

)
=
(
1, (qb1 , . . . , qbr ), 0

)
.

In the case ξ(x1, x2) = x1x2 we have

ALG =
√
λ1 +

√
λ2,(

p(q) ,Φ(q), q0

)
=
(
1, (q, q), 0

)
.

Moreover the optimal (p,Φ, q0) is always unique up to reparametrization.
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Theorem 5.1.18 simplifies in the special case that as
λs

is independent of s, i.e. λs = as∑
s∈S as

. In particular

ALG depends only on the total degree
∑
s∈S as. Note that the formula (5.23) gives bs = 1∑

s∈S as
, which is

equivalent by reparametrization to bs = 1 as stated below.

Corollary 5.1.19. For pure models with λs = as∑
s′∈S as′

, Φ(q) = (q, . . . , q) uniquely maximizes A and

ALG = 2

√(∑
s∈S as

)
− 1∑

s∈S as
.

For all pure models, the value ALG in Theorem 5.1.18 agrees with the threshold E∞ defined as follows.
We denote by ∇sp the gradient on the product of spheres SN ≡ {x ∈ BN : ~R(x,x) = ~1}, and ∇2

sp the
Riemannian Hessian. Below the index of a square matrix denotes the number of non-negative eigenvalues.

Definition 5.1.20. For ȟ = ~0 and any ξ, the value E∞ is given by E∞ = limk→∞Ek ≥ 0. Here Ek ≥ 0 is
the minimal value such that for any E > Ek,

lim
N→∞

1

N
logE

[∣∣{σ ∈ SN : HN (σ) ≥ EN, ∇spHN (σ) = 0, index(∇2
spHN (σ)) ≥ k

}∣∣] < 0.

Informally, E∞ is the threshold above which critical points of unbounded index cease to exist in an
annealed sense. For multi-species spin glasses, E∞ is given by the somewhat complicated formula [McK24,
Equation (2.7)] which involves the solution to a matrix Dyson equation, recalled in Subsection 5.4.7. This
generalizes the single-species formulas in [ABČ13, BSZ20]. We note that for pure single-species models,
[AG20, Theorem 1.4] claims (without a full proof yet) that for any E < E∞, critical points of bounded index
(depending only on E) exist above energy E with high probability.

Corollary 5.1.21. For all pure ξ, we have

ALG = E∞.

In the single species case, Corollary 5.1.21 holds for the pure p-spin model ξ(x) = xp with ALG =

E∞ = 2
√

p−1
p identified in [ABČ13], as discussed in [HS25, Section 2.3]. While the single-species formula

is simple, Corollary 5.1.21 is much less obvious in general. In our companion works [HS24, HS23c] we give
a more general approach to this connection by showing that the top of the bulk spectrum of ∇2

spHN (σ) is
approximately 0 for σ the output of an explicit optimization algorithm attaining value ALG. This statement
holds for all ξ and implies that ALG in general lies in an interval denoted [E−∞, E

+
∞] in [AB13]. Also relatedly,

[Sel24b] shows that low-temperature Langevin dynamics (run for large dimension-free time) suffices to attain
energy ALG = E∞ in pure models. (The result is stated for 1 species but extends with almost no changes to
multi-species pure models.) This is not expected to generalize to mixed models as discussed at the end of
Subsection 1.1 therein.

5.1.4 Non-uniqueness of maximizers and algorithmic symmetry breaking

In cases (b) and (c) of Theorem 5.1.12, the ODE description of maximizers does not uniquely determine
(p,Φ). In case (b), each (p,Φ) described by Theorem 5.1.12 is specified by the point ~x = Φ(q1), which
must be solvable and have the property that the tree-descending trajectory with endpoint ~x (unique by
Proposition 5.1.11) is targeted. In case (c), each (p,Φ) is specified by the velocity ~v = Φ′(0), which must
satisfy (5.18) and have the property that the tree-descending trajectory with endpoint ~0 and starting velocity
~v (unique by Proposition 5.1.11) is targeted. There may be multiple possible ~x or ~v; see Figure 5.1.2 for
examples.

In fact, even in symmetric two-species models – where ~λ = ( 1
2 ,

1
2 ), ȟ = (h, h), and ξ(q1, q2) is symmetric

in q1, q2 – there may be many (p,Φ) described by Theorem 5.1.12. Moreover, surprisingly, the maximizer of
(5.7) need not be symmetric! The only possible symmetric maximizer is Φ(q) = (q, q), which (for suitable
p) satisfies the properties in Theorem 5.1.12. In Figures 5.1.2a and 5.1.2b we give examples of models,
corresponding to cases (b) and (c) of Theorem 5.1.12, where a pair of asymmetric Φ numerically outperform
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(a) h = 1.5, a = 3. Here E0 ≈ 7.1755,
E1 ≈ 7.1767.

(b) h = 0, a = 3. Here E0 ≈ 6.9230,
E1 ≈ 6.9254.

(c) h = 0, a = 5. Here E0 ≈ 17.0286,
E1 ≈ 17.0642, E2 ≈ 17.0292.

Figure 5.1.2: Plots of Φ(q) with algorithmic symmetry breaking. Consider ~λ = ( 1
2
, 1
2
), ȟ = (h, h), and ξ(x1, x2) =

ν(aλ1x1, aλ2x2) for h, a given in the captions above, where ν(x1, x2) = x21 + x1x2 + x22 + x41 + x42. Figure 5.1.2a
shows an example with external field (Theorem 5.1.12(b)), Figure 5.1.2b shows an example without external field
(Theorem 5.1.12(c)), and Figure 5.1.2c shows an example with several symmetry-breaking trajectories. Targeted
trajectories are bold and colors have the same meaning as in Figure 5.1.1. Numerical estimates of the energy
A(p,Φ; q0) attained by each bold path are given in the captions: E0 is the energy of the diagonal trajectory and
Ek is the energy of the asymmetric trajectories that intersect the diagonal k times not including (0, 0). In all cases
the asymmetric trajectories outperform the symmetric trajectory, and in Figure 5.1.2c the asymmetric trajectories
farthest from diagonal perform the best.

the symmetric Φ. We name this phenomenon algorithmic symmetry breaking.4 The presence of algorithmic
symmetry breaking implies that there exist symmetric models where the best instantiation of the multi-
species Subag algorithm advances through the species asymmetrically. Note that it is impossible for solutions
to a first order ODE to cross, but the tree-descending ODE is second order which enables this behavior.

It is also possible to have several trajectories satisfying the ODE description in Theorem 5.1.12 and we
expect an unbounded number can coexist, see Figure 5.1.2c. While it is a priori unclear that the extremal
trajectories attaining value E1 (defined in the caption) outperform the diagonal trajectory, there is a simple
reason the diagonal-crossing trajectories attaining E2 cannot be optimal: if these two trajectories were
optimal, then joining their above-diagonal parts would yield another global maximizer which is not C1 and
in particular does not satisfy the ODE description of Theorem 5.1.12. (Note also that different trajectories
must have different derivatives where they meet, given their description by a second order ODE.) We leave
the question of characterizing global maximizers in the presence of algorithmic symmetry breaking for future
work.

We emphasize that algorithmic symmetry breaking is not a barrier to efficient/Lipschitz algorithms, as
the optimal (p,Φ, q0) for the variational principle needs to be computed only once. Moreover ξ is convex in
the examples shown in Figure 5.1.2, so algorithmic symmetry breaking is not related to the failure of the
interpolation method to determine the free energy (obtained for convex ξ in [BS22b]).

However the presence of algorithmic symmetry breaking does mean that optimal Lipschitz algorithms
cannot respect the symmetry between species. Namely if |I1| = |I2| (so that ~λ = (1/2, 1/2)), it is natural
to define T (σ1,σ2) = (σ2,σ1). And to study Lipschitz A obeying the additional condition that A(H̆N ) =
T (A(HN )) where H̆N (σ) = HN (T (σ)). However it easily follows from our methods that such algorithms
cannot outperform the best value of A attained by Φ(q) = (q, q). In particular, such methods are suboptimal
when algorithmic symmetry breaking holds.

Assuming non-degeneracy, we show that algorithmic symmetry breaking does not occur sufficiently close
to ~0. To make this precise, let ∆r = {~v ∈ RS

≥0 : 〈~λ,~v〉 = 1} denote the simplex of admissible Φ′ vectors.

4While we don’t prove rigorously that these examples exhibit algorithmic symmetry breaking, it can be verified explicitly
that for the model ξ(x, y) = x4 + y4 + 24xy, ȟ = (0, 0) with endpoint ~a = (10, 10) (cf. Remark 5.1.13), the symmetric path
Φ(q) = (q, q) is not even a local optimum as witnessed by Φε(q) = (q + ε sin(πq/10), q).
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Then if ȟ = ~0, we define a map Ft : ∆r → ∆r given by

Ft(~v) = Φ(t)/t (5.24)

where Φ is the tree-descending trajectory with endpoint Φ(0) = ~0, Φ′(q) = ~v. The next proposition shows
that Ft is injective for small t, i.e. algorithmic symmetry breaking is absent sufficiently close to the origin,
and is surjective for all t.

Proposition 5.1.22. Assume ξ is non-degenerate and ȟ = ~0. There exists ε > 0 such that the map Ft
defined in (5.24) is injective for t ∈ (0, ε]. Moreover Ft is surjective for all t > 0.

We expect that similar non-uniqueness is possible for q0 and p as well as Φ. For example, this likely
holds for carefully chosen asymmetric perturbations of those ξ in Figure 5.1.2. However we do not know of
specific examples.

5.1.5 Branching overlap gap property as a tight barrier to algorithms

Mean-field spin glasses, including the multi-species models we focus on here, are natural examples of random
optimization problems. Other examples are random constraint satisfaction problems such as random (max)-
k-SAT and random perceptron models. For any such problem, a basic property to understand is the maximum
objective that an efficient algorithm can find.

Since the early 2000s, there has been extensive heuristic work in the physics and computer science
communities aiming to understand this question in terms of geometric properties of these problems’ solution
spaces [KMRT+07, ZK07, AC08]. The first rigorous link from solution geometry to hardness was obtained by
Gamarnik and Sudan [GS17a], in the form of the Overlap Gap Property (OGP). An OGP argument shows
that the absence of a certain geometric constellation in the super-level set SE(HN ) = {σ : HN (σ)/N ≥ E}
implies that suitably stable algorithms cannot find objectives larger than E. The proof is by contradiction,
showing that a stable algorithm attaining value E can construct the forbidden constellation.

The value E at which the constellation disappears (and at which hardness is shown) depends on the
constellation and does not generally equal the value ALG found by the best efficient algorithm. The first OGP
works used as the constellation a pair of solutions with medium overlap [GS17a, GJ21, CGPR19, GJW20].
Subsequent work considered constellations with more points, arranged in a “star” [RV17, GS17b, GK23,
GKPX22] or “ladder” [Wei22, BH22] configuration; these constellations vanish at smaller E, thereby showing
hardness closer to ALG. In particular, [RV17, Wei22] identify the computational threshold of maximum
independent set on G(N, d/N) within a 1 + od(1) factor, and [BH22] identifies that of random k-SAT within
a constant factor clause density. We refer the reader to [HS25, Sections 1.2 and 1.3] for a more detailed
discussion and [Gam21] for a survey of OGP.

Our previous work [HS25] introduced the branching OGP, where the forbidden constellation is a densely
branching ultrametric tree. For mixed even p-spin models, this work showed that this constellation is absent
for any E > ALG, and therefore Lipschitz algorithms cannot surpass ALG. It was further shown that for
these models, any ultrametric constellation that is not densely branching is not forbidden at all E > ALG,
and thus the branching OGP is necessary to show hardness at ALG. As discussed previously, the hardness
proof of [HS25] uses interpolation to upper bound the maximum energy of the ultrametric constellation, and
hence does not apply with odd interactions or more generally in multi-species models.

In Section 5.3, we develop a new method to establish the branching OGP which does not rely on inter-
polation. Instead we recursively apply a uniform concentration idea of Subag [Sub24] (see Lemma 5.3.2) to
show that among all densely branching ultrametric constellations, the highest energy ones can be constructed
greedily. Roughly speaking, in such constellations the children x1, . . . ,xk of a point x lie on a small sphere
centered at x such that the increments xi − x are orthogonal to x and to each other, and approximately
maximize HN on this set. Because the aforementioned generalized Subag algorithm traces a root-to-leaf
path of this tree, this method automatically finds a matching algorithm and lower bound (again modulo
that the greedy algorithm is not clearly Lipschitz; our AMP algorithm in [HS24] also descends this tree). In
other words, the optimal algorithm can be read off from the proof of the lower bound.

We remark that in the branching OGP (and many previous OGPs) one must actually consider a family
of correlated Hamiltonians. In the branching OGP the correlation structure of these Hamiltonians is also
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ultrametric. The function p in (5.6) enters to parametrize the correlation structure of this Hamiltonian
family, see Subsection 5.2.2.

Finally, let us point out that the branching OGP is somewhat of a counterpart to the ultrametricity
of low-temperature Gibbs measures mentioned previously. One essentially expects that ALG = OPT holds
whenever the Gibbs measure branches at all depths in a suitable zero-temperature limit, which is a strong
form of full replica symmetry breaking. However, in general the true Gibbs measures may not exhibit full
RSB and may even have finite combinatorial depth, whereas the algorithmic trees we consider must always
branch continuously.

5.1.6 Other related work

Following the introduction of mean-field spin glasses in [SK75], a great deal of effort has been devoted
to computing their free energy. In [Par79], Parisi conjectured the value of the free energy based on his
celebrated ultrametric ansatz. Following progress by [MV85, Rue87, GT02, ASS03], the Parisi formula was
confirmed by [Tal06b, Tal06a, Pan13a], and the zero-temperature Parisi formula for the ground state energy
by [AC17, CS17]. An understanding of the high temperature regime was obtained earlier in [ALR87, CN95]
and through Talagrand’s cavity method [Tal10].

Another important line of work is the landscape complexity, i.e. the determination of the exponential
growth rate of critical points of HN at each energy level. Such asymptotics were put forward in [CLR03,
CLR05, Par06] followed by much rigorous progress in [ABČ13, AB13, Sub17a, BSZ20, McK24, Kiv23, SZ21].
The dynamical behavior of spin glasses is also of great interest; as previously mentioned, the behavior of e.g.
Langevin dynamics has been described on dimension-free time-scales. At high temperature, fast mixing has
been recently established in [EKZ22, AJK+22, ABXY24].

The first multi-species spin glass to be introduced was the bipartite Sherrington-Kirkpatrick model in
[KC75]. It was later studied further in [KS85, FKS87a, FKS87b]. While the analogous lower bound to the
Parisi formula applies in general with a similar proof [Pan15], the upper bound is known only in special
cases: models where ξ is convex in the positive orthant [BCMT15, BL20], pure spherical models assuming
the N →∞ limit exists [Sub23b], and spherical models for which ~1 is super-solvable [HS23c]. A different free
energy upper bound, in the form of an infinite-dimensional Hamilton-Jacobi equation, was recently proved
by Mourrat [Mou23].

In the large degree limit, the maxima of random constraint satisfaction problems such as max-k-SAT and
MaxCut are described by Ising mean-field models [DMS17, Pan18]. See [AMS23a, JMSS23] for algorithmic
analogs.

5.1.7 Notations and preliminaries

Throughout this paper we adopt the following notational conventions. For x ∈ RN , xs ∈ RIs denotes the
restriction of x to the coordinates Is. The symbol � denotes coordinate-wise product, and the symbol �
denotes the operation defined in (5.1). The all-0 and all-1 vectors in RS are denoted ~0,~1, and those in RN
are denoted 0,1. For vectors ~x, ~y ∈ RS , ~x � ~y denotes the coordinate-wise inequality, and for matrices �
denotes the Loewner order. Vector operations such as

√
~x are always coordinate-wise.

Let SN = {x ∈ RN : ‖x‖22 = N}. For any tensor A ∈ (RN )⊗k, we define the operator norm

‖A‖op =
1

N
max

σ1,...,σk∈SN

∣∣〈A,σ1 ⊗ · · · ⊗ σk〉
∣∣ .

The following proposition shows that with all but exponentially small probability, the operator norms of all
constant-order gradients of HN are bounded and O(1)-Lipschitz.

Proposition 5.1.23. For any fixed model (ξ, ȟ) there exists a constant c > 0, sequence (KN )N≥1 of convex
sets KN ⊆ HN , and sequence of constants (Ck)k≥1 independent of N , such that the following properties
hold.

(a) ¶[HN ∈ KN ] ≥ 1− e−cN ;
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(b) For all HN ∈ KN and x,y ∈ BN and k ≥ 1:∥∥∇kHN (x)
∥∥
op
≤ Ck, (5.25)∥∥∇kHN (x)−∇kHN (y)

∥∥
op
≤ Ck+1√

N
‖x− y‖2. (5.26)

Proof. Note that the conditions (5.25) and (5.26) are convex in HN . Defining KN to be the set of HN such
that the estimates (5.25), (5.26) hold with suitably large implicit constants, it remains to show point (a).
For this, by Slepian’s lemma it suffices to consider the case where γs1,...,sk is replaced by the maximal
entry in Γ(k). The result then follows by [HS25, Proposition 2.3] since we assumed at the outset that∑
k≥2 2k

∥∥Γ(k)
∥∥
∞ <∞.
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5.2 Algorithmic thresholds from branching OGP

We begin this section by recalling some fundamental definitions and constructions from [HS25]. We then
review the details of the branching overlap gap property introduced in [HS25], and in particular the link to
hardness for overlap concentrated algorithms.

5.2.1 Correlation functions and overlap concentration

For any p ∈ [0, 1], we may construct two correlated copies H
(1)
N , H

(2)
N of HN as follows. Construct three i.i.d.

copies H̃
[0]
N , H̃

[1]
N , H̃

[2]
N of H̃ as in (5.3). For i = 1, 2 define

H
(i)
N (σ) = 〈h,σ〉+ H̃

(i)
N (σ), where

H̃
(i)
N (σ) =

√
pH̃

[0]
N (σ) +

√
1− pH̃ [i]

N (σ).

We say H
(1)
N , H

(2)
N are p-correlated. Note that pairs of corresponding entries in g(H

(1)
N ) and g(H

(2)
N ) are

Gaussian with covariance
[ 1 p
p 1

]
.

Given a function AN : HN → BN (always assumed to be measurable) define ~χ : [0, 1]→ RS by

~χ(p) = E~R
(
A(H

(1)
N ),A(H

(2)
N )
)
, (5.27)

where H
(1)
N , H

(2)
N are p-correlated copies of HN . We say that ~χ is the correlation function of A. Let χs

denote the s-coordinate of ~χ.

Proposition 5.2.1. We have ~χ ∈ I(0, 1)S .

Proof. Identically to [HS25, Proposition 3.1], Hermite expanding Rs

(
A(H

(1)
N ),A(H

(2)
N )
)

shows that χs is

continuous and non-decreasing. The same Hermite expansion shows χs is continuously differentiable.

The other properties of correlation functions proved in [HS25, Proposition 3.1] also hold, namely that χs
is convex and either strictly increasing or constant; however they are not needed in this paper.

We will determine the maximum energy attained by algorithms AN : HN → BN obeying the following
overlap concentration property.

Definition 5.2.2. Let η, ν > 0. An algorithm A = AN is (η, ν) overlap concentrated if for any p ∈ [0, 1]

and p-correlated Hamiltonians H
(1)
N , H

(2)
N ,

¶
[∥∥∥~R(A(H

(1)
N ),A(H

(2)
N )
)
− ~χ(p)

∥∥∥
∞
≥ η

]
≤ ν. (5.28)
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Our main hardness result is the following bound on the performance of overlap concentrated algorithms.

Theorem 5.2.3. Consider a multi-species spherical spin glass Hamiltonian HN with parameters (ξ, ȟ). Let
ALG be given by (5.7). For any ε > 0 there are η, c,N0 depending only on ξ, ȟ, ε such that the following holds
for any N ≥ N0 and ν ∈ [0, 1]. For any (η, ν)-overlap concentrated AN : HN → BN ,

P [HN (AN (HN ))/N ≥ ALG + ε] ≤ exp(−cN) + νc.

By Gaussian concentration of measure (see [HS25, Propositon 8.2]), any τ -Lipschitz algorithm is (η, e−c(η,τ)N )-
overlap concentrated for any η > 0 and appropriate c(η, τ) > 0. Thus Theorem 5.2.3 implies Theorem 5.1.1.

5.2.2 Ultrametrically correlated Hamiltonians

Next we define the hierarchically correlated ensemble of Hamiltonians used to define the branching overlap
gap property. Let k ≥ 2, D ≥ 1 be positive integers. For each 0 ≤ d ≤ D, let Vd = [k]d denote the set of
length d sequences of elements of [k]. The set V0 consists of the empty tuple, which we denote ∅. Let T(k,D)
denote the depth D tree rooted at ∅ with depth d vertex set Vd, where u ∈ Vd is the parent of v ∈ Vd+1 if u
is the length d initial substring of v. For nodes u1, u2 ∈ T(k,D), let

u1 ∧ u2 = max
{
d ∈ Z≥0 : u1

d′ = u2
d′ for all 1 ≤ d′ ≤ d

}
,

where the set on the right-hand side always contains 0 vacuously. This is the depth of the least common
ancestor of u1 and u2. Let L(k,D) = VD denote the set of leaves of T(k,D). When k,D are clear from
context, we denote T(k,D) and L(k,D) by T and L. Finally, let K = |L| = kD.

Let the sequences p = (p0, p1, . . . , pD) ∈ RD+1 and ~φ = (~φ0, ~φ1, . . . , ~φD) ∈ (RS )D+1 satisfy

0 = p0 ≤ p1 ≤ · · · ≤ pD = 1,

~0 � ~φ0 � ~φ1 � · · · � ~φD � ~1.

The sequence p controls the correlation structure of our ensemble of Hamiltonians while the sequence ~φ

controls the overlap structure of their inputs. For each u ∈ T, including interior nodes, let H̃
[u]
N be an

independent copy of H̃N generated by (5.3), and let

H̃
(u)
N =

|u|∑
d=1

√
pd − pd−1 H̃

[(u1u2...ud)]
N (5.29)

where |u| is the length of u and (u1u2 . . . ud) is the length-d prefix of u. For u ∈ L, define

H
(u)
N (σ) = 〈h,σ〉+ H̃

(u)
N (σ).

This constructs a Hamiltonian ensemble (H
(u)
N )u∈L where each H

(u)
N is marginally distributed as HN and

each pair of Hamiltonians H
(u1)
N , H

(u2)
N is pu1∧u2 -correlated. We define a grand Hamiltonian on states

σ = (σ(u))u∈L ∈ (RN )L.

by

Hk,D,pN (σ) =
1

K

∑
u∈L

H
(u)
N (σ(u)). (5.30)

We denote this by HN when k,D, p are clear from context. Note that we have thus far not used the

definition of H̃
(u)
N for interior nodes u ∈ T \ L; these Hamiltonians will be useful in our analysis of the

branching OGP threshold in Section 5.3. The branching OGP is defined by a maximization of HN over the
overlap-constrained set

Qk,D,~φ(η) =
{
σ ∈ BLN :

∥∥∥~R(σ(u1),σ(u2))− ~φu1∧u2

∥∥∥
∞
≤ η, ∀u1, u2 ∈ L

}
. (5.31)

We denote this set Q(η) when k,D, ~φ are clear from context.
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5.2.3 The branching OGP threshold

We will show that overlap concentrated algorithms cannot outperform a branching OGP energy BOGP
defined as the ground state energy of the grand Hamiltonian (5.30) in the limit of “continuously branching”
ultrametrics.

Definition 5.2.4 (Branching OGP energy). The energy BOGP = BOGP(ξ, ȟ) is the infimum of energies E
such that the following holds. Choose sufficiently large D, followed by small η and then large k. For any
~χ ∈ I(0, 1)S there exists p such that for ~φ = ~χ(p) element-wise (i.e. ~φd = ~χ(pd)),

lim sup
N→∞

1

N
E sup
σ∈Q(η)

HN (σ) ≤ E. (5.32)

More explicitly,

BOGP(ξ, ȟ) ≡ lim
D→∞

lim
η→0

lim
k→∞

sup
~χ∈I(0,1)S

inf
~φ,p:

~φ=~χ(p)

lim sup
N→∞

1

N
E sup
σ∈Qk,D,~φ(η)

Hk,D,pN (σ). (5.33)

Our previous work [HS25] implicitly considered the same quantity. Note that the limits in (D, k, η) are
decreasing, so they could actually be taken in any order (and moreover the limiting value BOGP exists

apriori). Additionally the role of the infimum over (~φ, p) is quite simple: the only important thing is to
ensure both sequences increase in uniformly small steps (see Definition 5.2.7).

Section 5.3 proves the following proposition identifying BOGP with the formula (5.7) for ALG.

Proposition 5.2.5. For all (ξ, ȟ), we have BOGP = ALG.

Let us first prove Theorem 5.2.3 assuming Proposition 5.2.5. Let ε > 0 be arbitrary and k,D, η be given
by Definition 5.2.4 for E = ALG+ ε/4. Let A = AN : HN → BN be a (η, ν)-overlap concentrated algorithm

with correlation function ~χ. Let p and ~φ be given by Definition 5.2.4 (depending on ~χ). Since BOGP = ALG
by Proposition 5.2.5, for sufficiently large N

1

N
E sup
σ∈Q(η)

HN (σ) ≤ ALG + ε/2.

Let
αN = P [HN (A(HN ))/N ≥ ALG + ε] .

Let σ(u) = A(H
(u)
N ) and σ = (σ(u))u∈L. Define the events

Ssolve =
{
H

(u)
N (σ(u))/N ≥ ALG + ε ∀u ∈ L

}
,

Soverlap = {σ ∈ Q(η)} ,

Sogp =

{
sup

σ∈Q(η)

HN (σ)/N < ALG + ε

}
.

(5.34)

Proposition 5.2.6. The following inequalities hold.

(a) P(Ssolve) ≥ αKN .

(b) P(Soverlap) ≥ 1−K2ν.

(c) P(Sogp) ≥ 1− 2 exp(−cN) for suitable c = c(ε) > 0.

Proof of (a). We apply Jensen’s inequality D times as in [HS25, Proof of Proposition 3.6(a)]. Namely, for
each 0 ≤ d ≤ D and v ∈ T with |v| = d, let Sd(v) be the event that all kD−d leaves u in the subtree

rooted at v satisfy H
(u)
N (σ(u)) ≥ ALG + ε. Let Pd = P[Sd(v)], which depends only on d. Note the events
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Sd(v1), . . . , Sd(vk) are conditionally IID given H̃
(v)
N . Hence Jensen’s inequality on the function f(x) = xk

(which is convex on [0, 1]) shows that for |v| = d with 0 ≤ d < D:

Pd = E[P[Sd(v1)|H̃(v)
N ]k] ≥ E[P[Sd(v1)|H̃(v)

N ]]k = P kd+1.

It follows by iterating this bound that P0 ≥ P k
D

D = αKN as desired.

Proof of (b). For each u1, u2 ∈ L, E~R(σ(u1),σ(u2)) = ~χ(pu1∧u2) = ~φu1∧u2 . So,

P
[∥∥∥~R(σ(u1),σ(u2))− ~φu1∧u2

∥∥∥
∞
≤ η

]
≥ 1− ν.

The result follows by a union bound on u1, u2.

Proof of (c). This follows by Proposition 5.2.5 and concentration of Lipschitz functions. For the latter, we
apply the Borell-TIS inequality to Y = 1

N supσ∈Q(η)HN (σ), as in [HS25, Proof of Proposition 3.6(d)].

Proof of Theorem 5.2.3. Note that Ssolve∩Soverlap∩Sogp = ∅. So, P(Ssolve) +P(Soverlap) +P(Sogp) ≤ 2. The
bounds in Proposition 5.2.6 imply

αKN ≤ 2 exp(−cN) +K2ν

By adjusting the constant c,
αN ≤ exp(−cN) + νc.

5.2.4 An alternate definition for the BOGP threshold

The overlap-constrained input set Q(η) used to define BOGP was designed to capture the properties of

σ = (A(H
(u)
N ))u∈L. In this set, overlap constraints are enforced globally, between each pair of states, and

the constraints are approximate, within a tolerance η > 0.
In this subsection, we define a variant BOGPloc,0 of BOGP, based on an input set Qloc(0), in which

overlap constraints are enforced locally, between only adjacent and sibling nodes in T, and the constraints
are exact. We also enforce that the sequences pd, ~φd increase in small steps. To define the local constraints,
we introduce the extended states

ρ = (ρ(u))u∈T ∈ BTN
whose indices now also include interior u ∈ T. For u, v ∈ T, let u ∼ v indicate that u = v, or one of u, v is
the parent of the other, or u, v are siblings. Define

Qk,D,
~φ

loc+ (η) =
{
ρ ∈ BTN :

∥∥∥~R(ρ(u),ρ(v))− ~φu∧v
∥∥∥
∞
≤ η, ∀u ∼ v

}
Qk,D,

~φ

loc (η) =

{
σ ∈ BLN : ∃ρ ∈ Qk,D,

~φ

loc+ (η) such that (ρ(u))u∈L = σ

}
.

We similarly omit the superscript k,D, ~φ when this is clear from context. The following definition captures

the property that pd, ~φd increase in small steps.

Definition 5.2.7. The pair of sequences (p, ~φ) is δ-dense if pd − pd−1 ≤ δ and ~φd − ~φd−1 � δ~1 for all d.

The following technical condition ensures continuous dependence of orthogonal bands on their centers.

Definition 5.2.8. The function ~χ ∈ I(0, 1)S is δ-separated if ~χ(0) � δ~1.

Define

BOGPloc,0 = lim
D→∞

lim
k→∞

sup
~χ∈I(0,1)S

D−2-separated

inf
~φ,p:~φ=~χ(p)

6r/D-dense

lim sup
N→∞

1

N
E sup
σ∈Qloc(0)

HN (σ). (5.35)

Note that the limit in D is no longer obviously decreasing, so the existence of this limit also needs to be
proven.
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The following proposition, which we prove in Appendix 5.A, shows that BOGPloc,0 is an equivalent
characterization of BOGP. This characterization will be more convenient for the proof of Proposition 5.2.5
carried out in the next section. We note that in the proof we define several more variants of BOGP and
show all are equal, and it also follows that the average in the definition (5.30) of HN can be replaced by a
minimum with no change. This illustrates some flexibility in using the branching OGP.

Proposition 5.2.9. The limit BOGPloc,0 exists and BOGP = BOGPloc,0.

The main intuition for Proposition 5.2.9 is that a tree enforcing local orthogonality constraints contains
a subtree obeying global orthogonality constraints. This subtree can be built “greedily” starting from the
root, at each step choosing which children of the current vertex to include. The idea is that because the
children of each vertex are orthogonal, only a small number of them can be correlated with any previously
constructed vertex. Furthermore, approximate orthogonality can be improved to exact orthogonality by
slightly adjusting the tree.

Finally we record two useful facts.

Lemma 5.2.10. If ρ ∈ Qloc,+(0) and ρ̄ = 1
K

∑
u∈L ρ(u), then 1√

N
‖ρ(∅)− ρ̄‖2 ≤

√
D/k.

Proof. Define τ ∈ (RN )T by τ (u) = ρ(u) for u ∈ L and otherwise recursively τ (u) = 1
k

∑k
i=1 τ (ui). By

bilinearity of ~R, for all u ∈ T \ L with |u| = d,

~R

(
ρ(u)− 1

k

k∑
i=1

ρ(ui),ρ(u)− 1

k

k∑
i=1

ρ(ui)

)
=

1

k
(~φd+1 − ~φd),

so

1√
N

∥∥∥∥∥ρ(u)− 1

k

k∑
i=1

ρ(ui)

∥∥∥∥∥
2

=

√
qd+1 − qd

k
,

where qd = 〈~λ, ~φd〉. It is easy to see by induction on d that

1√
N
‖ρ(u)− τ (u)‖2 ≤

1√
N

∥∥∥∥∥ρ(u)− 1

k

k∑
i=1

ρ(ui)

∥∥∥∥∥
2

+
1

k

k∑
i=1

1√
N
‖ρ(ui)− τ (ui)‖2

≤
D−1∑
`=d

√
q`+1 − q`

k
.

Since ρ̄ = τ (∅),
1√
N
‖ρ(∅)− ρ̄‖2 ≤

D−1∑
d=0

√
qd+1 − qd

k
≤
√
D

k

by Cauchy-Schwarz.

Lemma 5.2.11. For any S ⊆ BLN , 1
N supσ∈S HN (σ) is O(N−1/2)-subgaussian, in particular

P

[∣∣∣∣∣sup
σ∈S
HN (σ)− E[sup

σ∈S
HN (σ)]

∣∣∣∣∣ ≥ tN1/2

]
≤ Ce−t

2/C

for a constant C and all t ≥ 0.

Proof. We calculate identically to [HS25, Proof of Proposition 3.6(d)] that for any fixed σ ∈ BLN , VarHN (σ) =
O(N). The result follows from the Borell-TIS inequality, whose statement and proof hold for noncentered
Gaussian processes with no modification.
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5.2.5 Hardness for a class of algorithms imitating Subag’s approach

Here following [HS25, Section 3.7], we outline why our arguments imply hardness for a class of non-Lipschitz
algorithms, which come closer to the approach of [Sub21a]. Fix D ≥ Z+ and δ = 1/D, independent of N .
Given HN , let W (x;HN ) ⊆ RN be a (measurable in (HN ,x) linear subspace of dimension bδNc. Starting
from the origin x0 ∈ RN , we repeatedly choose a uniformly random unit vector vi ∈W (xi;HN ) and set

xi+1 = xi + vi
√
δN, 0 ≤ i < m.

Then the (random) output xD ∈ RN defines a δ-subspace random walk algorithm A(HN ;ω), where ω is an
independent source of randomness used to specify vi ∈ W (xi;HN ) in each step. Then our methods imply
the following result.

Theorem 5.2.12. For any ε > 0 there eixst δ0, c > 0 such that for any δ ∈ (0, δ0 and N large enough the
following holds. For any δ-subspace random walk algorithm A,

P
[
HN (A(HN , ω))/N ≥ ALG + ε and ‖R(A(HN , ω)),A(HN , ω))−~1‖∞ ≤ δ0

]
≤ e−cN . (5.36)

Proof outline. Fix η = η(D, k, ε, δ) > 0 small. Given HN , we may generate a tree of outputs isomorphic to
T(k, d) as follows. In each of the D steps, given x(u) for |u| = d, choose k IID unit vectors within W (x(u)

to define x(u1), . . . ,x(uk). For k,D independent of N , it follows by simple concentration estimates that with
probability 1 − e−cN , all distinct unit vectors chosen this way have overlap at most η > 0. Using Jensen’s
inequality as in Proposition 5.2.6a, it suffices to show that there is an exponentially small probability for the
event in (5.36) to hold simultaneously across all kD leaves.

We first use a pruning argument to homogenize the tree, so that self-overlaps are approximately constant
at each level. We will find a subtree T′ isomorphic to T(k′, d), where k′ ≥ Ω(k1/D/ηr), such that for all
u ∈ T′,

‖R(xu,xu)− ~y|u|‖∞ ≤ η/2D

holds for some (possibly random) sequence (~y1, . . . , ~yD). Namely for each u ∈ [k]D−1, by the pigeonhole
principle we can find some ~yD(u) and distinct children ui1 . . . uik′ such that ‖R(uij , uij)− ~yD(u)‖∞− η/2D
for each 1 ≤ j ≤ k′. Recursing similarly, for each u ∈ [k]d we can apply the pigeonhole principle to the
k sequences (R(v, v), ~yd+1(v), . . . , ~yD(v)) for each v = uj for 1 ≤ j ≤ k. This allows us to find some
(~yd+1(u), . . . , ~yD(u)) and distinct children ui1 . . . uik′ such that ‖R(uij , uij) − ~yd+1(u)‖∞ − η/2D for each

1 ≤ j ≤ k′, and with ‖~yd′(uij) − ~yd
′‖∞ ≤ (D−d′)η

2D for each d < d′ ≤ D. Finally once u = ∅, we obtain the
desired subtree T′.

Finally, by Borell–TIS as in Proposition 5.2.6c, it is exponentially unlikely for all leaves of T′ to have
energy at least BOGP + ε. Since ALG = BOGP by Proposition 5.2.5, the result follows.

5.3 Branching OGP from uniform concentration

We now turn to the proof of Proposition 5.2.5. In light of Proposition 5.2.9, it suffices to prove BOGPloc,0 =
ALG. We begin with a very general argument that due to the “many orthogonal increments” property at
each layer of the branching tree, it suffices to consider “greedy” embeddings in some sense. This argument is
essentially elementary and relies on a “uniform concentration” argument introduced by Subag in [Sub24]. To
give an informal description, let σ(u) ∈ BN have some fixed self-overlap ~x ∈ [0, 1]r. We consider the largest
possible average Hamiltonian value on σ(u1), . . . ,σ(uk), subject to the conditions that R(σ(ui),σ(ui)) = ~y
is fixed for each 1 ≤ i ≤ k and the orthogonality conditions from before. Uniform concentration shows the
difference between this value and the value at σ itself concentrates around an (apriori N -dependent) function
of (~x, ~y), uniformly in σ(u). Iteratively applying this down T reveals that to maximize the objective defining
BOGPloc,0, the optimal method is to start from the root ∅ and iteratively choose the “greedy” children

embedding (σ(ui))1≤i≤k in each step given σ(u), which maximizes
∑k
i=1H

[ui]
N (σ(ui)) subject to the overlap

and orthogonality constraints.
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5.3.1 Uniform concentration

For ~x ∈ [0, 1]S , define the product of spheres

SN (~x) =
{
σ ∈ RN : ~R(σ,σ) = ~x

}
=
{
σ ∈ RN : ‖σs‖22 = λsxsN ∀s ∈ S

}
.

For σ0 ∈ SN (~x) and ~y � ~x, define

B(σ0, ~y, k) =

{
σ = (σ1,σ2, . . . ,σk) ∈ SN (~y)k :
~R(σi − σ0,σ0) = ~R(σi − σ0,σj − σ0) = ~0 ∀i, j ∈ [k], i 6= j

}
. (5.37)

Let 0 ≤ p− < p+ ≤ 1. Generate k + 1 i.i.d. copies Ĥ
[0]
N , Ĥ

[1]
N , . . . , Ĥ

[k]
N of H̃N as in (5.3). Set

Ĥ
(0)
N (σ) =

√
p−Ĥ

[0]
N (σ) and (5.38)

Ĥ
(i)
N (σ) =

√
p−Ĥ

[0]
N (σ) +

√
p+ − p−Ĥ [i]

N (σ), 1 ≤ i ≤ k. (5.39)

Define

Fp−,p+(σ0, ~y, k) =
1

kN
max

σ∈B(σ0,~y,k)

k∑
i=1

(
Ĥ

(i)
N (σi)− Ĥ(0)

N (σ0)
)
.

Lemma 5.3.1. There exists C such that the following holds. Suppose that δ~1 � ~x � ~y � ~1 and σ0,ρ0 ∈
SN (~x) satisfy

∥∥σ0 − ρ0
∥∥

2
≤ ι
√
N . If Ĥ

[0]
N , . . . , Ĥ

[k]
N ∈ KN for the event KN in Proposition 5.1.23, then

|Fp−,p+(σ0, ~y, k)− Fp−,p+(ρ0, ~y, k)| ≤ Cι√
δ
. (5.40)

Proof. Let T : RN → RN be a product of rotation maps Ts in the r factors RIs such that T (σ0) = ρ0. Then

T
(
B(σ0, ~y, k)

)
= B(T (σ0), ~y, k) = B(ρ0, ~y, k).

In particular, we take T to be obtained using geodesic rotations from each σ0
s to ρ0

s. Then given σ ∈
B(σ0, ~y, k), we set ρ = (ρ1, . . . ,ρk) ∈ B(ρ0, ~y, k) by defining ρi = Tσi for each i. Then for all i ∈ [k] and
s ∈ S : ∥∥ρis − σis∥∥2

‖σis‖2
≤
∥∥ρ0

s − σ0
s

∥∥
2

‖σ0
s‖2

≤ ι√
δ
.

(The first estimate just says that for each Ts, the ratio
‖Tszs−zs‖2
‖zs‖2

is maximized for non-zero zs ∈ RIs by

zs = σs; this holds by definition of Ts.) Thus 1√
N

∥∥ρi − σi∥∥
2
≤ ι/
√
δ. On the event Ĥ

[0]
N , . . . , Ĥ

[k]
N ∈ KN , it

follows that ∣∣∣Ĥ(i)
N (σi)− Ĥ(i)

N (ρi)
∣∣∣ ≤ Cι√

δ

for 1 ≤ i ≤ k and ∣∣∣Ĥ(0)
N (σ0)− Ĥ(0)

N (ρ0)
∣∣∣ ≤ Cι,

which implies the conclusion (after adjusting C).

Lemma 5.3.2. There exist constants c, C > 0 such that for all k ∈ N and δ, ε > 0 the following holds. For
any ~x, ~y satisfying δ~1 � ~x � ~y,

P

(
sup

σ0∈SN (~x)

|Fp−,p+(σ0, ~y, k)− EFp−,p+(σ0, ~y, k)| ≤ ε

)

≥ 1− exp

(
C log

(
1

δε

)
N − ckε2N

)
− e−cN
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Proof. Fix for now σ0 ∈ SN (~x) and σ = (σ1, . . . ,σk) ∈ B(σ0, ~y, k). Using the definition (5.37) in the final
step, we find that for small c > 0,

E

( k∑
i=1

(Ĥ
(i)
N (σi)− Ĥ(0)

N (σ0))

)2


= E

( k∑
i=1

√
p−(Ĥ

[0]
N (σi)− Ĥ [0]

N (σ0)) +
√
p+ − p−Ĥ [i]

N (σi)

)2


= p−

k∑
i,j=1

E
[
(Ĥ

[0]
N (σi)− Ĥ [0]

N (σ0))(Ĥ
[0]
N (σj)− Ĥ [0]

N (σ0))
]

+ (p+ − p−)

k∑
i=1

E
[
Ĥ

[i]
N (σi)2

]

= p−

k∑
i,j=1

ξ(~R(σi,σj))− ξ(~R(σi,σ0))− ξ(~R(σ0,σj)) + ξ(~R(σ0,σ0)) + (p+ − p−)

k∑
i=1

ξ(~R(σi,σi))

≤ k

8c
.

By the Borell-TIS inequality, for each fixed σ0 ∈ SN (~x)

P
[
|Fp−,p+(σ0, ~y, k)− EFp−,p+(σ0, ~y, k)| ≤ ε/2

]
≥ 1− 2 exp

(
−ckε2N

)
. (5.41)

Choose ι = Θ(ε
√
δ) so that the right-hand side of (5.40) is bounded by ε/2, and let N be an ι

√
N -net of

SN (~x) with size |N | ≤ (ε
√
δ)−CN ≤ (εδ)−CN . Define the events

Sconc =
{
|Fp−,p+(ρ0, ~y, k)− EFp−,p+(ρ0, ~y, k)| ≤ ε/2 ∀ ρ0 ∈ N

}
,

Slip =
{
Ĥ

[0]
N , . . . , Ĥ

[k]
N ∈ KN

}
,

where KN is defined in Proposition 5.1.23. By a union bound (after adjusting c, C),

P (Sconc ∩ Slip) ≥ 1− exp

(
C log

(
1

δε

)
N − ckε2N

)
− e−cN . (5.42)

Suppose Sconc ∩ Slip holds. For any σ0 ∈ SN (~x), there exists ρ0 ∈ N such that ‖σ0 − ρ0‖2 ≤ ι
√
N , and so

|Fp−,p+(σ0, ~y, k)− EFp−,p+(σ0, ~y, k)|

≤ |Fp−,p+(σ0, ~y, k)− Fp−,p+(ρ0, ~y, k)|+ |Fp−,p+(ρ0, ~y, k)− EFp−,p+(ρ0, ~y, k)| ≤ ε

2
+
ε

2
= ε.

Here the last estimate follows by Lemma 5.3.1.

For now, let k,D, ~φ, p (recall Definition 5.2.4) be arbitrary. In Proposition 5.3.3 below, we obtain an

estimate for 1
NEmaxσ∈Qloc(0)HN (σ) by applying Lemma 5.3.2 repeatedly at each internal vertex u ∈ T\L.

This maximum will take the form of an abstract sum of energy increments. In the next subsection we
will take a continuum limit of this bound, which will yield the variational formula (5.7) for ALG and prove
Proposition 5.2.5.

Spherical symmetry implies that EFp−,p+ (σ, ~y, k) depends on σ only through ~R(σ,σ). Hence for ~φ− =
~R(σ,σ) we may define

f(~φ−, ~φ+; p−, p+; k) = EFp−,p+
(
σ, ~φ+, k

)
. (5.43)

Proposition 5.3.3. Fix D ∈ N and ε, δ > 0. Suppose that ~φ0 � δ~1. There exists k0 = k0(D, ε, δ) such that
for all k ≥ k0, there exists c = c(D, ε, δ, k) such that

P

[∣∣∣∣∣ 1

N
sup

σ∈Qloc(0)

HN (σ)−

(∑
s∈S

hsλs
√
φs0 +

D−1∑
d=0

f
(
~φd, ~φd+1; pd, pd+1; k

))∣∣∣∣∣ ≤ 2Dε

]
≥ 1− e−cN .
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Proof. Let C, c be as in Lemma 5.3.2, and k0 large enough that

C log

(
1

δε

)
− ck0ε

2 ≤ −c, (5.44)

‖ȟ‖∞/
√
k0 ≤ ε. (5.45)

Recall the construction of H̃
(u)
N from (5.29). For any u ∈ Vd, 0 ≤ d ≤ D − 1, let Eu denote the event in

Lemma 5.3.2, with (p−, p+) = (pd, pd+1), (~x, ~y) = (~φd, ~φd+1), and

(Ĥ
(0)
N , Ĥ

(1)
N , . . . , Ĥ

(k)
N ) =

(
H̃

(u)
N , H̃

(u1)
N , . . . , H̃

(uk)
N

)
. (5.46)

Let E =
⋂
u∈T\L Eu. Lemma 5.3.2 and equation (5.44) imply P(Eu) ≥ 1 − 2e−cN for all u ∈ L. By a union

bound, P(E) ≥ 1− e−cN (after adjusting c).
Denote by Fupd,pd+1

the function Fpd,pd+1
defined with Hamiltonians (5.46). Let σ ∈ Qloc(0), so there

exists ρ ∈ Qloc+(0) with (ρ(u))u∈L = σ. On the event E ,

1

N
HN (σ)− 1

KN

∑
v∈L
〈h,σ(u)〉 =

1

KN

∑
u∈L

H̃
(u)
N (σ(u))

=

D−1∑
d=0

1

kd

∑
u∈Vd

1

kN

k∑
i=1

(
H̃

(ui)
N (ρ(ui))− H̃(u)

N (ρ(u))
)

≤
D−1∑
d=0

1

kd

∑
u∈Vd

Fupd,pd+1

(
ρ(u), ~φd+1, k

)
Lem. 5.3.2
≤ Dε+

D−1∑
d=0

f(~φd, ~φd+1; pd, pd+1; k).

In the telescoping sum, we used that H̃
(∅)
N is the zero function. By Lemma 5.2.10 and equation (5.45),∣∣∣∣∣ 1

KN

∑
u∈L
〈h,σ(u)〉 − 1

N
〈h,ρ(∅)〉

∣∣∣∣∣ ≤ 1√
N
‖h‖2 ·

1√
N

∥∥∥∥∥ρ(∅)− 1

K

∑
u∈L

σ(u)

∥∥∥∥∥
2

≤ ‖ȟ‖∞

√
D

k
≤ Dε.

Finally,
1

N
〈h,ρ(∅)〉 =

1

N

∑
s∈S

hs‖ρ(∅)s‖1 ≤
1

N

∑
s∈S

hs
√
|Is|‖ρ(∅)s‖2 =

∑
s∈S

hsλs
√
φs0. (5.47)

This completes the proof of the upper bound for 1
N supσ∈Qloc(0)HN (σ). Finally, observe that equality holds

above (up to the same 2Dε error) if we choose ρ(∅) =

√
~φ0 �1 and then recursively choose (ρ(ui))i∈[k] given

ρ(u) so that, for |u| = d,

1

Nk

k∑
i=1

(
H̃

(ui)
N (ρ(ui))− H̃(u)

N (ρ(u))
)

= Fupd,pd+1
(ρ(u), ~φd+1, k).

5.3.2 The algorithmic functional

Our next objective is to estimate the terms f(~φ−, ~φ+; p−, p+; k) appearing in Proposition 5.3.3. The key

point is that when the differences ~φ+ − ~φ− and p+ − p− are small, which is ensured by δ-denseness of

(p, ~φ), this estimate only requires Taylor approximating the relevant Hamiltonians to second order. We take
advantage of this using the following lemma, which (for k = 1) gives the ground state energy GS(W,~v, 1) of
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a quadratic multi-species spin glass with Gaussian external field. For general k, this lemma gives the limiting
ground state energy GS(W,~v, k) of a k-replica Hamiltonian (5.48) with shared quadratic component W �G
and independent external fields ~v�gi, whose inputs (5.49) are k pairwise orthogonal elements of SN (~1). Note
that GS(W,~v, k) ≤ GS(W,~v, 1) by definition. In fact equality holds, i.e. there exist orthogonal σ1, . . . ,σk

such that each σi approximately maximizes Hi
N,k(σi). We prove this lemma in Appendix 5.B by combining

a known formula from [BBvH23] for the case (k,~v) = (1,~0) with an elementary recursive argument along
subspaces.

Lemma 5.3.4. Let W = (ws,s′)s,s∈S ∈ RS×S
≥0 be symmetric and ~v = (vs)s∈S ∈ RS

≥0. Let k ∈ N and

sample independent g1, . . . , gk ∈ RN and G ∈ RN×N with i.i.d. standard Gaussian entries. Consider the
k-replica Hamiltonian

HN,k(σ) =
1

k

k∑
i=1

Hi
N,k(σi), Hi

N,k(σi) = 〈~v � gi,σi〉+
1√
N
〈W �G, (σi)⊗2〉 (5.48)

on the input space of orthogonal replicas

Sk,⊥N =
{
σ = (σ1, . . . ,σk) ∈ SN (~1) : ~R(σi,σj) = ~0 ∀i 6= j

}
. (5.49)

Define the k-replica ground state energy

GSN (W,~v, k) ≡ 1

N
max
σ∈Sk,⊥N

HN,k(σ). (5.50)

Then GS(W,~v, k) ≡ limN→∞ EGSN (W,~v, k) exists, does not depend on k, and is given by

GS(W,~v, k) =
∑
s∈S

λs

√
v2
s + 2

∑
s′∈S

λsw2
s,s′ .

Proposition 5.3.5. Suppose 0 ≤ p− ≤ p+ ≤ 1, ~0 � ~φ− � ~φ+ � ~1 and

p+ − p− ≤ δ, ~φ+ − ~φ− � δ~1. (5.51)

Then,

f(~φ−, ~φ+; p−, p+; k) =
∑
s∈S

λs

√√√√(φs+ − φs−)

(
(p+ − p−)ξs(~φ−) + p−

∑
s′∈S

∂xs′ ξ
s(~φ−)(φs+ − φs−)

)
+O

(
δ3/2 + (δ/k)1/2

)
+ oN (1),

where oN (1) denotes a term tending to 0 as N →∞.

Proof. Fix σ0 such that ~R(σ0,σ0) = ~φ−. Let σ = (σ1, . . . ,σk) ∈ B(σ0, ~φ+, k). Let ∆~φ = ~φ+ − ~φ− and

x = (x1, . . . ,xk) for xi = (∆~φ)−1/2 � (σi − σ0). Define

S• =
{
y ∈ SN (~1) : ~R(y,σ0) = ~0

}
,

Sk,⊥• =
{
y = (y1, . . . ,yk) ∈ Sk• : ~R(yi,yj) = ~0 ∀i 6= j

}
.

Note that x ∈ Sk,⊥• . Recall that Ĥ
[0]
N , . . . , Ĥ

[k]
N are i.i.d. copies of H̃N , and that Ĥ

(0)
N , . . . , Ĥ

(k)
N are defined

by (5.38), (5.39). Let

H
i

N (xi) = Ĥ
[i]
N (σi)− Ĥ [i]

N (σ0) = Ĥ
[i]
N

(
σ0 +

√
∆~φ � xi

)
− Ĥ [i]

N (σ0).

215



Then

f(~φ−, ~φ+; p−, p+; k) =
1

kN
E max
σ∈B(σ0,~φ+,k)

k∑
i=1

(
Ĥ

(i)
N (σi)− Ĥ(0)

N (σ0)
)

=
1

kN
E max
σ∈B(σ0,~φ+,k)

k∑
i=1

(
√
p−

(
Ĥ

[0]
N (σi)− Ĥ [0]

N (σ0)
)

+
√
p+ − p−

(
Ĥ

[i]
N (σi)− Ĥ [i]

N (σ0)
)

+
√
p+ − p− Ĥ [i]

N (σ0)

)
=

1

kN
E max
x∈Sk,⊥•

k∑
i=1

(√
p−H

0

N (xi) +
√
p+ − p−H

i

N (xi)
)

(5.52)

where we note that EĤ [i]
N (σ0) = 0. Let H

i,tay

N denote the degree 2 Taylor expansion of H
i

N around 0. By
Proposition 5.1.23 (recalling (5.51)),

E sup
x∈S•

|Hi

N (x)−Hi,tay

N (x)| = O(Nδ3/2).

So, for all 0 ≤ i ≤ k, we have as processes on S•

H
i

N (x) =d 〈~v � gi,x〉+ 〈W �Gi,x⊗2〉+OP(Nδ3/2), (5.53)

where OP(Nδ3/2) denotes a S•-valued process X(x) with E supx∈S• |X(x)| = O(Nδ3/2) and ~v = (vs)s∈S

and W = (ws,s′)s,s′∈S are given by

vs =

√
ξs(~φ−)(∆~φ)s, ws,s′ =

1√
2

√
λ−1
s′ ∂xs′ ξ

s(~φ−)(∆~φ)s(∆~φ)s′ .

Next we observe some simplifications. Because ∆~φ � δ~1, we have vs = O(δ1/2), ws,s′ = O(δ) uniformly over

s, s′. The linear contribution to H
0

N in (5.53) is small because

1

kN

k∑
i=1

〈~v � g0,xi〉 ≤ 1

kN

∥∥~v � g0
∥∥

2

∥∥∥∥∥
k∑
i=1

xi

∥∥∥∥∥
2

= OP((δ/k)1/2)

by orthogonality of the xi. Because p+−p− ≤ δ, the quadratic contributions to H
i

N for i ≥ 1 are also small:
√
p+ − p−
N

〈W �Gi, (xi)⊗2〉 = OP(δ3/2).

Combining these estimates with (5.52) and (5.53), we find

f(~φ−, ~φ+; p−, p+; k) =
1

kN
E max
x∈Sk,⊥•

k∑
i=1

√
p+ − p−

〈
~v � gi,xi

〉
+
√
p−
〈
W �G0, (xi)⊗2

〉
+O((δ/k)1/2 + δ3/2).

By Lemma 5.3.4 (applied in dimension N−r due to the linear constraint ~R(xi,σ0) = ~0 in S•), this remaining
expectation is given up to oN (1) error by∑

s∈S

λs

√
(p+ − p−)v2

s + 2
∑
s′∈S

λs′p−w2
s,s′

=
∑
s∈S

λs

√√√√(∆~φ)s

(
(p+ − p−)ξs(~φ−) + p−

∑
s′∈S

∂xs′ ξ
s(~φ−)(∆~φ)s′

)
.

This implies the result.
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We now evaluate BOGPloc,0 by taking a continuous limit of Propositions 5.3.3 and 5.3.5. Fix D, k and

δ = 6r/D, and let (p, ~φ) be δ-dense. We parametrize time by qd = 〈~λ, ~φd〉, so in particular q0 = 〈~λ, ~φ0〉. Let

the functions p̃ : [q0, 1]→ [0, 1] and Φ̃ : [q0, 1]→ [0, 1]S satisfy

p̃(qd) = pd, Φ̃(qd) = ~φd. (5.54)

and be linear on each interval [qd, qd+1]. These are piecewise linear approximations of inputs (p,Φ) to the
algorithmic functional A. Define

Asd =

√√√√(φsd+1 − φsd)

(
(pd+1 − pd)ξs(~φd) + pd

∑
s′∈S

∂xs′ ξ
s(~φd)(φs

′
d+1 − φs

′
d )

)
. (5.55)

This term appears in the estimate of f
(
~φd, ~φd+1; pd+1, pd; k

)
obtained from Proposition 5.3.5.

Lemma 5.3.6. We have ∣∣∣∣∣
D−1∑
d=0

Asd −
∫ qD

q0

√
Φ̃′s(q)(p̃× ξs ◦ Φ̃)′(q) dq

∣∣∣∣∣ ≤ CD−1/2

for a constant C > 0 independent of D, p, ~φ.

Proof. Until the end, we focus on estimating the difference

∆s
d ≡

∣∣∣∣Asd − ∫ qd+1

qd

√
Φ̃′s(q)(p̃× ξs ◦ Φ̃)′(q) dq

∣∣∣∣ .
Note the general inequality∫ qd+1

qd

√
a(q) · |

√
b(q)−

√
c(q)|dq ≤

(∫ qd+1

qd

a(q)dq

)1/2

·
(∫ qd+1

qd

(√
b(q)−

√
c(q)

)2
dq

)1/2

≤
(∫ qd+1

qd

a(q)dq

)1/2

·
(∫ qd+1

qd

|b(q)− c(q)|dq
)1/2

. (5.56)

Thus

∆s
d =

∣∣∣∣∣∣
∫ qd+1

qd

√
Φ̃′s(q)

√(p̃× ξs ◦ Φ̃)′(q)−

√
(pd+1 − pd)ξs(~φd) + pd

∑
s′∈S ∂xs′ ξ

s(~φd)(φs
′
d+1 − φs

′
d )

qd+1 − qd

 dq

∣∣∣∣∣∣
≤

√√√√(φsd+1 − φsd)
∫ qd+1

qd

∣∣∣∣∣(p̃× ξs ◦ Φ̃)′(q)−
(pd+1 − pd)ξs(~φd) + pd

∑
s′∈S ∂xs′ ξ

s(~φd)(φs
′
d+1 − φs

′
d )

qd+1 − qd

∣∣∣∣∣ dq.
In the first step we used that Φ̃′(q) = (~φd+1− ~φd)/(qd+1−qd) by definition, and in the second we used (5.56).

Let (p̃× ξs ◦ Φ̃)′(qd) and (p̃× ξs ◦ Φ̃)′(qd+1) denote the right and left derivatives at these points, respectively.

The definitions of p̃′ and Φ̃′ imply

(pd+1 − pd)ξs(~φd) + pd
∑
s′∈S ∂xs′ ξ

s(~φd)(φ
s′

d+1 − φs
′

d )

qd+1 − qd
= (p̃× ξs ◦ Φ̃)′(qd),

so in fact

∆s
d ≤

√
(φsd+1 − φsd)

∫ qd+1

qd

∣∣∣(p̃× ξs ◦ Φ̃)′(q)− (p̃× ξs ◦ Φ̃)′(qd)
∣∣∣ dq

≤
√

(φsd+1 − φsd)(qd+1 − qd)
(

(p̃× ξs ◦ Φ̃)′(qd+1)− (p̃× ξs ◦ Φ̃)′(qd)
)
. (5.57)
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Let ∇~φd = (~φd+1 − ~φd)/(qd+1 − qd) be the constant value of ∇Φ̃ on [qd, qd+1]. Then

(p̃× ξs ◦ Φ̃)′(qd+1)− (p̃× ξs ◦ Φ̃)′(qd) =

(
pd+1 − pd
qd+1 − qd

)(
ξs(~φd+1)− ξs(~φd)

)
+ pd+1〈∇ξs(~φd+1),∇~φd〉 − pd〈∇ξs(~φd),∇~φd〉.

We thus obtain

(qd+1 − qd)
(

(p̃× ξs ◦ Φ̃)′(qd+1)− (p̃× ξs ◦ Φ̃)′(qd)
)

= (pd+1 − pd)
(
ξs(~φd+1)− ξs(~φd)

)
+ (qd+1 − qd)(pd+1 − pd)〈∇ξs(~φd+1),∇~φd〉

+ (qd+1 − qd)pd〈∇ξs(~φd+1)−∇ξs(~φd),∇~φd〉

≤ O
(

(pd+1 − pd)
∥∥∥~φd+1 − ~φd

∥∥∥
2

+
∥∥∥~φd+1 − ~φd

∥∥∥2

2

)
= O(δ2).

Combining with (5.57) gives the estimate ∆s
d = O(δ)

√
φsd+1 − φsd. Summing this over 0 ≤ d ≤ D − 1 gives

the final estimate∣∣∣∣∣
D−1∑
d=0

Asd −
∫ qD

q0

√
Φ̃′s(q)(p̃× ξs ◦ Φ̃)′(q) dq

∣∣∣∣∣ ≤
D−1∑
d=0

∆s
d ≤ O(δ)

D−1∑
d=0

√
φsd+1 − φsd

≤ O(δ
√
D) = O(D−1/2).

by Cauchy-Schwarz.

We next show that discretizing any C1 functions (p,Φ) preserves the value of A.

Lemma 5.3.7. Suppose q0 ∈ [0, 1], p ∈ I(q0, 1), and Φ ∈ Adm(q0, 1). Consider any q = (q0, . . . , qD) with

q0 < · · · < qD = 1, such that the (p, ~φ) defined by pd = p(qd) and ~φd = Φ(qd) is 6r/D-dense. Then, for all
s ∈ S , ∣∣∣∣∫ 1

q0

√
Φ′s(q)(p× ξs ◦ Φ)′(q) dq −

∫ 1

q0

√
Φ̃′s(q)(p̃× ξs ◦ Φ̃)′(q) dq

∣∣∣∣ = oD(1),

where p̃, Φ̃ are the piecewise linear interpolations defined by (5.54) and oD(1) is a term tending to 0 as
D →∞ (for fixed (p,Φ)).

Proof. The functions Φ,Φ′, p, p′ are uniformly continuous because they are continuous on [q0, 1]. So,

‖Φ− Φ̃‖∞, ‖Φ′ − Φ̃′‖∞, ‖p− p̃‖∞, ‖p′ − p̃′‖∞ = oD(1).

Bounded convergence implies the result.

Proof of Proposition 5.2.5. By Proposition 5.2.9 it suffices to prove that BOGPloc,0 = ALG. We will sepa-
rately show BOGPloc,0 ≤ ALG and BOGPloc,0 ≥ ALG.

We first show BOGPloc,0 ≤ ALG. Let ι > 0. Let D be sufficiently large, ε = D−2 and δ = 6r/D, and k
be sufficiently large depending on D such that the following holds. First, k ≥ k0(D, ε, δ) for k0 defined in

Proposition 5.3.3. Second, for some 1/D2-separated ~χ ∈ I(0, 1)S and all δ-dense (p, ~φ) with ~φ = ~χ(p), we
have

1

N
E sup
σ∈Qloc(0)

HN (σ) ≥ BOGPloc,0 − ι/2.

Let qd = 〈~λ, ~φd〉. Let p̃, Φ̃ be the piecewise linear interpolations defined by (5.54) and Asd be defined by
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(5.55). Then∣∣∣∣∣ 1

N
sup

σ∈Qloc(0)

HN (σ)−
∑
s∈S

(
hsλs

√
Φ̃s(q0) + λs

∫ qD

q0

√
Φ̃′s(q)(p× ξs ◦ Φ)(q) dq

)∣∣∣∣∣
≤

∣∣∣∣∣ 1

N
sup

σ∈Qloc(0)

HN (σ)−
∑
s∈S

(
hsλs

√
φs0 +

D−1∑
d=0

f
(
~φd, ~φd+1; pd, pd+1; k

))∣∣∣∣∣
+

D−1∑
d=0

∣∣∣∣∣f (~φd, ~φd+1; pd, pd+1; k
)
−
∑
s∈S

λsA
s
d

∣∣∣∣∣+
∑
s∈S

λs

∣∣∣∣∣
D−1∑
d=0

Asd −
∫ qD

q0

√
Φ̃′s(q)(p× ξs ◦ Φ)(q) dq

∣∣∣∣∣ .
By Propositions 5.3.3, 5.3.5 and Lemma 5.3.6, on an event with probability 1− e−cN this is bounded by

2Dε+O(Dδ3/2 +D(δ/k)1/2) +O(D−1/2) + oN (1) = O(D−1/2 + (D/k)1/2) + oN (1) ≤ ι/4,

for sufficiently large N,D, k. Because 1
N supσ∈Qloc(0)HN (σ) is subgaussian with fluctuations O(N−1/2) by

Lemma 5.2.11, the contributions of the complement of this event are oN (1), and so∣∣∣∣∣ 1

N
E sup
σ∈Qloc(0)

HN (σ)−
∑
s∈S

(
hsλs

√
Φ̃s(q0) + λs

∫ qD

q0

√
Φ̃′s(q)(p× ξs ◦ Φ)(q) dq

)∣∣∣∣∣ ≤ ι/4. (5.58)

Let p ∈ I(q0, 1) and Φ ∈ Adm(q0, 1) approximate the piecewise linear functions (p̃, Φ̃) on [q0, qD], in the sense
that ∣∣∣∣∣∑

s∈S

λs

∫ qD

q0

(√
Φ̃′s(q)(p̃× ξs ◦ Φ̃)′(q)−

√
Φ′s(q)(p× ξs ◦ Φ)′(q)

)
dq

∣∣∣∣∣ ≤ ι/4. (5.59)

It is clear that such p,Φ exist. Thus

BOGPloc,0 ≤ A(p,Φ; q0)− ι ≤ ALG− ι.

Since ι was arbitrary, we conclude BOGPloc,0 ≤ ALG.
Next, we will show BOGPloc,0 ≥ ALG. Let ι > 0, and let D be sufficiently large and k be sufficiently large

depending on D. There exist q0 ∈ [0, 1], p ∈ I(q0, 1), and Φ ∈ Adm(q0, 1) such that

A(p,Φ; q0) ≥ ALG− ι/2.

By replacing Φ with (1 − D−2)Φ + D−2~1 we may assume Φ(q0) � ~1/D2, as this replacement affects the
left-hand side by oD(1). Similarly, by replacing p(q) with (1 − D−1)p(q) + D−1q, we may assume p is
strictly increasing. We choose ~χ = Φ ◦ p−1, which is 1/D2-separated. Consider any q = (q0, q1, . . . , qD) with

q0 < q1 < · · · < qD = 1 such that for pd = p(qd), ~φd = Φ(qd), the pair (p, ~φ) is 6r/D-dense. Similarly to
above, we have (5.58) for sufficiently large N,D, k. By Lemma 5.3.7, (5.59) holds for D sufficiently large.
This implies

A(p,Φ; q0) ≤ BOGPloc,0 + ι/2,

and so ALG ≤ BOGPloc,0 + ι. Because ι was arbitrary, we have ALG ≤ BOGPloc,0.

5.4 Optimization of the algorithmic variational principle

In this section we will prove Propositions 5.1.9 and 5.1.11 and Theorem 5.1.12. Throughout this section we
assume Assumption 5.1.3 except where stated.

To ensure a priori existence of a maximizer in (5.7), we work in the following compact space which
removes the constraint that p and Φ are continuously differentiable.

Definition 5.4.1. The space M consists of all triples (p,Φ, q0) such that:

• q0 ∈ [0, 1].
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• p : [q0, 1]→ [0, 1] is non-decreasing and right-continuous (we write p ∈ Î(q0, 1)).

• Φ = (Φs)s∈S consists of r non-decreasing functions Φs : [q0, 1] → [0, 1] satisfying admissibility (5.5)

(we write Φ ∈ Âdm(q0, 1)).

Because we assume almost no regularity for elements of M, we formally define the integral in (5.6) as
follows. Since (p×ξs◦Φ) is a bounded non-decreasing function, it has a positive-measure-valued distributional
derivative

(p× ξs ◦ Φ)′(q) dq = f(q) dq + dµ(q) (5.60)

where f ∈ L1([q0, 1]) and µ is an atomic-plus-singular measure supported in [q0, 1]. Moreover, (5.5) implies
Φs is λ−1

s -Lipschitz, hence has distributional derivative Φ′s ∈ L∞([q0, 1]).

Definition 5.4.2. For (p,Φ, q0) ∈M, define

ÂLG ≡ sup
(p,Φ,q0)∈M

A(p,Φ; q0). (5.61)

where the second term of A is given (with f as in (5.60)) by:∫ 1

q0

√
Φ′s(q)(p× ξs ◦ Φ)′(q) dq =

∫ 1

q0

√
Φ′s(q)f(q) dq. (5.62)

Informally, the reason that µ from (5.60) disappears is that in a suitable approximating limit, “the
square-root of a Dirac mass has L1 norm zero”. Formally, one can take (5.62) to be the definition of the
left-hand side.

It will follow from our results in this section that for non-degenerate ξ, all maximizers to the extended

variational problem are continuously differentiable on [q0, 1]. The equality ALG = ÂLG follows in general
since both are continuous in (ξ, ȟ).

Remark 5.4.3. A related (for the most part, simpler) variational problem was considered in [DZ95]. There,
after showing existence and other basic properties, the general result [Ces12, Theorem 5.1] was used to derive
an ordinary differential equation [DZ95, Theorem 4] for the optimal Φ. The same general result applies in
our setting, and essentially yields Proposition 5.4.17, assuming certain functions fs defined below in (5.66)
are absolutely continuous for all s ∈ S . However the only way we could establish absolute continuity of fs
was by going through the full proof of Proposition 5.4.17.

5.4.1 Linear algebraic and analytic preliminaries

We first prove Corollary 5.4.5 below, an equivalent characterization of (super, strict sub)-solvability.

Proposition 5.4.4. Let M ∈ RS×S be diagonally signed. Then

Λ(M) = sup
~v∈RS

>0

min
s∈S

(M~v)s
vs

(5.63)

equals the smallest eigenvalue λmin(M) of M .

Proof. Let ~w be a (unit) minimal eigenvector of M . Note that

~w>M ~w =
∑

s,s′∈S

Ms,s′wsws′ ≥
∑

s,s′∈S

Ms,s′ |ws||ws′ |.

Since ~w minimizes ~w>M ~w, all entries of ~w are the same sign. We may thus assume ~w ∈ RS
≥0. Moreover, if

ws = 0 for any s, then (M ~w)s < 0 so ~w is not an eigenvector; thus ~w ∈ RS
>0. Because M ~w = λmin(M)~w,

clearly Λ(M) ≥ λmin(M). For any other ~v ∈ RS
>0,

min
s∈S

(M~v)s
vs

≤ 〈~w,~v〉−1
∑
s∈S

wsvs ·
(M~v)s
vs

=
〈~w,M~v〉
〈~w,~v〉

=
〈M ~w,~v〉
〈~w,~v〉

= λmin(M),

so Λ(M) ≤ λmin(M). Thus Λ(M) = λmin(M).
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Corollary 5.4.5. For ~x ∈ (0, 1]S ∪ {~0} define

M∗(~x) = diag
(
(ξs(~x) + h2

s)s∈S

)
−
(
xs∂xs′ ξ

s(~x)
)
s,s′∈S

.

Then ~x is super-solvable (resp. solvable, strictly sub-solvable) if and only if Λ(M∗(~x)) ≥ 0 (resp. = 0, < 0).

Proof. Suppose first ~x ∈ (0, 1]S . By Proposition 5.4.4, ~x is super-solvable (resp. solvable, strictly sub-
solvable) if and only if Λ(M∗sym(~x)) ≥ 0 (resp. = 0, < 0). Note that

M∗(~x) = diag ((λsxs)s∈S )M∗sym(~x), (5.64)

so Λ(M∗(~x)) has the same sign as Λ(M∗sym(~x)), as desired. If ~x = ~0, then clearly Λ(M∗(~x)) ≥ 0 with equality

at ȟ = ~0, which agrees with the convention from Definition 5.1.5.

The following proposition is clear.

Proposition 5.4.6. Let Λ be as in (5.63) and let M ∈ Rr×r≥0 (not necessarily diagonally signed). Then
Λ(M) is non-negative and locally bounded. Moreover if for some c ∈ R we have M ′s,s′ ≥Ms,s′ + c · 1s=s′ for
all s, s′, then Λ(M ′) ≥ Λ(M) + c.

Many perturbation arguments used to establish regularity rely on the following basic fact.

Proposition 5.4.7 ([Rud87, Theorem 7.7]). For f ∈ L1([0, 1]), almost all x ∈ [0, 1] are Lebesgue points:

lim
ε→0

1

2ε

∫ x+ε

x−ε
|f(y)− f(x)| dy = 0.

The next fact ensures that Lipschitz ordinary differential equations are well-posed (even if they are only
required to hold almost everywhere).

Proposition 5.4.8 ([Rou13, Theorem 1.45, Part (ii)]). Suppose Y1, Y2 : [0, 1] → Rd are each absolutely
continuous with Y1(0) = Y2(0) and solve the ODE Y ′i (q) = F (Yi(q)) at almost all q for F : Rd → Rd
Lipschitz. Then Y1, Y2 agree and solve the ODE for all q.

5.4.2 A priori regularity of maximizers

We first show that for the optimization problem (5.7), admissibility (5.5) is just a convenient choice of
normalization. This makes variational arguments more convenient because we do not need to worry about
preserving admissibility of Φ under perturbations. Let Ĩ(q0, 1) ⊆ Î(q0, 1) be the set of non-decreasing and
Lipschitz functions f : [q0, 1] → [0, 1] with no explicit bound on the Lipschitz constant and with f(1) = 1.

Note that the algorithmic functional A (5.6) remains well-defined for Φ ∈ Ĩ(q0, 1)S .

Lemma 5.4.9. We have that
ÂLG = sup

q0∈[0,1]

sup
p∈̂I(q0,1)

Φ∈̃I(q0,1)S

A(p,Φ; q0). (5.65)

Proof. Let ÂLG
′

be the right-hand side of (5.65). We will show that ÂLG ≥ ÂLG
′

(the opposite implication
being trivial).

Consider any q0 ∈ [0, 1], p ∈ Î(q0, 1), and Φ ∈ Ĩ(q0, 1)S . For small δ > 0, consider

Φδ(q) = δq~1 + (1− δ)Φ(q)

and let α(q) = 〈~λ,Φδ(q)〉, so α′(q) ≥ δ. Thus α−1 exists and is δ−1-Lipschitz. Consider (p̃, Φ̃, q̃0) given by

p̃(q) = p(α−1(q)), Φ̃(q) = Φ(α−1(q)), q̃0 = α(q0).

By construction, Φ̃ ∈ Âdm(q̃0, 1). By the chain rule, A(p̃, Φ̃; q̃0) = A(p,Φδ; q0). Thus

ÂLG ≥ lim sup
δ↓0

A(p̃, Φ̃, q̃0) = lim sup
δ↓0

A(p,Φδ; q0) ≥ A(p,Φ; q0).

Since p,Φ, q0 were arbitrary the conclusion follows.
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A routine compactness argument given in Appendix 5.C.1 yields the following.

Proposition 5.4.10. There exists a maximizer (p,Φ, q0) ∈M for A and A(p,Φ; q0) <∞.

From now on, we let (p,Φ, q0) ∈ M denote any maximizer and study the behavior of (p,Φ, q0). While
almost no regularity on (p,Φ) is assumed, it is possible to establish a priori regularity using variational
arguments. We defer the proofs of the following two propositions to Appendix 5.C.2. Proposition 5.4.11
implies that the discussion following (5.7) is not necessary to define A(p,Φ; q0).

Proposition 5.4.11. The functions p,Φ are continuously differentiable on [q0+ε, 1] for any ε > 0. Moreover,
there exists L > 0 (possibly depending on (p,Φ; q0) as well as ξ) such that L−1~1 � Φ′(q) � L~1 for almost all
q ∈ (q0, 1].

Proposition 5.4.12. The function p satisfies p(q) > 0 for all q > q0, p(1) = 1, and p(q0) = 0 if q0 > 0.

Throughout the next subsection we will use ε > 0 as in Proposition 5.4.11. Later we slightly improve the
result of Proposition 5.4.11 to continuity on [q0, 1] using more detailed properties of the maximizers.

5.4.3 Identification of root-finding and tree-descending phases

In this subsection we will prove the following result. Recall that the Sobolev space W 2,∞([q0 + ε, 1]) consists
of C1 functions with Lipschitz derivative on the interval.

Proposition 5.4.13. The restrictions of p and Φs, for all s ∈ S , lie in the space W 2,∞([q0 + ε, 1]) for any
ε > 0. There exists q1 ∈ [q0, 1] such that the following holds.

(a) On [q0, q1], p′ > 0 almost everywhere and the quantities
Φ′s(q)

(p×ξs◦Φ)′(q) are constant. Moreover p(q1) = 1.

(b) On [q1, 1], the ODE (5.15) is satisfied for all s, s′ ∈ S almost everywhere and p = 1.

We begin with a result on diagonally dominant matrices. Variants especially with ε = 0 have been used
many times, see e.g. [Tau49]. Related linear algebraic statements will appear later in Lemmas 5.4.18 and
5.4.20 as, roughly speaking, r-dimensional analogs of monotonicity.

Lemma 5.4.14. Let A = (ai,j)i,j∈[r] ∈ Rr×r satisfy ai,i > 0 and ai,j < 0 for all i 6= j.

(a) If
∑r
j=1 ai,j = 0 for all i ∈ [r], then all solutions ~v ∈ Rr to A~v � ε~1 satisfy |vi − vj | ≤ ε/amin for all

i, j, where amin = mini 6=j |ai,j |.

(b) If
∑r
j=1 ai,j ≥ dmin > 0 for all i ∈ [r], then all solutions ~v ∈ Rr to ‖A~v‖∞ ≤ ε satisfy ‖vi‖∞ ≤ ε/dmin.

Proof of Lemma 5.4.14. Assume without loss of generality that v1 ≥ vs for all s. If
∑r
j=1 ai,j = 0 for all

i ∈ [r], then

ε ≥ (A~v)1 = a1,1v1 +

r∑
j=2

a1,jvi =

r∑
j=2

|a1,j |(v1 − vj) ≥ amin(v1 − vi)

for all i ≥ 2. Thus v1−vi ≤ ε/amin, proving the first part. For the second part, we will first show v1 ≤ ε/dmin.
If v1 < 0 there is nothing to prove, and otherwise

ε ≥ (A~v)1 = a1,1v1 +

r∑
j=2

a1,jvj ≥

a1,1 −
r∑
j=2

a1,j

 v1 ≥ dminv1.

So v1 ≤ ε/dmin, as claimed. Finally, note that if ‖A~v‖∞ ≤ ε, the same is true for −~v. By the same argument
we find the largest entry of −~v is at most ε/dmin. This implies the second part.

Corollary 5.4.15. Let A = (ai,j)i,j∈[r] ∈ Rr×r satisfy ai,i > 0 and ai,j < 0 for all i 6= j. If
∑r
j=1 ai,j > 0

for all i ∈ [r], then the only solution to A~v = ~0 is ~v = ~0.
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Proof. Apply Lemma 5.4.14(b) with ε = 0.

To establish additional regularity we use the following fact on distributional derivatives.

Lemma 5.4.16 (See e.g. [Zie12, Theorem 2.2.1]). If A,B ∈ L∞([q0, 1]) satisfy∫ 1

q0

A(q)ψ(q) +B(q)ψ′(q) dq = 0

for all ψ ∈ C∞c ((q0, 1);R), then there exists C ∈ R such that for all q ∈ [q0, 1],

B(q) =

∫ q

q0

A(t) dt+ C.

We will make use of the functions

fs(q) =

√
Φ′s(q)

(p× ξs ◦ Φ)′(q)
(5.66)

Note that Propositions 5.4.11 and 5.4.12 imply fs is continuous on [q0 + ε, 1].

Proposition 5.4.17. The functions fs are Lipschitz on [q0 + ε, 1]. Thus (recall Proposition 5.4.11) the
functions

Ψs(q) = f ′s(q)/Φ
′
s(q) (5.67)

are measurable and locally bounded on (q0, 1]. Moreover for almost all q ∈ (q0, 1], the following holds:

Ψ1(q) = · · · = Ψr(q), (5.68)

and furthermore this common value is 0 if p′(q) > 0.

Proof. Let ψ ∈ C∞c ((q0, 1);R). Consider the perturbation

Φ̃1(q) = Φ1(q) + δψ(q),

and let Φ̃s(q) = Φs(q) for s 6= 1. By Proposition 5.4.11, Φ̃ remains coordinate-wise non-decreasing and

Lipschitz for small positive and negative δ. Although Φ̃ 6∈ Âdm(q0, 1), recalling Lemma 5.4.9 we nonetheless

have A(p, Φ̃; q0) ≤ A(p,Φ; q0). Thus,

F1 ≡
d

dδ
A(p, Φ̃; q0)

∣∣∣
δ=0

= 0.

We now calculate F1. Note that

d

dδ
(p× ξs ◦ Φ̃)′(q)

∣∣∣
δ=0

= (pψ × ∂x1
ξs ◦ Φ)′(q) =

λ1

λs
(pψ × ∂xsξ1 ◦ Φ)′(q). (5.69)

So,

0 =
2

λ1
F1 =

∫ 1

q0

f1(q)−1ψ′(q) dq +
∑
s∈S

∫ 1

q0

fs(q)(pψ × ∂xsξ1 ◦ Φ)′(q) dq

=

∫ 1

q0

A1(q)ψ(q) +B1(q)ψ′(q) dq

where
A1(q) ≡

∑
s∈S

fs(q)(p× ∂xsξ1 ◦ Φ)′(q), B1(q) ≡ f1(q)−1 +
∑
s∈S

fs(q)(p× ∂xsξ1 ◦ Φ)(q).
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By Proposition 5.4.11, for all ε > 0 A1(q) and B1(q) are bounded for q ∈ [q0 + ε, 1]. Lemma 5.4.16 implies
that B1(q) is absolutely continuous and B′1(q) = A1(q) for all q ∈ (q0, 1]. In fact by Proposition 5.4.11, A1

is bounded and continuous on [q0 + ε, 1], so B1 ∈ C1([q0 + ε, 1]) (for all ε > 0).
Fix q ∈ (q0, 1]. For ι ∈ R with |ι| small, let ∆ι

s = fs(q + ι) − fs(q). By Proposition 5.4.11 all fs are
continuous, so ∆ι

s = o(1); here are below we use o(·) for limits as ι→ 0. Thus,

B1(q + ι)−B1(q) =
1

f1(q) + ∆ι
1

− 1

f1(q)
+
∑
s∈S

∆ι
s · (p× ∂xsξ1 ◦ Φ)(q)

+
∑
s∈S

fs(q + ι)
(
(p× ∂xsξ1 ◦ Φ)(q + ι)− (p× ∂xsξ1 ◦ Φ)(q)

)
.

Since (p× ∂xsξ1 ◦ Φ) is differentiable and fs is continuous,∑
s∈S

fs(q + ι) ·
(
(p× ∂xsξ1 ◦ Φ)(q + ι)− (p× ∂xsξ1 ◦ Φ)(q)

)
= ι

∑
s∈S

fs(q)(p× ∂xsξ1 ◦ Φ)′(q) + o(|ι|)

= ιA1(q) + o(|ι|).

Moreover,

1

f1(q) + ∆ι
1

− 1

f1(q)
= − ∆ι

1

f1(q)(f1(q) + ∆ι
1)

=
(∆ι

1)2

f1(q)2(f1(q) + ∆ι
1)
− ∆ι

1

f1(q)2

=
(∆ι

1)2

f1(q)2(f1(q) + ∆ι
1)
− ∆ι

1

Φ′1(q)

(
p′(q)(ξ1 ◦ Φ)(q) +

∑
s∈S

(p× ∂xsξ1 ◦ Φ)(q)Φ′s(q)

)
.

We also have B1(q + ι)−B1(q) = A1ι+ o(|ι|) (recall A1 is continuous). Thus

∑
s∈S

(p× ∂xsξ1 ◦Φ)(q)Φ′s(q)

[
∆ι

1

Φ′1(q)
− ∆ι

s

Φ′s(q)

]
+ p′(q)(ξ1 ◦Φ)(q)

∆ι
1

Φ′1(q)
− (∆ι

1)2

f1(q)2(f1(q) + ∆ι
1)

= o(|ι|). (5.70)

We get similar equations from perturbing any Φs instead of Φ1. If p′(q) > 0, then we can write the last two
terms on the left-hand side of (5.70) as

∆ι
1

Φ′1(q)

(
p′(q)(ξ1 ◦ Φ)(q)− ∆ι

1Φ′1(q)

f1(q)2(f1(q) + ∆ι
1)

)
=

∆ι
1

Φ′1(q)

(
p′(q)(ξ1 ◦ Φ)(q) + o(1)

)
.

Then, (5.70) and its analogs form a linear system in variables xs ≡ ∆ι
s/Φ

′
s(q) with all row sums positive. (E.g.

in (5.70), the first term gives zero coefficient sum so the total coefficient sum is just
(
p′(q)(ξ1 ◦ Φ)(q) + o(1)

)
>

0.) Moreover the diagonal coefficients of this system are e.g.

a1,1 =
(
p′(q)(ξ1 ◦ Φ)(q) + o(1)

)
+
∑
s∈S

(p× ∂xsξ1 ◦ Φ)(q)Φ′s(q) > 0

while the off-diagonal coefficients are e.g.

a1,s = −(p× ∂xsξ1 ◦ Φ)(q)Φ′s(q) < 0.

Applying Lemma 5.4.14(b), we obtain
|∆ι

s/Φ
′
s(q)| = o(|ι|)

for all s ∈ S . Taking ι→ 0 we conclude that f ′s(q) is well-defined and equals 0. This implies the conclusion
for p′(q) > 0.

Otherwise p′(q) = 0, and (5.70) implies that∑
s∈S

(p× ∂xsξ1 ◦ Φ)(q)Φ′s(q)

[
∆ι

1

Φ′1(q)
− ∆ι

s

Φ′s(q)

]
≥ −o(|ι|)
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and analogously with any s ∈ S in place of 1. This is a linear system of inequalities in variables −∆ι
s/Φ

′
s(q),

so Lemma 5.4.14(a) implies that ∣∣∣∣ ∆ι
s

Φ′s(q)
− ∆ι

s′

Φ′s′(q)

∣∣∣∣ ≤ o(|ι|) (5.71)

for all s, s′ ∈ S . The result now follows if we find a constant C = C(ε) such that

max
s∈S
|∆ι

s/Φ
′
s(q)| ≤ C|ι| (5.72)

for all sufficiently small ι, and q ∈ [q0 + ε, 1]. Indeed, this would imply by Proposition 5.4.11 that fs is
Lipschitz on [q0 + ε, 1]. It would then follow that Ψ ∈ L∞([q0 + ε, 1]), and we would conclude from (5.71)
that Ψ1 = · · · = Ψr almost everywhere.

Since p and ∂xsξ
1 are differentiable and p′(q) = 0, we have p(q + ι) = p(q) + o(|ι|) and ∂xsξ

1(q + ι) =
∂xsξ

1(q) +O(|ι|). Suppose first that ι > 0. Using p′(q) = 0 and p′(q + ι) ≥ 0, we find

∆ι
1 ≤

√
Φ′1(q + ι)

p(q + ι)(ξ1 ◦ Φ)′(q + ι)
−

√
Φ′1(q)

p(q)(ξ1 ◦ Φ)′(q)
(5.73)

=
1√
p(q)

(√
Φ′1(q + ι)∑

s∈S (∂xsξ
1 ◦ Φ)(q)Φ′s(q + ι)

−

√
Φ′1(q)∑

s∈S (∂xsξ
1 ◦ Φ)(q)Φ′s(q)

)
+O(ι).

The hidden constants are uniform on any interval [q0 + ε, 1]. Analogous bounds hold for ∆ι
s. We claim that

we cannot have
Φ′s(q + ι)∑

s′∈S (∂xs′ ξ
s ◦ Φ)(q)Φ′s′(q + ι)

>
Φ′s(q)∑

s′∈S (∂xs′ ξ
s ◦ Φ)(q)Φ′s′(q)

(5.74)

for all s ∈ S . Indeed, suppose this holds and let

bs =

∑
s′∈S (∂xs′ ξ

s ◦ Φ)(q)Φ′s′(q)

Φ′s(q)
,

b′s =

∑
s′∈S (∂xs′ ξ

s ◦ Φ)(q)Φ′s′(q + ι)

Φ′s(q + ι)
,

so b′s < bs. The linear system given by

b′sΦ
′
s(q + ι)xs −

(∑
s′∈S

(∂xs′ ξ
s ◦ Φ)(q)Φ′s′(q + ι)xs′

)
= 0

for all s ∈ S has solution ~x = ~1, and thus has row sums zero. The linear system given by

bsΦ
′
s(q + ι)xs −

(∑
s′∈S

(∂xs′ ξ
s ◦ Φ)(q)Φ′s′(q + ι)xs′

)
= 0

has solution xs = Φ′s(q)/Φ
′
s(q + ι). However, by Corollary 5.4.15 its only solution is ~x = ~0, contradiction.

Thus (5.74) does not hold for all s ∈ S . Assume without loss of generality (5.74) does not hold for s = 1.
Then, ∆ι

1 ≤ O(ι). In conjunction with (5.71), this implies maxs∈S ∆ι
s/Φ

′
s(q) ≤ Cι.

For the matching lower bound, first consider the case p′(q + ι) = 0. In this case, the inequality in (5.73)
is an equality. We similarly cannot have

Φ′s(q + ι)∑
s′∈S (∂xs′ ξ

s ◦ Φ)(q)Φ′s′(q + ι)
<

Φ′s(q)∑
s′∈S (∂xs′ ξ

s ◦ Φ)(q)Φ′s′(q)

for all s ∈ S , so the same argument implies mins∈S ∆ι
s/Φ

′
s(q) ≥ −Cι, which implies (5.72). Otherwise

assume p′(q + ι) > 0. Let ι1 ∈ (0, ι/2) be small enough that

p′(q′) ≥ 1

2
p′(q + ι) for all q′ ∈ [q + ι− ι1, q + ι] (5.75)
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which exists by continuity of p′. Let ψ ∈ C∞c ((q0, 1);R) satisfy that |ψ′| ≤ 1 and ψ′ is supported on
[q, q+ ι1]∪ [q+ ι− ι1, q+ ι], positive on [q, q+ ι1], and negative on [q+ ι− ι1, q+ ι]. (Note that ψ′ integrates
to zero because ψ has bounded support, and that ψ is clearly nonnegative.) Let ι2 = ψ(q + ι1). Consider
the perturbation p̃ = p + δψ, which is non-decreasing for small δ > 0 by (5.75). Let oι1(1) denote a term
tending to 0 as ι1 → 0. We compute that

F ≡ d

dδ
A(p̃,Φ; q0)

∣∣∣
δ=0

=
∑
s∈S

λs

∫ 1

q0

fs(q)(ψ × ξs ◦ Φ)′(q)

≥
∑
s∈S

λs

∫ 1

q0

ψ′(q)fs(q)(ξ
s ◦ Φ)(q) (positivity of ψ)

=
∑
s∈S

λs · ι2 (fs(q)(ξ
s ◦ Φ)(q)− fs(q + ι)(ξs ◦ Φ)(q + ι) + oι1(1)) (continuity of fs, ξ

s ◦ Φ)

= ι2

(
−
∑
s∈S

λs∆
ι
s(ξ

s ◦ Φ)(q) + oι1(1) +O(ι)

)
(continuity of ξs ◦ Φ)

= ι2

(
−∆ι

1

∑
s∈S

Φ′s(q)

Φ′1(q)
· λs(ξs ◦ Φ)(q) + oι1(1) +O(ι)

)
. (by (5.71))

Since (p,Φ, q0) is a maximizer, F ≤ 0. This implies ∆ι
1 ≥ −Cι, and by (5.71), min ∆ι

1 ≥ −Cι. This proves
(5.72) for ι > 0. The proof for ι < 0 is analogous.

Lemma 5.4.18. Let A = (ai,j) ∈ Rr×r>0 , ~a,~b ∈ Rr>0, ~c ∈ Rr>0, and c ∈ R>0. Let Amin, amin, bmin denote the

minimal entries of A,~a,~b, and amax denote the maximal entry of ~a. Suppose the linear system

A~x+ ~ay = ~c� ~x, 〈~b, ~x〉 = c

has solution (y, ~x) = (y0,~1). If ~c ′ ∈ Rr>0 satisfies ‖~c− ~c ′‖∞ ≤ ε, then any solution y ∈ R≥0, ~x ∈ Rr≥0 to

A~x+ ~ay = ~c ′ � ~x, 〈~b, ~x〉 = c

satisfies

|y − y0| ≤
εc

aminbmin
, ‖~x−~1‖∞ ≤

2amax

amin
· εc

Aminbmin
.

Proof. Without loss of generality let x1, x2 be the largest and smallest entries of ~x. As 〈~b,~1〉 = 〈~b, ~x〉 = c,

c

bmin
≥ x1 ≥ 1 ≥ x2.

Then

0 = a1y +

r∑
i=1

a1,ixi − c′1x1

≤ a1y +

(
r∑
i=1

a1,i − c′1

)
x1 −Amin(x1 − x2)

= a1y + (c1 − c′1 − a1y0)x1 −Amin(x1 − x2)

≤ εx1 − a1y0(x1 − 1) + a1(y − y0)−Amin(x1 − x2)

≤ εc

bmin
+ a1(y − y0)−Amin(x1 − x2).
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Analogously

0 = a2y +

r∑
i=1

a2,ixi − c′2x2

≥ a2y +

(
r∑
i=1

a2,i − c′2

)
x2 +Amin(x1 − x2)

= a2y + (c2 − c′2 − a2y0)x2 +Amin(x1 − x2)

≥ −εx2 − a2y0(x2 − 1) + a2(y − y0) +Amin(x1 − x2)

≥ − εc

bmin
+ a2(y − y0) +Amin(x1 − x2).

Since x1 − x2 ≥ 0, this implies

y − y0 ≥ −
εc

a1bmin
≥ − εc

aminbmin
, y − y0 ≤

εc

a2bmin
≤ εc

aminbmin
,

which proves the first conclusion. Thus,

Amin(x1 − x2) ≤
(

εc

bmin
+ a1(y − y0)

)
≤ 2amax

amin
· εc

bmin
.

Since x1 ≥ 1 ≥ x2, we have ‖~x−~1‖∞ ≤ x1 − x2 which implies the second conclusion.

Proposition 5.4.19. The functions p′ and Φ′ are Lipschitz on [q0 + ε, 1] for all ε > 0. Thus p′′ and Φ′′ are
well-defined as bounded measurable functions on [q0 + ε, 1].

Proof. By Proposition 5.4.17, fs is Lipschitz on [q0 + ε, 1]. Since it is also bounded on [q0 + ε, 1] by Propo-
sition 5.4.11, f−2

s is Lipschitz as well. Thus, for q ∈ [q0 + ε, 1], C = C(q), and sufficiently small ι ∈ R,

O(ι) ≥ |f1(q + ι)−2 − f1(q)−2|

=

∣∣∣∣p′(q + ι)(ξ1 ◦ Φ)(q + ι) + p(q + ι)
∑
s∈S (∂xsξ

1 ◦ Φ)(q + ι)Φ′s(q + ι)

Φ′1(q + ι)

−
p′(q)(ξ1 ◦ Φ)(q) + p(q)

∑
s∈S (∂xsξ

1 ◦ Φ)(q)Φ′s(q)

Φ′1(q)

∣∣∣∣
= |C ′1 − C1 +O(ι)|

for

C1 =
p′(q)(ξ1 ◦ Φ)(q) + p(q)

∑
s∈S (∂xsξ

1 ◦ Φ)(q)Φ′s(q)

Φ′1(q)
,

C ′1 =
p′(q + ι)(ξ1 ◦ Φ)(q) + p(q)

∑
s∈S (∂xsξ

1 ◦ Φ)(q)Φ′s(q + ι)

Φ′1(q + ι)
.

Thus |C1 − C ′1| ≤ O(ι). Similarly, |Cs − C ′s| ≤ O(ι) for analogously defined Cs, C
′
s. Note that the system

given by

1 =
∑
s∈S

λsΦ
′
s(q)xs (5.76)

C1Φ′1(q)x1 = (ξ1 ◦ Φ)(q)y + p(q)
∑
s∈S

(∂xsξ
1 ◦ Φ)(q)Φ′s(q)xs (5.77)

and analogous equations to (5.77) with s ∈ S in place of 1 has solution y = p′(q), x1 = · · · = xr = 1.
Moreover, the system given by (5.76),

C ′1Φ′1(q)x1 = (ξ1 ◦ Φ)(q)y + p(q)
∑
s∈S

(∂xsξ
1 ◦ Φ)(q)Φ′s(q)xs (5.78)
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and analogous equations to (5.78) with s ∈ S in place of 1 has solution y = p′(q+ ι), xs = Φ′s(q+ ι)/Φ′s(q).

Since |Cs−C ′s| ≤ O(ι) for all s, we may apply Lemma 5.4.18 with ~c = ~C,~c ′ = ~C ′, y taking the place of p′(q)
or p′(q + ι), and A corresponding to the last term of (5.77) or (5.78). The result is that

|p′(q + ι)− p′(q)|,
∣∣∣∣Φ′s(q + ι)

Φ′s(q)
− 1

∣∣∣∣ ≤ O(ι).

(The required constants Amin, amin, bmin, amax are bounded thanks to Propositions 5.4.11 and 5.4.12.)
Since Φ′s is bounded below by Proposition 5.4.11, we conclude that p′,Φ′ are Lipschitz in a neighborhood

of q ∈ (q0, 1]. This Lipschitz constant is uniform on any [q0 + ε, 1], thus p′,Φ′ are Lipschitz on these sets.

Lemma 5.4.20. Suppose A = (ai,j) ∈ Rr×r>0 and ~b ∈ Rr>0. Let Amax, Amin be the largest and smallest entries

of A. Suppose the linear system A~x = ~b � ~x admits the solution ~x = ~1. If ~b′ � ~b + ε~1, A′ ≥ A entry-wise,
and the system A′~x = ~b′ � ~x admits a nontrivial solution ~x ∈ Rr≥0, then all entries of A′ − A are at most

ε · rAmax+Amin+ε
Amin

.

Proof. Assume without loss of generality that x1 is the smallest entry of ~x. Let ∆i = b′i − bi and ∆i,j =
a′i,j − ai,j , so ∆i ≤ ε, ∆i,j ≥ 0. We have

0 = (b1 + ∆1)x1 −
r∑
i=1

a′i,jxi ≤ ∆1x1 −
r∑
i=1

ai,j(xi − x1).

Thus ai,j(xi − x1) ≤ ∆1x1 for all i. If x1 = 0, this implies ~x = ~0, contradiction. Thus x1 > 0 and we may
scale ~x such that x1 = 1. This implies

1 ≤ xi ≤ 1 +
∆1

ai,j
≤ 1 +

ε

Amin

for all i. The equation b′jxj = (A′~x)j implies

r∑
i=1

∆j,ixi = bjxj + ∆jxj −
r∑
i=1

aj,ixi ≤
(

1 +
ε

Amin

) r∑
i=1

aj,i + ε

(
1 +

ε

Amin

)
−

r∑
i=1

aj,i

≤ ε · rAmax +Amin + ε

Amin
.

Since xi ≥ 1 for all i, this implies the result.

Let S ⊆ (q0, 1) be the set of q for which (5.68) holds, and for q ∈ S let Ψ(q) be the common value of the
Ψs(q). Let S1 = {q ∈ S : p′(q) > 0} and S2 = S \ S1.

Proposition 5.4.21. Almost everywhere in S2, Ψ(q) < 0.

Proof. Suppose for the sake of contradiction that Ψ(q) ≥ 0 holds for a positive-measure set T ⊆ S2. Let
U ⊆ [q0, 1] be the set of q which are Lebesgue points of f ′s(q) for all s ∈ S . Since these functions are
measurable and integrable on [q0 +ε, 1] for all ε > 0, U is almost all of [q0, 1]. So T ∩U has positive measure.
Let q ∈ T ∩ U . Thus

lim
ι→0+

f1(q + ι)− f1(q)

ι
= f ′1(q) = Φ′1(q)Ψ(q),

which implies that for small ι > 0,

f1(q + ι) = f1(q) + Φ′1(q)Ψ(q)ι+ o(ι) ≥ f1(q)− o(ι).

Define

C1 =
p(q)(ξ1 ◦ Φ)′(q)

Φ′1(q)
= f1(q)−2,

C ′1 =
p(q + ι)(ξ1 ◦ Φ)′(q + ι)

Φ′1(q + ι)
≤ f1(q + ι)−2.
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Thus C ′1 ≤ C1 + o(ι). For analogously defined Cs, C
′
s we have C ′s ≤ Cs+ o(ι). Note that the system given by

C1Φ′1(q)x1 =
∑
s∈S

p(q)(∂xsξ
1 ◦ Φ)(q)Φ′s(q)xq

and analogous equations with s ∈ S in place of 1 has solution ~x = ~1, while the system

C ′1Φ′1(q)x1 =
∑
s∈S

p(q + ι)(∂xsξ
1 ◦ Φ)(q + ι)Φ′s(q)xq

and analogous equations with s ∈ S in place of 1 has solution xs = Φ′s(q+ ι)/Φ′s(q). By Lemma 5.4.20 this
implies that for all s, s′ ∈ S ,

p(q + ι)(∂xsξ
s′ ◦ Φ)(q + ι) ≤ p(q)(∂xsξs

′
◦ Φ)(q) + o(ι).

However, since ξ is non-degenerate, (∂xsξ
s′ ◦ Φ)(q + ι) ≥ (∂xsξ

s′ ◦ Φ)(q) + Ω(ι) for some s, s′. This is a
contradiction.

Lemma 5.4.22. There exists q1 ∈ [q0, 1] such that, up to modification by a measure zero set, S1 = [q0, q1]
and S2 = [q1, 1].

Proof. We will show that there do not exist positive measure subsets I ⊆ S1, J ⊆ S2 with sup J ≤ inf I.
Suppose for contradiction that such subsets exist. Define q∗ = sup J , m =

∫
I
p′(q) dq, and

ψ(q) =

{
m(
∫

[q0,q]∩J dq)/(
∫
J
dq) q ≤ q∗,

m−
∫

[q∗,q]∩I p
′(q) dq q > q∗.

Note that ψ is absolutely continuous, nonnegative-valued, and positive-valued almost everywhere in J .
Moreover ψ(q0) = ψ(1) = 0, and for small δ > 0, the perturbation

p̃(q) = p(q) + δψ(q) (5.79)

remains non-decreasing. Note that

d

dδ
(p× ξs ◦ Φ)′(q) = (ψ × ξs ◦ Φ)′(q).

Thus, integrating by parts,

F ≡ 2
d

dδ
A(p̃,Φ; q0)

∣∣∣
δ=0

=
∑
s∈S

∫ 1

q0

√
Φ′s(q)

(p× ξs ◦ Φ)′(q)
(ψ × ξs ◦ Φ)′(q) dq

= −
∑
s∈S

∫ 1

q0

ψ(q)(ξs ◦ Φ)(q)Φ′s(q)Ψs(q) dq

= −
∑
s∈S

∫
S2

ψ(q)(ξs ◦ Φ)(q)Φ′s(q)Ψ(q) dq.

By Proposition 5.4.21, Ψ(q) < 0 almost everywhere in S2. Therefore F > 0 and the perturbation (5.79)
improves the value of A(p,Φ; q0), a contradiction.

Finally, define measures

µ([q0, q]) =

∫
[q0,q]∩S1

dq, ν([q0, q]) =

∫
[q0,q]∩S2

dq.

The non-existence of I, J implies that max supp(µ) ≤ min supp(ν). Since S1 ∪ S2 is almost all of [q0, 1] the
result follows.
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Proof of Proposition 5.4.13. That p,Φs ∈W 2,∞([q0+ε, 1]) follows from Proposition 5.4.19. By Lemma 5.4.22,
p′ > 0 almost everywhere on [q0, q1]. By Proposition 5.4.17, Ψs = 0 almost everywhere on [q0, q1]. Since fs
is Lipschitz, for all q ∈ [q0, q1] we have

fs(q)− fs(q0) =

∫ q

q0

f ′s(q) dq =

∫ q

q0

Φ′s(q)Ψs(q) dq = 0.

Thus fs(q)
−2 = (p×ξs◦Φ)′(q)

Φ′s(q)
is constant on [q0, q1]. By Lemma 5.4.22 we have p′ = 0 almost everywhere on

[q1, 1], hence everywhere by Proposition 5.4.19. And by Proposition 5.4.12 we have p(1) = 1. Thus, for all
q ∈ [q1, 1],

p(1)− p(q) =

∫ 1

q

p′(q) dq = 0,

so p(q) = 1 for all q ∈ [q1, 1]. Finally, by Proposition 5.4.17 and Lemma 5.4.22, (5.15) is satisfied for all s, s′

almost everywhere on [q1, 1].

Given Proposition 5.4.13, it remains to study the behavior of (p,Φ) separately on [q0, q1] and [q1, 1] and
establish the root-finding and tree-descending descriptions in Propositions 5.1.9 and 5.1.11. We have seen
that (p,Φ) are described by explicit differential equations on [q0, q1] and [q1, 1], and it will be important to
understand both. We will refer to them as the type I and II equations respectively in Subsections 5.4.5 and
5.4.6.

5.4.4 Behavior in the root-finding phase 1: super-solvability of Φ(q1)

Let q0, q1 be given by Proposition 5.4.13, and let Ls be the constant value of (p×ξs ◦Φ)′(q)/Φ′s(q) on [q0, q1],
which exists by Proposition 5.4.13. The goal of this subsection is to prove that Φ(q1) is super-solvable.

Lemma 5.4.23. We have Φs(q0) = 0 if and only if hs = 0.

Proof. Assume without loss of generality that s = 1. First, suppose h1 = 0 and Φ1(q0) > 0. By admissibility,
q0 > 0. Consider the perturbation q̃0 = q0 − δ,

p̃(q) =

{
q − q̃0 q ∈ [q̃0, q0]

δ + (1− δ)p(q) q ∈ [q0, 1]
Φ̃s(q) =


q−q̃0
δ Φs(q0) q ∈ [q̃0, q0], s = 1

Φs(q0) q ∈ [q̃0, q0], s 6= 1

Φs(q) q ∈ [q0, 1]

for all s ∈ S . Then,

λs

∫ q0

q̃0

√
Φ̃′s(q)(p̃× ξs ◦ Φ̃)′(q) dq ≥

{
Ω(δ1/2) s = 1

0 s 6= 1

while for all s ∈ S ,

λs

∫ 1

q0

√
Φ̃′s(q)(p̃× ξs ◦ Φ̃)′(q) dq ≥ λs

∫ 1

q0

√
Φ̃′s(q)(p̃× ξs ◦ Φ̃)′(q) dq −O(δ)

hsλs

√
Φ̃s(q̃0) = hsλs

√
Φs(q0).

Thus for small δ > 0 the perturbation improves the value of A, contradiction.
Conversely, suppose h1 > 0 and Φ1(q0) = 0. Consider the perturbation (p̃, Φ̃, q̃0) where q̃0 = q0 + δ and

p̃, Φ̃ are p,Φ restricted to [q0 + δ, 1]. Note that Φ̃1(q0) ≥ Ω(δ) by Proposition 5.4.11. Thus

h1λ1

√
Φ̃1(q0)− h1λ1

√
Φ1(q0) ≥ Ω(δ1/2),

hsλs

√
Φ̃s(q0)− hsλs

√
Φs(q0) ≥ 0 ∀s 6= 1.
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Furthermore, for all s ∈ S ,

λs

∫ 1

q̃0

√
Φ̃′s(q)(p̃× ξs ◦ Φ̃)′(q) dq − λs

∫ 1

q0

√
Φ′s(q)(p× ξs ◦ Φ)′(q) dq

= λs

∫ q0+δ

q0

√
Φ′s(q)(p× ξs ◦ Φ)′(q) dq = O(δ).

Thus for small δ > 0 the perturbation improves the value of A, contradiction.

Corollary 5.4.24. If ȟ 6= ~0, then 0 < q0 < q1 and Φ(q1) ∈ (0, 1]S .

Proof. Lemma 5.4.23 implies 0 < q0, so Proposition 5.4.12 implies p(q0) = 0. Since p(q1) = 1 by Proposi-
tion 5.4.13, we have q0 < q1. Proposition 5.4.11 gives Φ′(q) � L−1~1 for q ∈ [q0, q1], so all coordinates of
Φ(q1) are positive.

Lemma 5.4.25. If ȟ = ~0, then q0 = q1 = 0 (and Φ(q1) = ~0).

Proof. By Lemma 5.4.23, Φ(q0) = ~0 so q0 = 0. Suppose that q1 > 0. Then, for all q ∈ [0, q1], we have
LsΦ

′
s(q) = (p × ξs ◦ Φ)′(q), and by integrating LsΦs(q) = p(q)(ξs ◦ Φ)(q). By Assumption 5.1.3, we can

write ξs(~x) =
∑
s′∈S Ps,s′(~x)xs′ where each Ps,s′ is a polynomial with nonnegative coefficients and positive

constant and linear terms. Thus the functions Ps,s′ ◦ Φ are all strictly increasing. Let 0 < q < q′ < q1. The
linear system

LsΦs(q)xs =
∑
s′∈S

p(q)(Ps,s′ ◦ Φ)(q)Φs′(q)xs ∀s ∈ S

has solution ~x = ~1, while the linear system

LsΦs(q)xs =
∑
s′∈S

p(q′)(Ps,s′ ◦ Φ)(q′)Φs′(q)xs ∀s ∈ S

has solution xs = Φs(q
′)/Φs(q). Monotonicity of Ps,s′ ◦Φ implies p(q′)(Ps,s′ ◦Φ)(q′) ≥ p(q)(Ps,s′ ◦Φ)(q), so

Lemma 5.4.20 (with ε = 0) implies that p(q′)(Ps,s′ ◦Φ)(q′) = p(q)(Ps,s′ ◦Φ)(q) for all s, s′. This contradicts
that the Ps,s′ ◦ Φ are strictly increasing.

Lemma 5.4.26. If hs > 0, then Ls =
h2
s

Φs(q0) .

Proof. Assume without loss of generality that s = 1. Consider the following perturbation Φ̃ of Φ. For all
s 6= 1, Φ̃s = Φs, and Φ̃1(q) = Φ1(q) + δψ(q) where ψ ∈ C∞([q0, 1]) with ψ(q0) = 1 and ψ = 0 on [q1, 1]. This

perturbation is not admissible, but we nonetheless have A(p, Φ̃; q0) ≤ A(p,Φ; q0) by Lemma 5.4.9.
Recall the calculation (5.69). Integrating by parts,

F1 ≡ 2λ−1
1

d

dδ
A(p, Φ̃; q0)

∣∣∣
δ=0

=
h1√

Φ1(q0)
+

∫ 1

q0

L
1/2
1 ψ′(q) dq +

∑
s∈S

∫ 1

q0

L1/2
s (pψ × ∂xsξ1 ◦ Φ)′(q) =

h1√
Φ1(q0)

− L1/2
1 .

Recall that Φ′1(q) is uniformly lower bounded by Proposition 5.4.11 and Φ1(q0) > 0 by Lemma 5.4.23. So,
this perturbation is valid for small positive and negative δ. Thus F1 = 0 which implies the result.

Proposition 5.4.27. If ȟ 6= ~0, then for all s,

Ls =
(ξs ◦ Φ)(q1) + h2

s

Φs(q1)
, (5.80)

which is well-defined by Corollary 5.4.24. Thus, (p,Φ) satisfies (5.11) for all s ∈ S , q ∈ [q0, q1] with
~x = Φ(q1).
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Proof. Note that Φs(q1) > 0 for all s by Corollary 5.4.24 and Proposition 5.4.11. Integrating the equation
(p× ξs ◦ Φ)′(q) = LsΦ

′
s(q) on [q0 + ε, q] and using continuity of p and Φ and that p(q0) = 0, we find

p(q)(ξs ◦ Φ)(q) = Ls(Φs(q)− Φs(q0)). (5.81)

Since p(q1) = 1 by Proposition 5.4.13, we have

(ξs ◦ Φ)(q1) = Ls(Φs(q1)− Φs(q0)). (5.82)

If hs = 0, by Lemma 5.4.23 Φs(q0) = 0, so Ls = (ξs ◦Φ)(q1)/Φs(q1) as desired. Otherwise, by Lemma 5.4.26,
Ls = h2

s/(λsΦs(q0)). Plugging this into (5.82) implies

Φs(q0)
(
(ξs ◦ Φ)(q1) + h2

s

)
= h2

sΦs(q1). (5.83)

Thus

Ls =
(ξs ◦ Φ)(q1)

Φs(q1)− Φs(q0)
=

(ξs ◦ Φ)(q1) + h2
s

Φs(q1)

as desired.

Corollary 5.4.28. For (p,Φ; q0) maximizing A, we have

A(p,Φ; q0) =
∑
s∈S

λs

[√
Φs(q1)(ξs(Φ(q1)) + h2

s) +

∫ 1

q1

√
Φ′s(q)(ξ

s ◦ Φ)′(q) dq

]
. (5.84)

Proof. If ȟ = ~0, then q1 = 0 by Lemma 5.4.25. Thus, p = 1 on [0, 1] by Proposition 5.4.13. Thus (p×ξs◦Φ)′ =
(ξs ◦ Φ)′ and the result is clear. Otherwise ȟ 6= ~0, and Corollary 5.4.24 implies q1 > q0.

If hs = 0, then by Lemma 5.4.23, Φs(q0) = 0. So,

hsλs
√

Φs(q0) + λs

∫ q1

q0

√
Φ′s(q)(p× ξs ◦ Φ)′(q) dq = λs

∫ q1

q0

Φ′s(q)
√
Ls dq

= λsΦs(q1)
√
Ls = λs

√
Φs(q1)(ξs ◦ Φ)(q1),

as desired. The last step uses Proposition 5.4.27. If hs > 0, then by Lemma 5.4.26 and Proposition 5.4.27,

hsλs
√

Φs(q0) + λs

∫ q1

q0

√
Φ′s(q)(p× ξs ◦ Φ)′(q) dq = λs

[
Φs(q0)

√
Ls +

∫ q1

q0

Φ′s(q)
√
Ls dq

]
= λsΦs(q1)

√
Ls

= λs
√

Φs(q1) ((ξs ◦ Φ)(q1) + h2
s).

The following variant of this calculation determines the energy attained by (p,Φ; q0) partway through
the root-finding phase, and is used in Remark 5.1.16.

Corollary 5.4.29. If (p,Φ; q0) maximizes A and q ∈ [q0, q1], then∑
s∈S

λs

[
hs
√

Φs(q0) +

∫ q

q0

√
Φ′s(t)(p× ξs ◦ Φ)′(t) dt

]
=
∑
s∈S

λs
√

Φs(q)(p(q)(ξs ◦ Φ)(q) + h2
s).

Proof. If hs = 0, then by Lemma 5.4.23, Φs(q0) = 0. Then (5.81) implies Ls = p(q)(ξs ◦ Φ)(q)/Φs(q). So

hs
√

Φs(q0) +

∫ q

q0

√
Φ′s(t)(p× ξs ◦ Φ)′(t) dt = (Φs(q)− Φs(q0))

√
Ls =

√
Φs(q)p(q)(ξs ◦ Φ)(q).

If hs > 0, (5.81) implies and Lemma 5.4.26 imply

p(q)(ξs ◦ Φ)(q) =
h2
s

Φs(q0)
(Φs(q)− Φs(q0)),
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which rearranges to
h2
sΦs(q)

Φs(q0)
= p(q)(ξs ◦ Φ)(q) + h2

s.

Then

hs
√

Φs(q0) +

∫ q

q0

√
Φ′s(t)(p× ξs ◦ Φ)′(t) dt = hs

√
Φs(q0) + (Φs(q)− Φs(q0))

√
h2
s

Φs(q0)

=
hsΦs(q)√

Φs(q0)
=
√

Φs(q)(p(q)(ξs ◦ Φ)(q) + h2
s).

Summing over s ∈ S completes the proof.

Lemma 5.4.30. If q1 = 1, then Φ(q1) = ~1 is super-solvable. If q1 < 1, then Φ(q1) is solvable.

Proof. First suppose q1 = 1. Admissibility and the fact that Φ(1) ∈ [0, 1]S implies Φ(q1) = ~1. We have
p(q1) = 1 by Proposition 5.4.12 and also p′(q1) ≥ 0. By Proposition 5.4.27,

(ξs ◦ Φ)(q1) + h2
s

Φs(q1)
=

(p× ξs ◦ Φ)′(q1)

Φ′s(q1)
≥
∑
s′∈S (∂xs′ ξ

s ◦ Φ)(q1)Φ′s′(q1)

Φ′s(q1)
. (5.85)

This implies via Corollary 5.4.5 (with Φ′ in the role of ~v) that Φ(q1) is super-solvable.
Now suppose q1 < 1. If ȟ = ~0 the result follows from Lemma 5.4.25, so assume ȟ 6= ~0. Because p(q) = 1

on [q1, 1] and p′ is continuous (Proposition 5.4.11), p′(q1) = 0. So, the inequality in (5.85) is an equality.
Thus Φ′(q1) is in the null space of M∗(Φ(q1)), and thus (by (5.64)) of M∗sym(Φ(q1)). So M∗sym(Φ(q1)) is
singular and Φ(q1) is solvable.

5.4.5 Behavior in the root-Finding phase 2: well-posedness

In this subsection we prove Proposition 5.1.9 and give a detailed characterization of (p,Φ) on [q0, q1] in
Proposition 5.4.37. Recalling Propositions 5.4.27 and 5.4.30, we consider a path (p,Φ) defined by the type
I equation

(p× ξs ◦ Φ)′(q)

Φ′s(q)
= Ls =

(ξs ◦ Φ)(q1) + h2
s

Φs(q1)
, ∀s ∈ S

Φ′s(q) ≥ 0, 〈~λ,Φ′(q)〉 = 1

(5.86)

with super-solvable initial condition Φ(q1) and p(q1) = 1. We start by verifying the first part of Proposi-

tion 5.1.9, namely that ȟ 6= ~0 if and only if there exists a super-solvable point ~x ∈ [0, 1]S with 〈~λ, ~x〉 > 0.

Proof of Proposition 5.1.9 (first claim). First, assume ȟ 6= ~0. We will show that all ~x ∈ [δ/2, δ]S are super-
solvable for δ > 0 sufficiently small. Assume without loss of generality that h1 > 0. Note that for all
s ∈ S ,

(M∗(~x)~x)s = xs

(
h2
s + ξs(~x)−

∑
s′∈S

xs′∂xs′ ξ
s(~x)

)
= xs

(
h2
s −O(δ2)

)
.

Moreover, (M∗(~x)~e1)1 ≤ h2
1 +O(δ), while for s 6= 1,

(M∗(~x)~e1)s = −xs∂x1ξ
s(~x).

Thus, for ~v = ~x− 1
2x1~e1, we have

(M∗(~x)~v)1 ≥ x1

(
1

2
h2

1 −O(δ)

)
≥ 0

and for s 6= 1,
(M∗(~x)~v)s ≥ xs

(
x1∂x1ξ

s(~x)−O(δ2)
)
≥ 0.
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This implies by Corollary 5.4.5 that ~x is super-solvable.
If ȟ = ~0, fix any ~x ∈ (0, 1]S . Note that

~x>M∗sym(~x)~x =
∑
s∈S

xs∂xsξ(~x)−
∑

s,s′∈S

xsxs′∂xs,xs′ ξ(~x) < 0,

as any monomial of ξ(~x) with total degree p ≥ 2 appears with multiplicity p in the first sum and p(p−1) ≥ p
in the second, with strict inequality for any p > 2. Thus ~x is strictly sub-solvable.

Proposition 5.4.31. Define for (p(q), p′(q),Φ(q)) ∈ [0, 1]S×[0, 1]×R the S×S matrix M(p(q), p′(q),Φ(q))
with entries

M(p(q), p′(q),Φ(q))s,s′ =
p(q)∂xs′ ξ

s (Φ(q)) + λs′p
′(q)ξs(Φ(q))

Ls
, s, s′ ∈ S .

If (p,Φ) solves (5.86) then Λ(M(p, p′,Φ)) = 1 with Perron-Frobenius eigenvector Φ′(q).

Proof. It suffices to expand the left-hand side of the top line of (5.86):

p′(q)ξs(Φ(q))

(∑
s′∈S

λs′Φ
′
s′(q)

)
+ p(q)

∑
s′∈S

Φ′s′(q)∂xs′ ξ
s (Φ(q)) = LsΦ

′
s(q), ∀s ∈ S . (5.87)

Rearranging shows that M(p, p′,Φ)Φ′(q) = Φ′(q), and it is clear that M has non-negative entries.

We now show the ODE (5.86) is well-posed.

Lemma 5.4.32. Fix q ∈ [0, 1] and let Y (q) = (p(q),Φ(q)) and Ls > 0 be arbitrary. The equation (5.86) for
any fixed q is equivalent to

Y ′(q) = F (Y (q))

for a locally Lipschitz function F : [0, 1]×
(

[0, 1]r\~0
)
→ Rr+1.

Proof. Let M be as in Proposition 5.4.31. Because ξ is non-degenerate, Propositions 5.4.6 and 5.4.31 imply
existence of c > 0 such that

M(p, x+ y,Φ) ≥M(p, x,Φ) + cy

holds entrywise for all x, y ≥ 0, as long as Φ(q) ∈ Rr≥0\[0, ε]r. Therefore a unique value p′(q) solving (5.86)
exists. Moreover M is locally Lipschitz in (p,Φ), so if

M(p, p′,Φ) = M(Φ̃, p̃, p̃′)

then
|p′ − p̃′| ≤ O(‖Φ− Φ̃‖L∞ + |p− p̃|).

(With implicit constant depending on ε as introduced above.) This shows that p′ has locally Lipschitz
dependence on Y = (p,Φ). It remains to show Φ′, defined by the resulting solution to (5.87), also has locally
Lipschitz dependence on Y . This follows by Proposition 5.4.33 below. (Note that all entries of M are of the
same order up to constants for Φ(q) ∈ Rr≥0\[0, ε]r by non-degeneracy of ξ.)

Proposition 5.4.33 ([Yeo18, Lemma 27]). Let M⊆ Rr×r≥0 be a compact set of square matrices all of whose

Perron-Frobenius eigenvalues have multiplicity 1. Let M,M̃ ∈ M have entrywise positive Perron-Frobenius
eigenvectors v, ṽ, normalized so that ‖v‖1 = ‖ṽ‖ = 1. Then

‖v − ṽ‖1 ≤ OM(‖M − M̃‖1).

In particular, this holds for M = [c, C]r×r for any 0 < c < C <∞.

Lemma 5.4.32 shows that for any right endpoint (p(q1),Φ(q1)), it is possible to solve (5.86) backwards
in time until q∗ when Φ(q) reaches the boundary of Rr≥0, or at which p(q) reaches 0. We now show that the
latter occurs first.
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Lemma 5.4.34. There exists c > 0 such that for any super-solvable point Φ(q1), the solution to the type I
equation (5.86) on [q∗, q1] satisfies

Φs(q) ≥ cp(q)q.

Moreover p(q∗) = 0 and Lemma 5.4.23 holds for q∗, i.e. hs > 0 if and only if Φs(q∗) > 0.

Proof. Observe that in (5.86), we have

Ls ≥ Ks ≡
ξs(Φ(q1))

Φs(q1)
.

Therefore on q ∈ [qε, q1], the left-hand equation in (5.86) implies

(p× ξs ◦ Φ)(q)

Φs(q)
≤ Ks.

Recall that ξs is non-degenerate, and so admissibility and Φ � 0 implies ξs(Φ(q)) = Θ(q). Hence for some
c > 0 and all s ∈ S ,

Φs(q) ≥ Ω(p(q)q/Ks) ≥ cp(q)q.

This concludes the proof of the first statement, which implies that p(q∗) = 0.
For the second, note that strict inequality holds in the first step if hs > 0, and so p must reach 0 before

Φs does. On the other hand if hs = 0, then it is easy to see from (5.86) that p cannot reach zero strictly
sooner than Φs, hence the numerator and denominator on the left-hand side in (5.86) both reach zero at
time q∗.

Lemma 5.4.35. If Φ(q1) is super-solvable, then the p solving (5.87) is non-decreasing and concave on [q∗, q1].
Moreover p,Φs ∈ C1([q∗, q1]).

Proof. We claim that p′ is decreasing. The key point is that with M as in Proposition 5.4.31,

M(p, p′,Φ) < M(Φ̃, p̃, p̃′)

if Φ � Φ̃, p ≤ p̃ and p′ < p̃′. Indeed this is immediate by Proposition 5.4.6. It follows that p′ must increase
backward in time, i.e. p′(q) is a decreasing function. Since p′(q1) ≥ 0 by super-solvability, this completes
the proof.

Proof of Proposition 5.1.9, parts (a,b). Existence and uniqueness of the root-finding trajectory follows from
Lemma 5.4.32 and Proposition 5.4.8. Lemma 5.4.34 ensures that the solution exists until p reaches 0.
Concavity of p was just shown in Lemma 5.4.35. This proves part (a). Part (b) follows from Lemma 5.4.23
or 5.4.34.

Lemma 5.4.36. If ~1 is super-solvable, then q1 = 1 and Φ(q1) = ~1. Otherwise q1 < 1.

Proof. If ~1 is strictly sub-solvable, Lemma 5.4.30 implies that q1 < 1. Suppose ~1 is super-solvable. Let
(p∗,Φ∗, q∗0) be the root-finding trajectory with endpoint ~1, which exists by Proposition 5.1.9. By Corol-
lary 5.4.28,

A(p∗,Φ∗; q∗0) =
∑
s∈S

λs

√
ξs(~1) + h2

s.

Suppose for contradiction that there is a different maximizer (p,Φ, q0) of A with A(p,Φ; q0) ≥ A(p∗,Φ∗; q∗0).
The maximizer (p,Φ, q0) has its own value q1, and we must have q1 < 1 since for this to be a different
maximizer. Note that for each s ∈ S ,√

ξs(~1) + h2
s −

√
Φs(q1)(ξs(Φ(q1)) + h2

s) =

∫ 1

q1

d

dq

√
Φs(q)((ξs ◦ Φ)(q) + h2

s) dq

=
1

2

∫ 1

q1

(
Φ′s(q)

√
(ξs ◦ Φ)(q) + h2

s

Φs(q)
+ (ξs ◦ Φ)′(q)

√
Φs(q)

(ξs ◦ Φ)(q) + h2
s

)
dq.
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By Corollary 5.4.28,

F ≡ A(p∗,Φ∗; q∗0)− A(p,Φ; q0)

=
∑
s∈S

λs
2

∫ 1

q1

(ξs ◦ Φ)′(q)

√
Φs(q)

(ξs ◦ Φ)(q) + h2
s

(√
Φ′s(q)

(ξs ◦ Φ)′(q)
· (ξs ◦ Φ)(q) + h2

s

Φs(q)
− 1

)2

dq ≥ 0.

Since A(p,Φ; q0) ≥ A(p∗,Φ∗; q∗0), we have F = 0. So, for all s ∈ S , and almost all q ∈ (q1, 1]

(ξs ◦ Φ)′(q)

(ξs ◦ Φ)(q) + h2
s

=
Φ′s(q)

Φs(q)
⇒ d

dq
log
(
(ξs ◦ Φ)(q) + h2

s

)
=

d

dq
log Φs(q).

Both sides of this equation are continuous on (q1, 1], so in fact it holds for all q ∈ (q1, 1]. Thus there exist
constants Cs such that

(ξs ◦ Φ)(q) + h2
s = CsΦs(q).

Thus, for q1 < q < q + ι ≤ 1, we have

CsΦ
′
s(q) = (ξs ◦ Φ)′(q) =

∑
s′∈S

(∂xs′ ξ
s ◦ Φ)(q)Φ′s′(q) ∀s ∈ S ,

CsΦ
′
s(q + ι) = (ξs ◦ Φ)′(q + ι) =

∑
s′∈S

(∂xs′ ξ
s ◦ Φ)(q + ι)Φ′s′(q + ι) ∀s ∈ S ,

We treat these equations as linear systems in Φ′(q) and Φ′(q+ι). Since both linear systems have nonnegative
solutions and (∂xs′ ξ

s ◦ Φ)(q + ι) ≥ (∂xs′ ξ
s ◦ Φ)(q) for all s, s′, Lemma 5.4.20 (with ε = 0) implies that

(∂xs′ ξ
s ◦Φ)(q+ ι) = (∂xs′ ξ

s ◦Φ)(q) for all s, s′. This contradicts that ξ is non-degenerate and completes the
proof.

Proposition 5.4.37. The following assertions hold.

(a) If ~1 is super-solvable, then 0 < q0 < q1 = 1 (and thus Φ(q1) = ~1).

(b) If ~1 is sub-solvable and ȟ 6= ~0, then 0 < q0 < q1 < 1 and Φ(q1) ∈ (0, 1]S .

(c) If ȟ = ~0, then ~1 is sub-solvable and 0 = q0 = q1 (and thus Φ(q1) = ~0).

In cases (b, c), Φ(q1) is solvable. In cases (a, b) (and vacuously in case (c)) (p,Φ) restricted to [q0, q1] is
the root-finding trajectory with endpoint Φ(q1).

Proof of Proposition 5.4.37. If ~1 is super-solvable, Lemma 5.4.36 implies q1 = 1. Comparing Corollary 5.4.24
and Lemma 5.4.25 gives q0 > 0. If ~1 is sub-solvable and ȟ 6= ~0, Lemma 5.4.36 implies q1 < 1 while
Corollary 5.4.24 implies 0 < q0 < q1 and Φ(q1) ∈ (0, 1]S . If ȟ = ~0, Lemma 5.4.25 implies 0 = q0 = q1. This
proves assertions (a, b, c).

In cases (b, c), since q1 < 1, Lemma 5.4.30 implies Φ(q1) is solvable. In cases (a, b), Proposition 5.4.27
implies (p,Φ) restricted to [q0, q1] is the root-finding trajectory with endpoint Φ(q1).

5.4.6 Behavior in the tree-descending phase

The next lemma, proved in Appendix 5.C.3, shows the tree-descending ODE is also well-posed.

Lemma 5.4.38. Fix ε > 0. For Φ(q) ∈ RS
≥0 and Φ′(q) ∈ A≥0(q), the type II equation

Ψs(q) = Ψs′(q) ∀s, s′ ∈ S ;

〈~λ,Φ′′(q)〉 = 0

is equivalent (for each fixed q) to
Φ′′(q) = F (Φ(q),Φ′(q))

for a locally Lipschitz function F : RS
≥0 ×AS

≥0 → RS . Moreover,

|Φ′′s (q)| ≤ O(|Φ′s(q)|), ∀s ∈ S . (5.88)

with a uniform constant for bounded Φ′(q).
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Lemma 5.4.39. The type II equation has a unique solution on q ∈ [q1, 1] for any initial condition (Φ(q1),Φ′(q1)) ∈
RS
≥0 ×A≥0. This solution satisfies Φ′(q) � 0 for all q.

Proof. The result now follows from Proposition 5.4.8, since (5.88) implies that Φ′s(q) stays non-negative for
all s, and stays strictly positive if Φ′s(q1) > 0.

Proof of Proposition 5.1.11. Given the above, it only remains to show existence and uniqueness of ~v. Con-
sider the matrix

M(~x)s,s′ =
∂xs′ ξ

s(~x)

ξs(~x) + h2
s

.

Then M has strictly positive entries by non-degeneracy. The equation M∗sym(~x)~v = ~0 is equivalent to

M∗(~x)~v = ~0 by (5.64), which is in turn equivalent to

M(~x)~v = ~v.

Since ~x 6= ~0, non-degeneracy of ξ implies that ξs(~x) > 0 so there is no division by 0. Hence any such ~v is
uniquely determined as the Perron-Frobenius eigenvector of M . Conversely it is easy to see that if M has
Perron-Frobenius eigenvector not equal to 1 then M∗ would not be solvable, which ensures that ~v as above
exists.

Corollary 5.4.40. p,Φs ∈ C1([q0, 1]) and their restrictions to [q1, 1] are C2.

Proof. From Proposition 5.4.11, for the first statement it suffices to verify continuity of p′,Φ′s at q0. If
ȟ 6= ~0 this follows by Lemmas 5.4.32 and 5.4.35. If ȟ = ~0 this and the second conclusion both follow from
Lemmas 5.4.25 and 5.4.39.

The statement of Theorem 5.1.12 is a combination of many of the results established in this section.

Proof of Theorem 5.1.12. Existence of a maximizer (p,Φ; q0) was shown in Proposition 5.4.10, and such p,Φ
are continuously differentiable on [q0, 1] by Corollary 5.4.40. The value q1 was identified in Lemma 5.4.22.
The behavior on S1 = [q0, q1] and S2 = [q1, 1] comes directly from the well-posedness of the corresponding
ODEs as shown in Lemmas 5.4.32 and 5.4.39. The formula (5.19) was proved in Corollary 5.4.28. The last
assertions follow from Proposition 5.4.37.

We finally prove a slight generalization of Proposition 5.1.22. Recall that ∆r ⊆ Rr≥0 denotes the simplex
of admissible Φ′ vectors. For any initial point ~x and time-increment t > 0, solving the type II equation
yields a map F~x,t : ∆r → ∆r given by

F~x,t(~v) = (Φ(q + t)− ~x)/t (5.89)

where Φ solves the type II equation with initial condition Φ(q) = ~x, Φ′(q) = ~v.
We remark that in the case ~x = 0 of Proposition 5.1.22, surjectivity also follows simply by taking (p,Φ; q0)

maximizing a version of A rescaled to have an arbitrary endpoint.

Corollary 5.4.41. Assume ξ is non-degenerate. For C > 0, there exists ε = ε(C) such that the map F~x,t
defined in (5.89) is injective for t ∈ [0, ε] and ‖~x‖1 ≤ C. Moreover F~x,t is always surjective.

Proof. An easy Grönwall argument using (5.88) implies that for 0 ≤ t ≤ ε,

〈Φ(q + t)− Φ̃(q + t),Φ′(q)− Φ̃′(q)〉 > 0

for any pair (Φ, Φ̃) of solutions to the type II equation with Φ(q) = Φ̃(q) and Φ′(q) 6= Φ̃′(q). This implies
injectivity. Surjectivity follows from Lemma 5.4.42 since (5.88) implies that if ~vs = 0 then F~x,t(~v)s = 0.

Lemma 5.4.42 ([JR76, Lemma 2.1] or [Kar09, Lemma 1]). Let F be a continuous map from ∆r to itself
such that F (~v)s = 0 if vs = 0. Then F is surjective.
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5.4.7 Explicit solution for pure models

In this subsection we prove Theorem 5.1.18 and Corollary 5.1.19, obtaining an explicit description of ÂLG
in the important special case of pure models for which

ξ(x1, . . . , xr) =
∏
s∈S

xass . (5.90)

Due to the homogeneity and lack of external field, it is natural to expect that the optimal (p,Φ) is given by
p ≡ 1 and Φ(q) = (qb1 , . . . , qbr ) for positive constants bs. (Here we do not require Φ to be admissible, which
by Lemma 5.4.9 does not make a difference.) Most of our previous results do not apply directly because ξ
violates the non-degeneracy condition, however as mentioned previously we can apply them after adding a
small perturbation.

Lemma 5.4.43. For a pure model described by ξ, there exists Φ∗ such that with p ≡ 1,

A(p,Φ∗; 0) = ÂLG.

Proof. Let

ξ(ε)(~x) = ξ(~x) + ε
∑

s,s′∈S

xsxs′ + ε
∑

s,s′,s′′∈S

xsxs′xs′′ .

Then the preceding results show that optimal solutions (Φ(ε), p(ε), q
(ε)
0 ) for ξ(ε) satisfy p(ε) ≡ 1 and q

ε(ε)
0 =

0. Taking a convergent subsequence Φ(ε) → Φ∗ as ε → 0 in the space M (shown to be compact in

Appendix 5.C.1) implies the result since ÂLG is continuous in ξ.

We first non-rigorously guess the solution by assuming it is of the form (5.90) and also solves the type
II equation. By homogeneity, we may assume ∑

s∈S

asbs = 1. (5.91)

Then

Φ′s(q) = bsq
bs−1,

(ξs ◦ Φ)(q) =
as
λs
q1−bs .

We thus expect that for some constant L independent of s,

Ψs(q) = b−1
s q1−bs d

dq

√
bsqbs−1

q1−bs−1as(1− bs)/λs

=

√
λs

as(1− bs)bs
q1−bs d

dq
q−

1
2 +bs

=

(
−1

2
+ bs

)√
λs

as(1− bs)bs
q−1/2

= −L−1/2q−1/2.

(Recall that Ψs should be negative.) The resulting quadratic equation in bs has solution

bs =
1−

√
as

as+Lλs

2
. (5.92)

Finally L is chosen to satisfy (5.91); it is easy to see there is a unique such choice.
Our next step is to verify the computation above and prove uniqueness.

Proof of Theorem 5.1.18.
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Part 1: value of ALG Here we assume p ≡ 1, relying on Lemma 5.4.43, and determine the value ALG.

Using the purity of ξ, a simple scaling argument shows the ÂLG value with endpoint ~x = (x1, . . . , xr) (cf.
Remark 5.1.13) is given by

ÂLG(~x) = ÂLG(~1) ·
∏
s∈S

xas/2s . (5.93)

(Recall that ξ is a covariance, hence the factor 1/2 in the exponent on the right-hand side.) Set φsD−1 = 1−bsδ
for small δ and ~b � 0 satisfying (5.91). This is a fully general choice for φD−1 as in Section 5.3. In light of
Proposition 5.3.5, we obtain that for small δ > 0,

ÂLG(~1) = max
~b : (5.91)

(
ÂLG(φD−1) + δ

∑
s∈S

λs

√
λ−1
s asbs(1− bs)

)
+ o(δ). (5.94)

Denoting ÂLG = ÂLG(~1) and using (5.93), we find

ÂLG = max
~b : (5.91)

(
ÂLG ·

∏
s∈S

(1− bsδ)ai/2 + δ
∑
s∈S

λs

√
λ−1
s asbs(1− bs)

)
+ o(δ)

= max
~b : (5.91)

((
1− δ

2

)
ÂLG + δ

∑
s∈S

√
λsasbs(1− bs)

)
+ o(δ).

Rearranging and sending δ → 0 yields

ÂLG = 2 max
~b : (5.91)

∑
s∈S

√
λsasbs(1− bs). (5.95)

First, it is easy to see that any maximizing ~b∗ has b∗s > 0 for all s, since otherwise the derivative of the
right-hand side in bs would be infinite. By Lagrange multipliers, for some C > 0 any solution will have√

as
Lλs

=
d

dbs

(√
bs(1− bs)

)
=

1
2 − bs√
bs(1− bs)

(5.96)

for some L ∈ [0,∞] (where division by ∞ gives 0).
Let us first assume

∑
s∈S as ≥ 3. Then (5.91) implies that bs < 1/2 for some s, hence for all s since the

signs have to match in (5.96). In particular we have L < ∞, and (5.92) above easily follows from (5.96).
The resulting formula is as desired:

ÂLG = 2
∑
s∈S

√
λsas ·

(
1

2
− bs

)√
Lλs
as

=
∑
s∈S

λs

√
Las

Lλs + as
.

The only remaining case is ξ(x1, x2) = x1x2. Then it is clear from (5.95) that b1 = b2 = 1/2 and

ÂLG =
√
λ1 +

√
λ2.

(This case of Theorem 5.1.18 is stated with b1 = b2 = 1 which is an equivalent parametrization.)

Part 2: uniqueness assuming p ≡ 1 Next we show the optimal trajectory Φ∗(q) = (qb1 , . . . , qbr ) is unique
up to reparametrization when p ≡ 1. The maximization problem in (5.95) is strictly convex on the affine
subspace defined by (5.91), and hence has a unique minimizer. It follows that if φd in the preceding equation

is defined by any choice ~b bounded away from the optimal one, the obtained value would be strictly worse
than ALG. In other words, any optimal trajectory where p ≡ 1 must satisfy Φ′(1) = ~b. By scale-invariance,
we conclude that Φ(q) = (qb1 , . . . , qbr ) is the unique optimal such trajectory.
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Part 3: uniqueness of optimal p Finally we prove that all optimal solutions actually satisfy p ≡ 1.
Suppose another maximizer (p,Φ) exists. Let

q∗ = inf
q>0
{q : min

s∈S
Φs(q) > 0}.

The definition of p on [0, q∗) is irrelevant so we assume without loss of generality that p is constant on [0, q∗]
and continuous at q∗. It is easy to see that such a maximizing p must be continuous on all of [0, 1] and satisfy
p(1) = 1; otherwise p could be strictly increased while keeping p′ constant for the purposes of A. The proof
of Lemma 5.C.4 implies that p is uniformly Lipschitz on [q∗ + ε, 1] for any ε > 0, so that p′ makes sense as
a measurable function.

We have seen that if p ≡ 1 then ALG is achieved by a unique Φ, so we remains to show that no optimal
(p,Φ) satisfies p 6≡ 1 Assuming that p 6≡ 1 we may choose q > q∗ a Lebesgue point for both p′ and Φ′ such
that

p′(q) > 0.

We now derive a contradiction by expanding ÂLG around q as in (5.94). In particular, consider φd = Φ(q−δ)
and pd = p(q − δ). Let ∆s = Φs(q) − φd,s and ∆p = p(q) − pd. Since q is a Lebesgue point, we have
∆s = Φ′s(q)δ + o(δ) and ∆p = p′(q) + o(δ).

The computation above for the value ÂLG implies

ÂLG(pd, φd) = ÂLG(φd)
√
pd.

Here ÂLG(pd, φd) denotes the analog of (5.7) with endpoint value Φ(q) = φd rather than q = 1S , and
p(q) = pd. Therefore

ÂLG(p(q),Φ(q)) = ÂLG(φd)
√
pd +

∑
s∈S

λs

√√√√∆s

(
∆pξs(φd) + pd

∑
s′∈S

∂xs′ ξ
s(φd)∆s′

)
+ o(δ)

= ÂLG(p(q),Φ(q)) ·

(
1− δ

2
×

(
p′(q)

p(q)
+
∑
s∈S

asΦ
′
s(q)

Φs(q)

))

+ δ
∑
s∈S

λs

√√√√Φ′s(q)

(
p′(q)(ξs ◦ Φ)(q) + p(q)

∑
s′∈S

∂xs′ (ξ
s ◦ Φ)(q)Φ′s′(q)

)
+ o(δ).

Rearranging and sending δ → 0 implies

ÂLG(p(q),Φ(q))/2 =

∑
s∈S λs

√
Φ′s(q)

(
p′(q)(ξs ◦ Φ)(q) + p(q)

∑
s′∈S ∂xs′ (ξ

s ◦ Φ)(q)Φ′s′(q)
)

p′(q)
p(q) +

∑
s∈S

asΦ′s(q)
Φs(q)

. (5.97)

We claim that (5.97) forces p′(q) = 0, which completes the proof of uniqueness since q was an arbitrary
choice of Lebesgue point. Note that from any solution to (5.97) we immediately get a maximizing (Φ, p) for
A where p(q) and each Φs(q) is a monomial of the form aqb.

The right-hand side above has maximum value ÂLG(p(q),Φ(q))/2, and we already know from Lemma 5.4.43

there exists (p′(q),Φ′(q)) achieving this value with p′(q) = 0. Supposing another maximizing (p̃′(q), Φ̃′(q))
with p̃′(q) > 0 exists, we suppress the input q and consider a general solution

(p′a,Φ
′
a) =

(
ap′1 − (a− 1)p′0, aΦ′1 − (a− 1)Φ′0

)
.

We always restrict to a such that all derivatives are non-negative. The denominator of the right-hand side of
(5.97) is affine in a, while Lemma 5.C.9 implies the numerator is concave. Since (p′0,Φ

′
0) and (p′1,Φ

′
1) both

maximize the right-hand side we deduce that it takes the constant value ÂLG(p(q),Φ(q))/2 on (p′a,Φ
′
a) for

all a ∈ [0, 1]. In particular using again Lemma 5.C.9 we find that each of the r terms in the numerator is
actually a linear function of a on the interval such that

p′a(q) ≥ 0, and min
s

Φ′a,s(q) ≥ 0. (5.98)
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This means equality is achieved for pa for a satisfying (5.98) (even if a > 1) and implies that Φ′(q) 6= Φ̃′(q).
Let a∗ > 0 be the maximal value satisfying (5.98), so that mins Φ′a∗,s(q) = Φ′a∗,s∗(q) = 0. Then clearly the
s∗ term of the numerator is not affine on a ∈ [a∗ − ε, a∗]; since Φ′a∗ satisfies admissibility it does not equal
~0. This gives a contradiction, so we conclude that p ≡ 1 holds for all optimal (p,Φ).

Proof of Corollary 5.1.19 . Here we have λs = as∑
s∈S as

in the preceding formulas. It is easy to see from

(5.92) that the values bs are all equal. From (5.91) we find bs = 1∑
s∈S as

and so

ÂLG = 2
∑
s∈S

√
λsasbs(1− bs)

= 2
∑
s∈S

as√∑
s∈S as

·

√(∑
s∈S as

)
− 1∑

s∈S as

= 2

√(∑
s∈S as

)
− 1∑

s∈S as
.

We finally show Corollary 5.1.21, recalling the formula for E∞ from [McK24] and verifying it equals ALG
for pure models. It is given as follows, where H = {z ∈ C : Im(z) > 0} denotes the complex open upper
half plane. We recall (a slight generalization of) [McK24, Lemma 2.2]; as written only the bipartite case
was considered therein but the general multi-species case is no different. Additionally we point out that the
constants αs appearing in [McK24] continue to vanish in pure models for general r, which we take advantage
of in the statement below.

Informally, the point below is simply that
∑
s λsMs is the Stieltjes transform of the bulk spectral dis-

tribution of an N × N random matrix with variance profile ∂xs,xs′ ξ with diagonal species-dependent shift

Eξs(~1). This essentially corresponds to the behavior of the Riemannian Hessian ∇2
spHN (σ) at a point σ

with HN (σ) = E, where the diagonal shift corresponds to the induced radial derivative of HN .

Proposition 5.4.44 (Adaptation of [McK24, Lemma 2.2] with r species and pure ξ). For z ∈ H (resp.

−H), there is a unique solution ~M ∈ HS (resp. −HS ) to the matrix Dyson equation

1 +Ms

(z − Eξs(~1)
)

+ ∂xsξ
s(~1)Ms +

∑
s′ 6=s

(∂xs′ ξ
s(~1))Ms′

 = 0, ∀s ∈ S .

The threshold E∞ ≥ 0 is the smallest value such that with z = 0, ~M(E) extends analytically and continuously
at the boundary to E ∈ [E∞,∞) (and is real-valued on this interval).

When ξ(~x) =
∏
s∈S xass is pure and z = 0, the vector Dyson equation simplifies to

1 + asMs

(
E − λsMs +

∑
s′∈S

λs′as′Ms′

)
= 0, ∀ s ∈ S . (5.99)

Proof of Corollary 5.1.21. For convenience we omit the case ξ(x1, x2) = x1x2 and assume
∑
s as ≥ 3. Setting

Ks = asMs,

K =
∑
s∈S

λsKs

the system (5.99) can be rearranged to

A ≡ K + E =
λsKs

as
− 1

Ks
, ∀ s ∈ S .

With Bs = as
λs

we find that at E = E∞,

Ks =
ABs −

√
A2B2

s + 4Bs
2

.
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Here the choice of sign is forced by Ms < 0; this easily holds for sufficiently large E (where one can give a
power series expansion), and follows by continuity since Ks 6= 0 in general.

Note that A above determines each Ks, hence K and hence E = A−K. Viewing E as a function the A,
its derivative must vanish and so:

0 =
dE

dA

= 1− 1

2

∑
s∈S

as

(
1− ABs√

A2B2
s + 4Bs

)
(5.100)

= 1− 1

2

∑
s∈S

as

(
1− 1√

1 + 4/(A2Bs)

)
(5.101)

(5.91)
= 1− 1

2

∑
s∈S

as

(
1−

√
as

as + Lλs

)

= 1− 1

2

∑
s∈S

as

(
1−

√
1

1 + L/Bs

)
. (5.102)

Here we used
∑
s as ≥ 3 to deduce from (5.100) that A > 0, thus implying the next line. By monotonicity,

equality of (5.101) and (5.102) now implies A = 2/
√
L. Turning to the desired equality, we first write

E∞ = A−K

=
2√
L
− 1

2

∑
s

λs

(
2as

λs
√
L
−

√
4a2
s

Lλ2
s

+
4as
λs

)

=
2√
L
−
∑
s

as√
L

(
1−

√
as + Lλs

as

)
.

With Vs ≡
√
as + Lλs, adding and subtracting

∑
s
a3/2s

Vs
√
L

to get the second equality, we compute

E∞ − ALG =
2√
L

+
∑
s

(
− as√

L
+
Vs
√
as√
L
− λs

√
Las
Vs

)

=
1√
L

(
2 +

∑
s

(
−as +

a
3/2
s

Vs

))
+
∑
s

√
as

Vs
√
L

(
V 2
s − as − Lλs

)
= 0.

Here in the last step, we used (5.91) to handle the first contribution (summed over s ∈ S ) and the definition
of Vs for the second (for each s ∈ S ).
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Appendix

5.A Equivalence of BOGP and BOGPloc,0

In this section, we prove Proposition 5.2.9 that BOGP = BOGPloc,0. We introduce two other limits BOGPden

and BOGPloc, as follows (restating BOGP and BOGPloc,0 for convenience).

BOGP = lim
D→∞

lim
η→0

lim
k→∞

sup
~χ∈I(0,1)S

inf
~φ=~χ(p)

lim sup
N→∞

1

N
E sup
σ∈Q(η)

HN (σ),

BOGPden = lim
D→∞

lim
η→0

lim
k→∞

sup
~χ∈I(0,1)S

1/D2-separated

inf
~φ=~χ(p)

6r/D-dense

lim sup
N→∞

1

N
E sup
σ∈Q(η)

HN (σ),

BOGPloc = lim
D→∞

lim
η→0

lim
k→∞

sup
~χ∈I(0,1)S

1/D2-separated

inf
~φ=~χ(p)

6r/D-dense

lim sup
N→∞

1

N
E sup
σ∈Qloc(η)

HN (σ),

BOGPloc,0 = lim
D→∞

lim
k→∞

sup
~χ∈I(0,1)S

1/D2-separated

inf
~φ=~χ(p)

6r/D-dense

lim sup
N→∞

1

N
E sup
σ∈Qloc(0)

HN (σ).

In the last three lines, the limits in k, η are clearly decreasing, but the limits in D are not, so the existence
of these limits needs to be proven. Proposition 5.2.9 follows from the following propositions.

Proposition 5.A.1. The limit BOGPden exists and BOGP = BOGPden.

Proposition 5.A.2. The limit BOGPloc exists and BOGPden = BOGPloc.

Proposition 5.A.3. The limit BOGPloc,0 exists and BOGPloc = BOGPloc,0.

5.A.1 Equivalence of BOGP and BOGPden

Let p′ = (p0, . . . , pD′) and ~φ
′

= (~φ′0, . . . ,
~φ′D′). Say (p′, ~φ

′
) refines (p, ~φ) if there exists 0 ≤ a0 < · · · < aD ≤

D′ such that (pd, ~φd) = (p′ad ,
~φ′ad) for all 0 ≤ d ≤ D.

Lemma 5.A.4. The value Emaxσ∈Q(η)HN (σ) is decreasing under refinement. That is, if (p′, ~φ
′
) refines

(p, ~φ), then for any k, η,

E max
σ∈Qk,D,~φ(η)

Hk,D,pN (σ) ≥ E max
σ∈Qk,D′,~φ

′
(η)

Hk,D
′,p′

N (σ).

Proof. Let I = {a0, . . . , aD} and J = [D′] \ I. Define an equivalence relation ./ on L(k,D′) by u ./ v if
ud = vd for all d ∈ J . Let

Q′ =
{
σ ∈ BL(k,D′)

N :
∥∥∥~R(σ(u1),σ(u2))− ~φ′u1∧u2

∥∥∥
∞
≤ η, ∀u1 ./ u2

}
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be the superset of Qk,D
′,~φ
′

where we only enforce the overlap constraint for u1 ./ u2. Then

E max
σ∈Qk,D′,~φ

′
(η)

Hk,D
′,p′

N (σ) ≤ E max
σ∈Q′

Hk,D
′,p′

N (σ)

= E max
σ∈Q′

1

kD′−D

∑
uJ∈[k]D′−D

1

kD

∑
uI∈[k]D

Hk,D
′,p′

N (σ)

= E max
σ∈Qk,D,~φ(η)

Hk,D,pN (σ).

Proof of Proposition 5.A.1. Let BOGP+
den and BOGP−den be BOGPden where the outer limit in D is replaced

by lim sup and lim inf, respectively. We will separately prove BOGP ≥ BOGP+
den and BOGP ≤ BOGP−den.

Fix any D, k, η, 1/D2-separated ~χ, and (not necessarily 6r/D-dense) p, ~φ satisfying ~φ = ~χ(p). Let
δ = (r+1)/D. Let p̃0 = p0, and define a sequence p̃1, . . . , p̃D̃, where p̃d+1 is the smallest p ∈ [p̃d, 1] such that

max (p− p̃d, ‖~χ(p)− ~χ(p̃d)‖∞) ≥ δ

if such p exists. Let D̃ be the first index d such that no such p exists. Note that if Σd = p̃d + ‖~χ(p̃d)‖1, then
0 ≤ Σd ≤ r + 1 and Σd+1 − Σd ≥ δ for all d. Thus D̃ ≤ (r + 1)/δ = D.

Consider either D′ = 2D or D′ = 2D + 1. Let p′ be the sorted union of {p0, . . . , pD}, {p̃1, . . . , p̃D̃}, and

(if necessary) additional arbitrary p ∈ [0, 1], so that p′ has length D′. Define ~φ
′

= ~χ(p′). Since (p′, ~φ
′
) refines

(p, ~φ), Lemma 5.A.4 implies

E max
σ∈Qk,D,~φ(η)

HN (σ) ≥ E max
σ∈Qk,D′,~φ

′
(η)

Hk,D
′,p′

N (σ).

Moreover, one can check that δ ≤ 6r/D′, so (p′, ~φ
′
) is 6r/D′-dense. Thus, if f(D) and g(D) are the quantities

inside the outer limits of BOGP and BOGPden, we have shown f(D) ≥ g(2D), g(2D + 1) (as taking the
supremum over not necessarily 1/D2-separated ~χ can only increase f(D)). This implies BOGP ≥ BOGP+

den.
For the other direction, fix D, k, η and (not necessarily 1/D2-separated) ~χ. Define

~χ′(p) = (1−D−2)~χ(p) +D−2~1,

so ~χ′ is 1/D2-separated. Consider any 6r/D-dense (p, ~φ
′
) with ~φ

′
= ~χ′(p), and let ~φ = ~χ(p).

Let σ ∈ Qk,D,~φ(η). Let x satisfy ~R(x,x) = ~1 and ~R(x,σ(u)) = ~0 for all u ∈ L. Define

ρ(u) =
√

1−D−2σ(u) +D−1x,

so that for all u, v ∈ L,∥∥∥~R(ρ(u),ρ(v))− ~φ′u∧v
∥∥∥
∞

= (1−D−2)
∥∥∥~R(σ(u),σ(v))− ~φu∧v

∥∥∥
∞
≤ η.

Thus ρ ∈ Qk,D,~φ
′

(η), and we can easily check that

1√
N
‖ρ(u)− σ(u)‖2 = O(D−2)

for all u ∈ L. By Proposition 5.1.23, with probability 1− e−Ω(N) we have H
(u)
N ∈ KN for all u ∈ L. On this

event, ∣∣∣∣ 1

N
HN (ρ)− 1

N
HN (σ)

∣∣∣∣ ≤ CD−2

for some C > 0, and so

1

N
sup

ρ∈Qk,D,~φ
′
(η)

HN (ρ) + CD−2 ≥ 1

N
sup

σ∈Qk,D,~φ(η)

HN (σ).
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By Lemma 5.2.11, both sides of this inequality are subgaussian with fluctuations O(N−1/2), so the contri-
bution from the complement of this event is oN (1), and

lim sup
N→∞

1

N
E sup
ρ∈Qk,D,~φ

′
(η)

HN (ρ) + CD−2 ≥ lim sup
N→∞

1

N
E sup
σ∈Qk,D,~φ(η)

HN (σ).

Thus f(D) ≤ g(D) +CD−2 (as taking the infimum over (p, ~φ) that are not necessarily the image of a 6r/D-

dense (p, ~φ
′
) under the above transformation can only decrease f(D)). This implies BOGP ≤ BOGP−den.

5.A.2 Equivalence of BOGPden and BOGPloc

Lemma 5.A.5. We have that Q(η) ⊆ Qloc(η + 2
k ).

Proof. Consider any σ ∈ Q(η). We define ρ ∈ BTN by ρ(u) = σ(u) if u ∈ L, and

ρ(u) =
1

k

k∑
i=1

ρ(ui)

for u ∈ T \ L. We will show that ρ ∈ Qloc+(η + 2
k ), and so σ ∈ Qloc(η + 2

k ).
Let v � u denote that v is a descendant of u in T. Consider any non-leaf u ∈ T and two of its children

ui, uj, for i 6= j. For any s ∈ S ,

|Rs(ρ(ui),ρ(uj))− φs|u|| ≤
1

k2(D−|u|)

∑
v,v′∈L

v�ui,v′�uj

|Rs(σ(v),σ(v′))− φs|u|| ≤ η. (5.103)

Moreover,

|Rs(ρ(ui),ρ(u))− φs|u|| ≤
1

k

k∑
j=1

|Rs(σ(ui),σ(uj))− φs|u|| ≤ η +
2

k
,

where we bounded the terms j 6= i by (5.103) and the term j = i crudely by 2. Thus,

|Rs(ρ(u),ρ(u))− φs|u|| ≤
1

k

k∑
i=1

|Rs(σ(ui),σ(u))− φs|u|| ≤ η +
2

k
.

For k′ ≤ k, define a k′-ary subtree of T to be a subset T ⊆ T isometric to T(k′, D). The following fact is
clear from the definition of Qloc(η).

Fact 5.A.6. Let T ⊆ T be a k′-ary subtree with leaf set L. If σ ∈ Qloc(η), then (σ(u))u∈L ∈ Q
k′,D,~φ

loc (η).

Proof. There exists ρ ∈ Qloc+(η) such that ρ(u) = σ(u) for all u ∈ L. Then (ρ(u))u∈T ∈ Q
k′,D,~φ

loc+ (η), which
implies the result.

Lemma 5.A.7. Let k′ be the largest integer solution to D(k′)D ≤ min(
√
k, η−1). If σ ∈ Qloc(η), there exists

a k′-ary subtree T of T with leaf set L such that (σ(u))u∈L ∈ Qk
′,D,~φ(CD2(k−1/4 + η1/4)), for some C > 0.

Proof. Let ρ ∈ Qloc+(η) such that ρ(u) = σ(u) for all u ∈ L. We will construct T by a breadth-first search:
we start from T = {∅} and each step process a leaf u of T by adding k′ children of u to T , until all leaves of
T are of depth D.

Suppose we are currently processing vertex u. Let V = {ρ(v) : v ∈ T} and S = span(V ); note
that |V | ≤ D(k′)D ≤ min(

√
k, η−1). Let PS denote the projection operator onto S. For i ∈ [k], write

xi = 1√
N

(ρ(ui)− ρ(u)), and note
∥∥xi∥∥

2
≤ 2. Then

1

N

k∑
i=1

‖PS(ρ(ui)− ρ(u))‖22 =

k∑
i=1

∥∥PSxi∥∥2

2
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is upper bounded by the sum of the top |V | eigenvalues of the Gram matrix M = (〈xi,xj〉)ki,j=1. However,
for i 6= j,

|〈xi,xj〉| = 1

N
|〈ρ(ui)− ρ(u),ρ(uj)− ρ(u)〉| ≤

∑
s∈S

λs|Rs(ρ(ui)− ρ(u),ρ(uj)− ρ(u))| ≤ 4η,

while |〈xi,xi〉| ≤ 4. So, if we let M = D + A where D = diag(M), and let a1 ≥ · · · ≥ a|V | be the top

|V | eigenvalues of A, then the sum of the top |V | eigenvalues of M is upper bounded by 4|V | +
∑|V |
i=1 ai.

However,
|V |∑
i=1

ai ≤

√√√√|V | |V |∑
i=1

a2
i ≤

√
|V |‖A‖2F ≤ 4kη

√
|V |.

It follows that

1

kN

k∑
i=1

‖PS(ρ(ui)− ρ(u))‖22 ≤
4|V |
k

+ 4η
√
|V | ≤ 4(k−1/2 + η1/2),

where the last step follows from |V | ≤ min(
√
k, η−1). Thus there are k′ children ui of u such that

1√
N
‖PS(ρ(ui)− ρ(u))‖2 ≤ 3(k−1/4 + η1/4).

We choose these as the children of u in T . By constructing T in this manner, we get that for all distinct
edges (u, ui), (v, vj) in T ,

1

N
|〈σ(ui)− σ(u),σ(vj)− σ(v)〉|, 1

N
|〈σ(ui)− σ(u),σ(∅)〉| ≤ 6(k−1/4 + η1/4).

whence ∥∥∥~R(σ(ui),σ(u),σ(vj)− σ(v))
∥∥∥
∞
,
∥∥∥~R(σ(ui),σ(u),σ(∅))

∥∥∥
∞
≤ 6(k−1/4 + η1/4)

mins λs
.

We now verify that (σ(u))u∈L ∈ Qk
′,D,~φ(CD2(k−1/4 + η1/4)). Consider any u, v ∈ L with least common

ancestor w, and let |w| = d. Let (u0, . . . , uD−d) and (v0, . . . , vD−d) be the paths from w to u, v, with
u0 = v0 = w and uD−d = u, vD−d = v, and let (w0, . . . , wd) be the path from ∅ to w, with w0 = ∅, wd = w.
Also define as convention σ(w−1) = 0. Then,∥∥∥~R(σ(u),σ(v))− ~φd

∥∥∥
∞
≤
∥∥∥~R(σ(w),σ(w))− ~φd

∥∥∥
∞

+

D−d∑
i=1

d∑
`=0

∥∥∥~R(σ(w`)− σ(w`−1),σ(ui)− σ(ui−1))
∥∥∥
∞

+

D−d∑
j=1

d∑
`=0

∥∥∥~R(σ(w`)− σ(w`−1),σ(vj)− σ(vj−1))
∥∥∥
∞

+

D−d∑
i,j=1

∥∥∥~R(σ(ui)− σ(ui−1),σ(vj)− σ(vj−1))
∥∥∥
∞

≤ CD2(k−1/4 + η1/4).

Lemma 5.A.8. There exists C > 0 such that with probability 1 − e−Ω(N) over the Hamiltonians H
(u)
N the

following holds. If ε > 0, σ ∈ Qloc(η), and

1

N
H(σ) ≥ E,

then for k′ = bkε/3CDc, there exists a k′-ary subtree T of T with leaf set L such that

1

N
H

(u)
N (σ(u)) ≥ E − ε

for all u ∈ L.
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Proof. We consider the event that H
(u)
N ∈ KN for all u ∈ L, for KN defined in Proposition 5.1.23. This

holds with probability 1− e−Ω(N), and on this event, |H(u)
N (σ(u))| ≤ C for all u ∈ L. For u ∈ T define

F (u) =
1

NkD−|u|

∑
v∈L
v�u

H(v)(σ(v)).

We will show that for any u ∈ T \ L, we may find k′ distinct children ui1, . . . , uik′ such that F (uij) ≥
F (u)− ε/D for all j. Indeed, we have

F (u) =
1

k

k∑
i=1

F (ui),

and |F (ui)| ≤ C for all i, so the claim follows from Markov’s inequality.
We construct the subtree T recursively starting from ∅, using the above claim to select the k′ children

of each node. Thus, for all u, ui ∈ T with ui a child of u, we have F (ui) ≥ F (u) − ε/D. Since F (∅) =
1
NHN (σ) ≥ E, the result follows.

Proof of Proposition 5.A.2. Let BOGP+
loc and BOGP−loc be BOGPloc where the outer limit in D is replaced by

lim sup and lim inf, respectively. Lemma 5.A.5 gives BOGPden ≤ BOGP−loc, so it suffices to prove BOGPden ≥
BOGP+

loc.

Fix arbitrary ε > 0, D, k, η, 1/D2-dense ~χ, and 6r/D-dense (p, ~φ) satisfying ~φ = ~χ(p). If σ ∈ Qloc(η)

and 1
NHN (σ) ≥ E, then on an event with probability 1 − e−Ω(N), Lemma 5.A.8 gives a k′-ary subtree

T ⊆ T with leaf set L such that 1
NH

(u)
N (σ(u)) ≥ E − ε for all u ∈ L. However, (σ(u))u∈L is itself an

element of Qk
′,D,~φ

loc (η) by Fact 5.A.6, so Lemma 5.A.7 gives a k′′-ary subtree T ′ ⊆ T with leaf set L′ such

that (σ(u))u∈L′ ∈ Qk
′′,D,~φ(η′). Here k′ = bε/3CDc, k′′ is the largest solution to D(k′′)D ≤ min(

√
k′, η−1),

and η′ = CD2((k′)−1/4 + η1/4).
It follows that for all E,

P

 1

N
sup

σ∈Qk′′,D,~φ(η′)

Hk
′′,D,p

N (σ) ≥ E − ε

 ≥ ( k
k′′

)−D
P

 1

N
sup

σ∈Qk,D,
~φ

loc (η)

Hk,D,pN (σ) ≥ E

− e−Ω(N).

By Lemma 5.2.11, the random variables in these two probabilities are both subgaussian with fluctuations
O(N−1/2). So

lim sup
N→∞

1

N
E sup
σ∈Qk′′,D,~φ(η′)

Hk
′′,D,p

N (σ) + ε ≥ lim sup
N→∞

1

N
E sup

σ∈Qk,D,
~φ

loc (η)

Hk,D,pN (σ).

For fixed D, as k →∞ and η → 0, we have k′′ →∞ and η′ → 0. Then taking D →∞ shows BOGPden +ε ≥
BOGP+

loc. Since ε was arbitrary, the result follows.

Remark 5.A.9. A byproduct of Lemma 5.A.8 is that defining HN as the minimum over u ∈ L of the

energies H
(u)
N (σ(u)), and BOGP in terms of this HN , gives the same threshold as our definition (5.30) of

HN as the average of these energies. The minimal energy is actually more directly connected to our proof
of Theorem 5.2.3, as seen in the definition (5.34) of Ssolve. However the average energy is more convenient
for our analysis in Section 5.3.

5.A.3 Equivalence of BOGPloc and BOGPloc,0

Lemma 5.A.10. Let k ∈ N, 0 < q0 ≤ q ≤ 1 and q′, ε ∈ [0, 1]. There exists ε′ = ε′(ε, k, q0), where ε′ → 0 as
ε→ 0 for fixed k, q0, such that the following holds for all q, q′. Suppose that x,y1, . . . ,yk ∈ RN and

Y =
[
x y1 · · · yk

]
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satisfies Y >Y = D + E, where D = diag(q, q′, . . . , q′), all entries of E have magnitude at most ε, and
E1,1 = 0. There exist z1, . . . ,zk such that for

Z =
[
x z1 · · · zk

]
,

we have Z>Z = D and
∥∥zi − yi∥∥

2
≤ ε′ for all i ∈ [k].

Proof. We will take

ε′ =

{
2 k2ε ≥ q0,

3k3/2ε1/2 otherwise.

If k3ε ≥ q0, we let z1, . . . ,zk be any orthogonal vectors of norm
√
q′ orthogonal to x and each other. As∥∥yi∥∥

2
,
∥∥zi∥∥

2
≤ 1, the result follows. Similarly, if k3ε ≥ q′, then∥∥yi − zi∥∥

2
≤
∥∥yi∥∥

2
+
∥∥zi∥∥

2
=
√
q′ + ε+

√
q′ ≤ 3k3/2ε1/2.

It remains to address the case k3ε ≤ min(q0, q
′). We define z1, . . . ,zk by the Gram-Schmidt algorithm, i.e.

ẑi = yi − 〈y
i,x〉
‖x‖22

x−
i−1∑
j=1

〈yi, zj〉
‖zj‖2

zj , zi =

√
q′∥∥∥ẑi∥∥∥

2

ẑi.

Let εi = ε(1 + 3k−2)i, and note that ε ≤ εi ≤ 2ε for all 0 ≤ i ≤ k. We will show by induction over i that for
all j ≤ i < `,

|〈y`, zj〉| ≤ εi, (5.104)

where as the base case this vacuously holds for i = 0. Suppose the inductive hypothesis holds for i − 1.
It suffices to prove (5.104) for j = i because the assertion for the remaining j is implied by the inductive
hypothesis, as εi−1 ≤ εi. We have

∥∥∥ẑi∥∥∥2

2
=
∥∥yi∥∥2

2
− 〈y

i,x〉2

‖x‖22
−

i−1∑
j=1

〈yi, zj〉2

‖zj‖22

so ∣∣∣∣∣∣∣
∥∥∥ẑi∥∥∥2

2

q′
− 1

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣
∥∥yi∥∥2

2

q′
− 1

∣∣∣∣∣+
〈yi,x〉2

q′‖x‖22
+

i−1∑
j=1

〈yi, zj〉2

q′‖zj‖22
≤ εi−1

q′
+
ε2
i−1

q′q0
+
kε2
i−1

(q′)2
≤ 2

k3
.

Thus
∥∥∥ẑi∥∥∥

2
≥
√
q′(1− 2k−3). For any ` > i,

|〈ẑi,y`〉| ≤ |〈yi,y`〉|+ |〈y
i,x〉||〈x,y`〉|
‖x‖22

+

i−1∑
j=1

|〈yi, zj〉||〈zj ,y`〉|
‖zj‖22

≤ εi−1 +
ε2
i−1

q0
+
kε2
i−1

q′0
≤ εi−1

(
1 +

2

k2

)
Thus

|〈zi,y`〉| ≤ εi−1 ·
1 + 2k−2

1− 2k−3
≤ εi,

completing the induction. Finally, note that

∥∥∥ẑi − yj∥∥∥2

2
=
〈yi,x〉2

‖x‖22
+

i−1∑
j=1

〈yi, zj〉2

‖zj‖22
≤
ε2
i−1

q0
+
kε2
i−1

q′
≤ 5ε

k2
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and ∣∣∣∥∥∥ẑi∥∥∥
2
−
√
q′
∣∣∣ ≤

∣∣∣∣∥∥∥ẑi∥∥∥2

2
− q′

∣∣∣∣
√
q′

≤ εi−1 +
ε2
i−1

q′q0
+
kε2
i−1

(q′)2
≤ 3ε.

Thus ∥∥zi − yi∥∥
2
≤
∥∥∥ẑi − yi∥∥∥

2
+
∣∣∣∥∥∥ẑi∥∥∥

2
−
√
q′
∣∣∣ ≤ √5ε

k
+ 3ε ≤ ε′.

Proof of Proposition 5.A.3. Let BOGP+
loc,0 and BOGP−loc,0 be BOGPloc,0 where the outer limit in D is replaced

by lim sup and lim inf, respectively. It is clear that BOGPloc ≥ BOGP+
loc,0, so it suffices to prove BOGPloc ≤

BOGP−loc,0.

Fix D, k, η, 1/D2-separated ~χ, and 6r/D-dense (p, ~φ) with ~φ = ~χ(p). Consider σ ∈ Qloc(η) and let

ρ ∈ Qloc+(η) such that (ρ(u))u∈L = σ. Define ε0 = ηD and εd = ε′(6εd−1 + 4η, k,D−2) for 1 ≤ d ≤ D,
where ε′ is given by Lemma 5.A.10. We will now construct τ ∈ Qloc+(0) approximating ρ in the sense that
for all u ∈ T, s ∈ S , √

Rs(τ (u)− ρ(u), τ (u)− ρ(u)) ≤ ε|u|. (5.105)

We define τ (∅) by

τ (∅)s = ρ(∅)s

√
φs0

Rs(ρ(∅),ρ(∅))

for all s ∈ S . Thus Rs(τ (∅), τ (∅)) = φs0 and√
Rs(τ (∅)− ρ(∅), τ (∅)− ρ(∅)) =

∣∣∣√Rs(ρ(∅),ρ(∅))−
√
φs0

∣∣∣ ≤ η√
φs0
≤ ε0,

where the second-last inequality holds for all sufficiently small η > 0. This proves (5.105) for u = ∅. We
construct τ (u) for the remaining u ∈ T recursively. Suppose we have constructed τ (u) satisfying (5.105).
Then, for each s ∈ S , i, j ∈ [k],

Rs(ρ(ui)− τ (u),ρ(uj)− τ (u)) = Rs(ρ(ui)− ρ(u),ρ(uj)− ρ(u))

+Rs(ρ(ui)− ρ(u),ρ(u)− τ (u))

+Rs(ρ(u)− τ (u),ρ(uj)− ρ(u))

+Rs(ρ(u)− τ (u),ρ(u)− τ (u)),

so
|Rs(ρ(ui)− τ (u),ρ(uj)− τ (u))− (φs|u|+1 − φ

s
|u|)1{i = j}| ≤ 6ε|u| + 4η.

Similarly,

|Rs(ρ(ui)− τ (u), τ (u))| = |Rs(ρ(ui)− ρ(u),ρ(u))|
+ |Rs(ρ(u)− τ (u),ρ(u))|
+ |Rs(ρ(ui)− ρ(u), τ (u)− ρ(u))|
+ |Rs(ρ(u)− τ (u), τ (u)− ρ(u))|
≤ 6ε|u| + 4η.

We apply Lemma 5.A.10 on the vectors

τ (u)s√
λsN

,
ρ(u1)s − τ (u)s√

λsN
, . . . ,

ρ(uk)s − τ (u)s√
λsN

with q = φs|u| ≥ D−2, q′ = φs|u|+1 − φ
s
|u|, and ε = 6ε|u| + 4η. This gives us τ (u1)s, . . . , τ (uk)s satisfying

(5.105), such that
Rs(τ (ui)− τ (u), τ (ui)− τ (u)) = φs|u|+1 − φ

s
|u|
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and the vectors τ (u)s, τ (u1)s − τ (u)s, τ (uk)s − τ (u)s are pairwise orthogonal. From this we can see that

~R(τ (ui), τ (u)) = ~φ|u|,

~R(τ (ui), τ (ui)) = ~φ|u|+1,

~R(τ (ui), τ (uj)) = ~φ|u| if i 6= j.

Thus the τ constructed this way is an element of Qloc+(0). Finally, let σ′ = (τ (u))u∈L, so σ′ ∈ Qloc(0).
Equation (5.105) implies that for all u ∈ L,

1√
N
‖σ′(u)− σ(u)‖2 ≤ εD.

By Proposition 5.1.23, with probability 1− e−Ω(N) we have H
(u)
N ∈ KN for all u ∈ L. On this event,∣∣∣∣ 1

N
HN (σ′)− 1

N
HN (σ)

∣∣∣∣ ≤ CεD
for some C > 0, and so

1

N
sup

σ′∈Qk,D,
~φ′

loc (η)

HN (σ′) + CεD ≥
1

N
sup

σ∈Qk,D,
~φ

loc (0)

HN (σ).

By Lemma 5.2.11, both sides of this inequality are subgaussian with fluctuations O(N−1/2), so the contri-
bution from the complement of this event is oN (1), and

lim sup
N→∞

1

N
E sup

σ′∈Qk,D,
~φ′

loc (0)

HN (σ′) + CεD ≥ lim sup
N→∞

1

N
E sup

σ∈Qk,D,
~φ

loc (η)

HN (σ).

Taking η → 0 (which forces εD → 0) followed by D, k →∞ implies BOGPloc ≤ BOGP−loc,0, as desired.

5.B Ground state energy of multi-species spherical SK with ex-
ternal field

We adopt the notations of Lemma 5.3.4. In this section, we will prove this lemma by showing that

lim sup
N→∞

EGSN (W,~v, k) ≤
∑
s∈S

λs

√
v2
s + 2

∑
s′∈S

λs′w2
s,s′ ≤ lim inf

N→∞
EGSN (W,~v, k).

5.B.1 Upper bound for ~v = ~0, k = 1

The following (exact) upper bound for the case ~v = ~0, k = 1 follows from the results of [BBvH23]. We will
prove Lemma 5.3.4 using only this result and elementary techniques.

Proposition 5.B.1. For W as in Lemma 5.3.4,

lim sup
N→∞

EGSN (W,~0, 1) ≤
∑
s∈S

λs

√
2
∑
s′∈S

λs′w2
s,s′ .

Proof. In this proof, abbreviate GSN = GSN (W,~v, k). Let G ∈ RN×N have i.i.d. standard Gaussian

entries. Thus G = 1
2

(
G+G>

)
is symmetric with N (0, 1) diagonal entries, N (0, 1/2) off-diagonal entries,

and independent entries on and above the diagonal. Define M ∈ RN×N by Mi,j = N−1/2ws(i),s(j)Gi,j . It is
clear by homogeneity that

GSN =
1

N
max
σ∈BN

σ>Mσ.
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Let ~C ∈ RS
>0 be a vector of constants we will set later. We consider the rescaled matrix M̃ =

√
~C
⊗2

�M .

This can be generated by M̃ = M̂ + M , where M̂ is a random symmetric matrix with independent entries
on and above the diagonal

M̂i,j ∼ N

(
0,
Cs(i)Cs(j)w

2
s(i),s(j)

2N

)
and M is a random diagonal matrix with independent entries

M i,i ∼ N

(
0,
C2
s(i)w

2
s(i),s(i)

2N

)
.

Clearly E‖M‖op = O(
√
N−1 logN). [BBvH23, Theorem 1.2] states that

E‖M̂‖op ≤ ‖Xfree‖op +O
(
v1/2σ1/2(logN)3/4

)
,

where ‖Xfree‖op, σ, v are defined as follows. We have

σ =

√
E‖M̂2‖op = O(1), v =

√
‖Cov(M̂)‖op,

where Cov(M̂) ∈ RN2×N2

is the covariance matrix of the entries of M̂ and has operator norm O(1/N). It
follows that the error term v1/2σ1/2(logN)3/4 contributes oN (1). Finally [BBvH23, Lemma 3.2] states that
in our setting,

‖Xfree‖op = 2 sup
a∈[0,1]N∑
i ai=1

∑
i∈[N ]

√√√√ai
∑
i′∈[N ]

Cs(i)Cs(i′)w
2
s(i),s(i′)ai′

2N

It is not difficult to see by concavity of the square-root that, for λs,N = |Is|/N (so λs,N → λs) replacing all
ai such that i ∈ Is with

As = λ−1
s,N

∑
i:s(i)=s

ai

only improves the right-hand side. Substituting Bs = CsAs, we conclude that

‖Xfree‖op = sup
~A∈RS

≥0∑
s λs,NAs=1

∑
s∈S

λs,N

√
2As

∑
s′∈S

λs′CsCs′w2
s,s′As′

= sup
~B∈RS

≥0∑
s C
−1
s λs,NBs=1

∑
s∈S

λs,N

√
2Bs

∑
s′∈S

λs′w2
s,s′Bs′ .

From the above discussion, ‖M̃‖op ≤ ‖Xfree‖op + oN (1). Moreover we observe that

GSN =
1

N
max

‖σs‖22≤λsN
σ>Mσ =

1

N
max

‖σs‖22≤C
−1
s λsN

σ>M̃σ

≤ 1

N
max

‖σ‖22≤
∑
s∈S C−1

s λsN
σ>M̃σ =

(∑
s∈S

C−1
s λs

)
‖M̃‖op .

251



Combining and using homogeneity, we find

EGSN ≤

(∑
s∈S

C−1
s λs

)
E‖M̃‖op

=

(∑
s∈S

C−1
s λs

)
sup
~B∈RS

≥0∑
s C
−1
s λs,NBs=1

∑
s∈S

λs,N

√
2Bs

∑
s′∈S

λs′,Nw2
s,s′Bs′ + oN (1)

=

∑
s∈S C−1

s λs∑
s∈S C−1

s λs,N
· sup

~D∈RS
≥0∑

s C
−1
s λs,NDs=

∑
s∈S C−1

s λs,N

∑
s∈S

λs,N

√
2Ds

∑
s′∈S

λs′,Nw2
s,s′Ds′ + oN (1). (5.106)

If the supremum in (5.106) is attained at ~D = ~1, then (because λs,N → λs) we get the desired bound

EGSN ≤
∑
s∈S

λs

√
2
∑
s′∈S

λs′w2
s,s′ + oN (1).

Crucially, we observe that the expression

F ( ~D) =
∑
s∈S

λs,N

√
2Ds

∑
s′∈S

λs′,Nw2
s,s′Ds′ (5.107)

is concave in ~D. Therefore if ~D = ~1 is a critical point of F within the set satisfying
∑
s C
−1
s λs,NDs =∑

s∈S C−1
s λs,N , then it also attains the supremum in (5.106). For the choice Cs =

λs,N
∂DsF

, ~D = ~1 is a critical

point of F . This concludes the proof.

5.B.2 General upper bound

In this subsection, we will prove the following upper bound for the case k = 1.

Proposition 5.B.2. For W,~v as in Lemma 5.3.4,

lim sup
N→∞

EGSN (W,~v, 1) ≤
∑
s∈S

λs

√
v2
s + 2

∑
s′∈S

λs′w2
s,s′ .

By slight abuse of notation, let HN = H1
N,1 and GSN (W,~v) = GSN (W,~v, 1). Recall that

HN (σ) = 〈~v � g,σ〉+ H̃N (σ), H̃N (σ) =
1√
N
〈W �G,σ⊗2〉

where g ∈ RN , G ∈ RN×N have i.i.d. standard Gaussian entries. Define

A(W,~v) = lim sup
N→∞

EGSN (W,~v).

We first establish some basic properties of this limit.

Lemma 5.B.3. A satisfies the following properties.

(a) For any c > 0, A(cW, c~v) = cA(W,~v).

(b) A(0, ~v) =
∑
s∈S λsvs.

(c) A(W,~0) ≤
∑
s∈S λs

√
2
∑
s′∈S λs′w2

s,s′ .

(d) A(W,~v) ≤ A(W,~0) +A(0, ~v).
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Proof. Part (a) is obvious. Part (b) follows from

EGSN (0, ~v) =
1

N
E max
σ∈SN

〈~v � g,σ〉 =
1

N

∑
s∈S

√
λsNvsE‖gs‖2 =

∑
s∈S

λsvs + oN (1).

Part (c) follows from Proposition 5.B.1. Part (d) follows from

GSN (W,~v) =
1

N
max
σ∈SN

(
〈~v � g,σ〉+

1√
N
〈W �G,σ⊗2〉

)
≥ 1

N
max
σ∈SN

〈~v � g,σ〉+
1

N
max
σ∈SN

1√
N
〈W �G,σ⊗2〉

= GSN (W,~0) + GSN (0, ~v). (5.108)

Next we show some a priori regularity conditions on A.

Proposition 5.B.4. Let

C(W,~v) = 4

∑
s∈S

λsv
2
s +

∑
s,s′∈S

λsλs′w
2
s,s′

 .

Then, for sufficiently large N and all t > 0,

P [|GSN (W,~v)− EGSN (W,~v)| > t] ≤ 2 exp

(
− Nt2

C(W,~v)

)
.

Proof. Let C = C(W,~v). For any σ ∈ SN ,

EHN (σ)2 = ‖~v � σ‖22 +
1

N

∥∥W � σ⊗2
∥∥2

F

= N

∑
s∈S

λs,Nv
2
s +

∑
s,s′∈S

λs,Nλs′,Nw
2
s,s′

 ≤ CN

2
.

for large enough N . By the Borell-TIS inequality, maxσ∈SN HN (σ) is CN/2-subgaussian, so GSN (W,~v) is
C/2N -subgaussian, which implies the result.

For ~a = (as)s∈S ′ ∈ [0, 1]S , define W (W,~v,~a) = (w′s,s′)s,s′∈S and ~v(W,~v,~a) = (v′s)s∈S where

w′s,s′ =
√

(1− as)(1− as′)ws,s′ , v′s =

√√√√2(1− as)

(∑
s′∈S

λs′as′w2
s,s′

)
.

We will prove Proposition 5.B.2 using the following recursive upper bound in A.

Lemma 5.B.5. For W,~v as in Lemma 5.3.4,

A(W,~v) ≤ max
~a∈[0,1]S

∑
s∈S

λsvs
√
as +A (W (W,~v,~a), ~v(W,~v,~a)) . (5.109)

Proof. Define ĝ ∈ SN by ĝs =
√
λsNgs
‖gs‖2

for each s ∈ S . For ~a ∈ [0, 1]S , define

GSN (W,~v;~a) =
1

N
max

σ∈RN (~a)
HN (σ), RN (~a) =

{
σ ∈ SN : R(σ, ĝ) =

√
~a
}
.

For a non-random ~a and any σ ∈ RN (~a),

〈~v � g,σ〉 = N
∑
s∈S

λsvs
√
as
‖gs‖2√
λsN

.
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For σ ∈ RN (~a), we may write σ =
√
~a � ĝ +

√
~1− ~a � ρ for ρ ∈ RN (~0). Define the Gaussian process

Ĥ~a
N (ρ) = H̃N

(√
~a � ĝ+

√
~1− ~a � ρ

)
, which is supported on RN (~0). We next calculate the covariance of this

process. Recall that the covariance of H̃N is

EH̃N (σ)H̃N (σ′) = Nξ(R(σ,σ′)), ξ(~x) =
〈
W �W, (~λ� ~x)⊗2

〉
.

Because g,G are independent, the covariance of Ĥ~a
N is

EĤ~a
N (ρ)Ĥ~a

N (ρ′) = Nξ~a(R(ρ,ρ′)), (5.110)

where, for W ′ = W (W,~v,~a) and ~v′ = ~v(W,~v,~a),

ξ~a(~x) = ξ
(
~a+ (~1− ~a)� ~x

)
=
〈
W �W, (~λ� ~a+ ~λ� (1− ~a)� ~x)⊗2

〉
=
〈
W ′ �W ′, (~λ� ~x)⊗2

〉
+
〈
~v′ � ~v′, ~λ� ~x

〉
+
〈
W �W, (~λ� ~a)⊗2

〉
. (5.111)

We may construct a Gaussian process H
~a

N (conditional on g) on SN with covariance (5.110) whose restriction

to RN (~0) agrees with Ĥ~a
N . Thus

GSN (W,~v;~a) =
∑
s∈S

λsvs
√
as
‖gs‖2√
λsN

+
1

N
max

ρ∈RN (~0)
Ĥ~a
N (ρ)

≤
∑
s∈S

λsvs
√
as
‖gs‖2√
λsN

+
1

N
max
ρ∈SN

H
~a

N (ρ).

Moreover,

1

N
max
ρ∈SN

H
~a

N (ρ) =d GS(W (W,~v,~a), ~v(W,~v,~a)) +
1√
N

〈
W �W, (~λ� ~a)⊗2

〉1/2

Z

for an independent Z ∼ N (0, 1). Let D = {0, 1
N , . . . ,

N−1
N , 1}S . Let E be the event that

(a) For a constant L, HN (σ) is L
√
N -Lipschitz on σ ∈ SN . By Proposition 5.1.23, this occurs with

probability 1− exp(−CN).

(b) For all s ∈ S , |‖gs‖2 −
√
λs,NN | ≤ N1/4; by standard concentration inequalities this holds with

probability 1− r exp(−CN1/2).

(c) For all ~a ∈ D, | 1
N maxρ∈SN H

~a

N (ρ)−EGSN (W (W,~v,~a), ~v(W,~v,~a))| ≤ N−1/4; by Proposition 5.B.4 and

standard tail bounds on Z this holds with probability 1− 2(N + 1)r exp(−CN1/2). Here we use that
for ~a ∈ D, the constants C(W (W,~v,~a), ~v(W,~v,~a)) in Proposition 5.B.4 are uniformly upper bounded.

By adjusting C, P(E) ≥ 1− exp(−CN1/2). On E , if σ ∈ SN maximizes HN , we can find σ′ ∈
⋃
~a∈DRN (~a)

with ‖σ′ − σ‖2 ≤ O(1/
√
N). By the Lipschitz condition (a), |H(σ)−H(σ′)| ≤ O(1). So,

GSN (W,~v) =
1

N
HN (σ) ≤ 1

N
HN (σ′) +O(1/N)

≤ max
~a∈D

GSN (W,~v;~a) +O(1/N)

≤ max
~a∈D

(∑
s∈S

λsvs
√
as + EGSN (W (W,~v,~a), ~v(W,~v,~a))

)
+ oN (1).

The subgaussianity from Proposition 5.B.4 implies that the contribtion to EGSN (W,~v) from Ec is oN (1), so

EGSN (W,~v) ≤ max
~a∈D

(∑
s∈S

λsvs
√
as + EGSN (W (W,~v,~a), ~v(W,~v,~a))

)
+ oN (1)

≤ max
~a∈[0,1]S

(∑
s∈S

λsvs
√
as + EGSN (W (W,~v,~a), ~v(W,~v,~a))

)
+ oN (1).

Taking lim supN→∞ on both sides yields the result.
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Proof of Proposition 5.B.2. We will show that any A satisfying the properties in Lemma 5.B.3 and the bound
(5.109) must satisfy

A(W,~v) ≤ A∗(W,~v) ≡
∑
s∈S

λs

√
v2
s + 2

∑
s′∈S

λs′w2
s,s′ .

Clearly A∗ satisfies the conclusions of Lemma 5.B.3, with equality in assertion (c). For any ~a ∈ [0, 1]S ,

A∗ (W (W,~v,~a), ~v(W,~v,~a)) =
∑
s∈S

λs

√
2(1− as)

∑
s′∈S

as′λs′w2
s,s′ + 2

∑
s′∈S

λs′(1− as)(1− as′)w2
s,s′

=
∑
s∈S

λs

√
2(1− as)

∑
s′∈S

λs′w2
s,s′ ,

=⇒
∑
s∈S

λsvs
√
as +A∗ (W (W,~v,~a), ~v(W,~v,~a)) =

∑
s∈S

λs

√asvs +
√

1− as
√

2
∑
s′∈S

λs′w2
s,s′


≤
∑
s∈S

λs

√
v2
s + 2

∑
s′∈S

λs′w2
s,s′ = A∗(W,~v)

by Cauchy-Schwarz. Equality holds when

as =
v2
s

v2
s + 2

∑
s′∈S λs′w2

s,s′
(5.112)

for all s ∈ S , and so A∗ satisfies (5.109) with equality.
Suppose A satisfies the conclusions of Lemma 5.B.3 and the inequality (5.109), and there exists (W,~v)

with A(W,~v) > A∗(W,~v). By homogeneity (Lemma 5.B.3(a)), we can assume 1 = ‖W‖1 ≡
∑
s,s′∈S ws,s′ .

For any small δ > 0, we may choose (W ∗, ~v∗) such that ‖W ∗‖1 = 1 and

A(W ∗, ~v∗)−A∗(W ∗, ~v∗) ≥ (1− δ) sup
(W,~v):‖W‖1=1

(A(W,~v)−A∗(W,~v)) > 0.

Set
~a∗ = arg max

~a∈[0,1]S

∑
s∈S

λsv
∗
s

√
as +A (W (W ∗, ~v∗,~a), ~v(W ∗, ~v∗,~a)) ,

and W ′ = W (W ∗, ~v∗,~a∗), ~v′ = ~v(W ∗, ~v∗,~a∗), so

A(W ∗, ~v∗) ≤
∑
s∈S

λsv
∗
s

√
a∗s +A(W ′, ~v′),

A∗(W
∗, ~v∗) ≥

∑
s∈S

λsv
∗
s

√
a∗s +A∗(W

′, ~v′).

Here, the second inequality uses that A∗ satisfies (5.109) with equality. Therefore

A(W ′, ~v′)−A∗(W ′, ~v′) ≥ A(W ∗, ~v∗)−A∗(W ∗, ~v∗) ≥ (1− δ) sup
(W,~v):‖W‖1=1

(A(W,~v)−A∗(W,~v)) . (5.113)

By homogeneity, this implies ‖W ′‖1 ≥ 1 − δ. Let S0 ⊆ S be the set of s for which there exists s′ with

ws,s′ ≥ δ1 ≡
√

2δ. For such s, s′,

δ ≥ ‖W ∗‖1 − ‖W
′‖1 ≥ w

∗
s,s′ − w′s,s′ ≥

(
1−
√

1− as
)
ws,s′ ≥

1

2
asws,s′ ≥

1

2
asδ1.

Thus, for s ∈ S0, as ≤ δ1. Of course, for s ∈ S \S0, ws,s′ ≤ δ1 for all s′ ∈ S . Thus for all s ∈ S ,

v′s ≤
√

2
∑
s′∈S

λs′δ1 =
√

2δ1 ≡ δ2.
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By parts (d), (b), and (c) of Lemma 5.B.3,

A(W ′, ~v′) ≤ A(W ′,~0) +A(0, ~v′) ≤ A(W ′,~0) + δ2 ≤ A∗(W ′,~0) + δ2.

By inspection, A∗(W
′, ~v′) ≥ A∗(W ′,~0). Thus

A(W ′, ~v′)−A∗(W ′, ~v′) ≤ δ2.

For small enough δ > 0, this contradicts (5.113).

Finally, the upper bound for k = 1 directly implies the upper bound for general k.

Corollary 5.B.6. For W,~v as in Lemma 5.3.4,

lim sup
N→∞

EGSN (W,~v, k) ≤
∑
s∈S

λs

√
v2
s + 2

∑
s′∈S

λs′w2
s,s′ .

Proof. Note that (recall (5.49))

GSN (W,~v, k) =
1

kN
max
~σ∈Sk,⊥N

HN,k ≤
1

k

k∑
i=1

1

N
max
σi∈SN

Hi
N,k(σi).

Taking expectations yields EGSN (W,~v, k) ≤ EGSN (W,~v, 1). This and Proposition 5.B.2 imply the result.

Remark 5.B.7. The proof of Proposition 5.B.2 via the recursive inequality (5.109) extends to the ground
state energies in multi-species spherical spin glasses with general (non-quadratic) interactions. It thus gives
an elementary way to upper bound the ground state energy for spin glasses with external field given the
ground state energy of spin glasses without external field, when the latter is known. As we will see in the
next subsection, it is possible to construct points where this recursive inequality holds with (approximate)
equality, so the upper bound is sharp.

5.B.3 Lower bound

In this subsection, we will constructively prove the matching lower bound to Corollary 5.B.6.

Proposition 5.B.8. For W,~v as in Lemma 5.3.4,

lim inf
N→∞

EGSN (W,~v, k) ≥
∑
s∈S

λs

√
v2
s + 2

∑
s′∈S

λs′w2
s,s′ .

Lemma 5.B.9. Let SN = {x ∈ RN : ‖x‖2 =
√
N}. Suppose y1, . . . ,yk ∈ SN satisfy |〈yi,yj〉| ≤ N2/3 for

all i 6= j. Then there exist pairwise orthogonal z1, . . . ,zk ∈ SN such that span(z1, . . . ,zk) = span(y1, . . . ,yk)
and 〈yi, zi〉 ≥ N − 4kN1/3.

Proof. We define z1, . . . ,zk by applying the Gram-Schmidt algorithm to y1, . . . ,yk: let z1 = y1, and for
2 ≤ i ≤ k, let

ỹi = yi −
i−1∑
j=1

〈zj ,yi〉
N

zj , zi =

√
N∥∥∥ỹi∥∥∥

2

ỹi.

Clearly span(z1, . . . ,zk) = span(y1, . . . ,yk). We will prove by induction on i that for all ` > i, |〈zi,y`〉| ≤
2N2/3. The base case i = 1 is true by hypothesis. For i > 1, we have

∥∥∥ỹi∥∥∥2

2
= N

1−
i−1∑
j=1

〈zj ,yi〉2

N

 ∈ [N(1− 4kN−2/3), N
]
,
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using the inductive hypothesis. Moreover, for ` > i,

|〈ỹi,y`〉| ≤ |〈yi,y`〉|+
i−1∑
j=1

|〈zj ,yi〉||〈zj ,y`〉|
N

≤ N2/3
(

1 + 4kN−1/3
)
.

Therefore

|〈zi,y`〉| ≤ N2/3
(

1 + 4kN−1/3
)(

1− kN−2/3
)−1/2

≤ 2N2/3,

completing the induction. Now 〈ỹi,yi〉 =
∥∥∥ỹi∥∥∥2

2
, so

〈zi,yi〉 =
√
N
∥∥∥ỹi∥∥∥

2
≥ N

(
1− 4kN−2/3

)1/2

≥ N − 4kN1/3.

Recall that λs,N = |Is|/N . Let δN = maxs∈S |λs,Nλs − 1|.

Lemma 5.B.10. There exists an event E ∈ σ(g1, . . . , gk) with P(E) ≥ 1 − exp(−CN1/3) such that on this

event, there exists ~x = (x1, . . . ,xk) ∈ Sk,⊥N such that the following properties hold.

(a) For all i,
∥∥∥R(gi, gi)−~1

∥∥∥
∞
≤ δN +N−1/4.

(b) For all i,
∥∥∥R(gi,xi)−~1

∥∥∥
∞
≤ δN +N−1/4.

(c) For all i, R(xi,xi) = ~1.

(d) For all s ∈ S , span(x1
s, . . . ,x

k
s) = span(g1

s, . . . , g
k
s).

Proof. By standard concentration inequalities, for each i ∈ [k] and s ∈ S , |〈gis, gis〉 − λs,NN | ≤ N2/3 with
probability 1− exp(−CN1/3), which implies∣∣∣∣ 〈gis, gis〉λsN

− 1

∣∣∣∣ ≤ ∣∣∣∣λs,Nλs − 1

∣∣∣∣+
N2/3

λsN
≤ δN +N−1/4.

When this holds for all i ∈ [k], s ∈ S , part (a) follows.

For each i ∈ [k], define ĝi ∈ RN by ĝis =

√
λs,NN

‖gis‖2
gis for all s ∈ S . Note that each ĝis is a uniformly

random point on the sphere of radius
√
λs,NN supported on the coordinates Is.

Fix s ∈ S . By standard concentration inequalities, for each pair of distinct i, j ∈ [k], |〈ĝis, ĝ
j
s〉| ≤

(λs,NN)2/3 with probability 1− exp(−CN1/3). If this holds for all s, i, j, Lemma 5.B.9 implies the existence
of orthogonal z1

s, . . . ,z
k
s on the sphere of radius

√
λs,NN supported on coordinates Is with

span(z1
s, . . . ,z

k
s) = span(ĝ1

s, . . . , ĝ
k
s) (5.114)

and
λs,NN − 4k(λs,NN)1/3 ≤ 〈zks , ĝ

i
s〉 ≤ λs,NN.

Let xis = zis ·
√
λs/λs,N , so

〈xis, gis〉
λsN

=
〈zis, ĝ

i
s〉

λs,NN
·
√
λs,N
λs
·
∥∥gis∥∥√
λs,NN

= (1 +O(N−1/3)

√
λs,N
λs

.

Thus ∣∣∣∣ 〈xis, gis〉λsN
− 1

∣∣∣∣ ≤
∣∣∣∣∣
√
λs,N
λs
− 1

∣∣∣∣∣+O(N−1/3) ≤ δN +N−1/4.

If this holds for all s, part (b) follows. By a union bound, adjusting C as necessary, the above events
simultaneously hold with probability 1 − exp(−CN1/3). By construction, R(xi,xi) = ~1 and R(xi,xj) = ~0

for all i 6= j, which implies part (c) and ~x ∈ Sk,⊥N . The relation (5.114) implies part (d).
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The following recursive lower bound for EGSN (W,~v, k) is a converse to Lemma 5.B.5 and is the main
step in the proof of Proposition 5.B.8.

Lemma 5.B.11. Let W,~v be as in Lemma 5.3.4 and ~a ∈ [0, 1]S , and set W ′ = W (W,~v,~a), ~v′ = ~v(W,~v,~a).
Then,

EGSN (W,~v, k) ≥
∑
s∈S

λsvs
√
as + EGSN−kr(W

′, ~v′, k)− oN (1),

where GSN−kr denotes the ground state energy (see (5.50)) of a dimension N − kr multi-species quadratic
spin glass with species sizes Ĩs = Is − k.

Proof. Suppose for now the event E in Lemma 5.B.10 holds and let ~x = (x1, . . . ,xk) be as in this lemma.
Let

SN,⊥ ≡
{
ρ ∈ SN : R(ρ,xi) = ~0 ∀i ∈ [k]

}
=
{
ρ ∈ SN : R(ρ, gi) = ~0 ∀i ∈ [k]

}
(5.115)

where the second equality follows from Lemma 5.B.10(d) and

Sk,⊥N,⊥ ≡
{
~ρ = (ρ1, . . . ,ρk) ∈ SkN,⊥ : R(ρi,ρj) = ~0 ∀i 6= j

}
. (5.116)

For each i ∈ [k] let

σi =
√
~a � xi +

√
~1− ~a � ρi (5.117)

where ~ρ = (ρ1, . . . ,ρk) ∈ Sk,⊥N,⊥. The orthogonality relations in (5.115) and (5.116) imply ~σ = (σ1, . . . ,σk) ∈
Sk,⊥N . Then,

1

N
HN,k(~σ) =

1

kN

k∑
i=1

〈~v � gi,
√
~a � xi〉+

1

kN3/2

k∑
i=1

〈
W �G, (

√
~a � xi +

√
~1− ~a � ρi)⊗2

〉
. (5.118)

By Lemma 5.B.10(a, b),
1

N
〈W �G,

√
~a � xi〉 =

∑
s∈S

λsvs
√
as + oN (1).

Note that the state space SN,⊥ is SN with k fewer dimensions in each species, and these dimensions (and ~x)

are independent of G. So, optimizing the second term of (5.118) over ~ρ ∈ Sk,⊥N,⊥ is equivalent to optimizing a
dimension N − kr multi-species quadratic spin glass. The same covariance calculation as (5.111) shows that

sup
~ρ∈Sk,⊥N,⊥

1

N3/2

〈
W �G, (

√
~a � xi +

√
~1− ~a � ρi)⊗2

〉
=d

√
N − kr
N

GSN−kr(W
′, ~v′) +O(N−1/2)Z,

where Z ∼ N (0, 1) is independent of GSN−kr. Thus

EGSN (W,~v, k) ≥ E1{E} 1

N
HN,k(~σ) ≥

∑
s∈S

λsvs
√
as + EGSN−kr(W

′, ~v′, k)− oN (1).

Lemma 5.B.11 suggests a natural way to construct an approximate ground state of HN,k. First, use
Gram-Schmidt orthogonalization to produce ~x = (x1, . . . ,xk) from the external fields g1, . . . , gk, as in

Lemma 5.B.10. Choose ~a ∈ [0, 1]S and set ~σ as in (5.117), for ~ρ ∈ Sk,⊥N,⊥ to be determined. The correlations

of the σi with the external fields gi contribute energy
∑
s∈S λsvs

√
as, while the optimization over ~ρ is

equivalent to optimizing another quadratic multi-species spin glass, whose parameters depend on ~a. Finally,
recursively optimize ~ρ. The following proof demonstrates that when ~v > ~0, there exists a sequence of choices
of ~a such that running this algorithm to a large constant recursion depth finds a near ground state ~σ ∈ Sk,⊥N
of HN,k. (If some entries of ~v are zero, the algorithm succeeds after first introducing a small artificial external
field.)
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Proof of Proposition 5.B.8. Assume for now that ~v � ~0 where the inequality is strict in each coordinate.
Define W (0) = W , ~v(0) = ~v. Denote the relation (5.112) by ~a = ~a(W,~v). Let T be a large constant to be
determined, and for 0 ≤ t ≤ T − 1 define

~a(t) = ~a(W (t), ~v(t)), W (t+1) = W (W (t), ~v(t),~a(t)), ~v(t+1) = ~v(W (t), ~v(t),~a(t)).

Further define

E(t) =
∑
s∈S

λs

√
(v

(t)
s )2 + 2

∑
s′∈S

λs′(w
(t)
s,s′)

2, F (t) =
∑
s∈S

λsv
(t)
s

√
a

(t)
s .

Let δ > 0 be arbitrary; we will show that EGSN (W,~v) ≥ E(0)− δ for all sufficiently large N . Lemma 5.B.11
with the choice ~a = ~a(t) implies that

EGSN−tkr(W
(t), ~v(t)) ≥ F (t) + EGSN−(t+1)kr(W

(t+1), ~v(t+1))− oN (1),

and summing yields

EGSN (W,~v) ≥
T−1∑
t=0

F (t) − oN (1).

Note that

F (t) =
∑
s∈S

λs

√
(v

(t)
s )2 + 2

∑
s′∈S

λs′(w
(t)
s,s′)

2 · a(t)
s ,

E(t+1) =
∑
s∈S

λs

√
(v

(t)
s )2 + 2

∑
s′∈S

λs′(w
(t)
s,s′)

2 · (1− a(t)
s ),

so F (t) = E(t) − E(t+1). Thus
EGSN (W,~v) ≥ E(0) − E(T ) − oN (1).

Since
(v(t+1)
s )2 + 2

∑
s′∈S

λs′(w
(t+1)
s,s′ )2 = 2(1− a(t)

s )
∑
s′∈S

∑
s′

λs′(w
(t)
s,s′)

2

we have

a(t+1)
s =

(v
(t+1)
s )2

(v
(t+1)
s )2 + 2

∑
s′∈S λs′(w

(t+1)
s,s′ )2

=

∑
s′∈S a

(t)
s′ λs′(w

(t)
s,s′)

2∑
s′∈S λs′(w

(t)
s,s′)

2
.

It follows that, for α(t) = mins∈S a
(t)
s , we have α(t+1) ≥ α(t). The assumption ~v > ~0 ensures α(0) > 0.

Because E(t+1)/E(t) ≤ 1− α(t), we have

E(T ) ≤ E(0)(1− α(0))T < δ/2

for sufficiently large constant T . This implies EGSN (W,~v) ≥ E(0)− δ/2− oN (1) ≥ E(0)− δ. This proves the
result when ~v � ~0.

If some coordinates of ~v are zero, we apply this result to ~v + η~1 for small η > 0. By (5.108),

GSN (W,~v) ≥ GSN (W,~v + η~1)−GSN (0, η~1),

so for sufficiently large N ,

EGSN (W,~v) ≥
∑
s∈S

λs

√
v2
s + 2

∑
s′∈S

λs′w2
s,s′ − δ − η.

As this holds for any δ, η > 0 the result follows.

Proof of Lemma 5.3.4. Follows from Corollary 5.B.6 and Proposition 5.B.8.
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5.C Deferred proofs from Section 5.4

5.C.1 Existence of a maximizer: proof of Proposition 5.4.10

Proposition 5.4.10. There exists a maximizer (p,Φ, q0) ∈M for A and A(p,Φ; q0) <∞.

Given (p,Φ, q0) ∈ M we extend p,Φ to domain [0, 1] by setting p(q) = 0 for q ∈ [0, q0) and making Φ
linear on [0, q0] with Φ(0) = ~0. Using this canonical extension we equip M with the metric

d
(
(p1,Φ1, q1

0), (p2,Φ2, q2
0)
)

=
∥∥p1 − p2

∥∥
L1([0,1])

+
∥∥Φ1 − Φ2

∥∥
L1([0,1])

+ |q1
0 − q2

0 |. (5.119)

We will prove that M is a compact space on which A is upper semi-continuous. Existence of a triple
(p,Φ; q0) ∈M maximizing (5.7) within this space then follows.

Proposition 5.C.1. The space M with metric (5.119) is compact.

Proof. Given an infinite sequence (pn,Φn, qn0 )n≥0 of points in M, we show there is a limit point. First find
a subsequence (an) along which the convergence qan0 → q0 holds. Then the subsequence (pan)n≥0 has a
subsubsequential limit in the space L1([q0, 1]); similarly for (Φans )n≥0, for each s ∈ S . Thus we may choose
a subsequence bn of an on which pbn → p and Φbns → Φs (for all s ∈ S ) in L1([q0, 1]). It is easy to see that
p and each Φs vanishes on [0, q0), and that Φ satisfies admissibility. It is easy to see that

‖pbn − p‖L1([0,1]) ≤ ‖pbn − p‖L1([q0,1]) + |q0 − qbn0 |

and
‖Φbns − Φs‖L1([0,1]) ≤ ‖Φbns − Φs‖L1([q0,1]) + |q0 − qbn0 |.

It follows that (pbn ,Φbn , qbn0 )→ (p,Φ, q0) in M. This completes the proof.

Proposition 5.C.2. The function A is uniformly bounded on M.

Proof. For any admissible Φ we have by Cauchy-Schwarz∑
s∈S

λs

∫ 1

0

√
Φ′s(q)(p× ξs ◦ Φ)′(q)dq ≤

∑
s∈S

λs

∫ 1

0

(Φ′s(q) + (p× ξs ◦ Φ)′(q)) dq

≤
∑
s∈S

λs

(
1 + ξs(~1)− ξs(~0)

)
. (5.120)

The first term of A is clearly uniformly bounded, so the result follows.

Proposition 5.C.3. A is upper semi-continuous on M.

Proof. Suppose (pbn ,Φbn , qbn0 )→ (p,Φ, q0) in M. We write

|A(pbn ,Φbn ; qbn0 )− A(p,Φ; q0)| ≤
∫ 1

q0

∣∣∣∣√(Φbns )′(q)(pbn × ξs ◦ Φbn)′(q)−
√

Φ′s(q)(p× ξs ◦ Φ)′(q)

∣∣∣∣ dq
+ Cλ

(∣∣∣∣∣
∫ q0

qbn0

√
p′(q) + 1 dq

∣∣∣∣∣+
∑
s∈S

∣∣∣∣√Φns (qn0 )−
√

Φs(q0)

∣∣∣∣
)
.

The sum over s ∈ S obviously tends to 0. Moreover by Cauchy–Schwarz,∣∣∣∣∣
∫ q0

qbn0

√
p′(q) + 1 dq

∣∣∣∣∣ ≤ |q0 − qbn0 |1/2 ·
√
p(q0)− p(qbn0 ) + 1

≤ C ′λ(q0 − qbn0 )1/2.

Therefore it suffices to show the first term above tends to 0. Since the map

(p,Φ) 7→ (p× ξs ◦ Φ)
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from L1([0, 1])|S |+1 → L1([0, 1]) is continuous and returns a non-decreasing function, it suffices to show that

G(f, g) =

∫ 1

0

√
f ′(q)g′(q) dq

is upper semi-continuous on L1([0, 1]) × L1([0, 1]) when restricted to non-decreasing functions. This is
essentially equivalent to upper semi-continuity of Hellinger distance which is well-known.

Combining the results above implies Proposition 5.4.10.

5.C.2 A priori regularity of maximizers

Let (p,Φ, q0) ∈M be a maximizer of A, which exists by Proposition 5.4.10. In this subsection we will prove
the following two propositions.

Proposition 5.4.11. The functions p,Φ are continuously differentiable on [q0+ε, 1] for any ε > 0. Moreover,
there exists L > 0 (possibly depending on (p,Φ; q0) as well as ξ) such that L−1~1 � Φ′(q) � L~1 for almost all
q ∈ (q0, 1].

Proposition 5.4.12. The function p satisfies p(q) > 0 for all q > q0, p(1) = 1, and p(q0) = 0 if q0 > 0.

Lemma 5.C.4. The function p is absolutely continuous and p(1) = 1. Moreover p′ is uniformly bounded on
compact subsets of (q0, 1).

Proof. Given any non-decreasing p : [q0, 1]→ [q0, 1], we may treat p′ as a positive measure via

p′(x)dx = f(x)dx+ µ(dx) (5.121)

for µ a singular-plus-atomic measure and f ∈ L1([q0, 1];R≥0). We may then replace p by p̄ such that

p̄′(x)dx = f(x)dx, and p̄(1) = 1.

Then p̄(x) ≥ p(x) for all x ∈ [q0, 1], and p̄′(x) agrees with p′(x) except for a singular-plus-atomic part. It
follows that

A(p,Φ; q0) ≤ A(p̄,Φ; q0).

Moreover it is easy to see that strict inequality A(p,Φ; q0) < A(p̄,Φ; q0) holds whenever p 6= p̄. We conclude
that p is absolutely continuous and p(1) = 1.

To show the latter statement, we use a similar argument with more care. Let q ∈ (q0, 1) and choose a
large constant C = C(q0, q). Recalling (5.121), suppose ‖f(x)‖L∞([q,1]) > C for a large constant C and let

c ≡
∫ 1

q
(f(x)− C)+ dx

q − q0
.

We may replace f by

fC(x) =


f(x), x ∈ [0, q0)

f(x) + c, x ∈ [q0, q)

min(C, f(x)), x ∈ [q, 1]

and similarly replace p by pC with

p̄′C(x)dx = fC(x) dx, and p̄(1) = 1.
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It is easy to see that pC(x) ≥ p(x) for each x ∈ [0, 1]. Keeping Φ the same, we consider the change in A.
The decrease in A on [q, 1] is at most∑

s∈S

λs

∫ 1

q

√
Φ′s(x)(p× ξs ◦ Φ)′(x)−

√
Φ′s(x)(pC × ξs ◦ Φ)′(x) dx

=
∑
s∈S

λs

∫ 1

q

√
Φ′s(x)

(
p′(x)ξs

(
Φ(x)

)
+ p(x)〈Φ′(x),∇ξs

(
Φ(x)

)
〉
)

−
√

Φ′s(x)
(
p′C(x)ξs

(
Φ(x)

)
+ pC(x)〈Φ′(x),∇ξs

(
Φ(x)

)
〉
)
dx

≤
∑
s∈S

λs

∫ 1

q

√
Φ′s(x)

(
p′(x)ξs

(
Φ(x)

)
+ p(x)〈Φ′(x),∇ξs

(
Φ(x)

)
〉
)

−
√

Φ′s(x)
(
p′C(x)ξs

(
Φ(x)

)
+ p(x)〈Φ′(x),∇ξs

(
Φ(x)

)
〉
)
dx

≤
∑
s∈S

λs

∫ 1

q

√
Φ′s(x)p′(x) · ξs

(
Φ(x)

)
−
√

Φ′s(x)p′C(x) · ξs
(
Φ(x)

)
dx

≤ O(1) ·
∫ 1

q

√
p′(x)−

√
p′C(x)dx

≤ O(1) ·
∫ 1

q

C−1/2(f(x)− C)+ dx

≤ O
(
c(q − q0)√

C

)
.

(5.122)

(In the second inequality we used
√
x+ z−

√
y + z ≤

√
x−√y for x ≥ y ≥ 0, and in the third we used that

Φ′s is uniformly bounded by admissibility.) On x ∈ [q0, q], we find that changing from p to pC increases the
value of A: ∑

s∈S

λs

∫ q

q0

√
Φ′s(x)(pC × ξs ◦ Φ)′(x)−

√
Φ′s(x)(p× ξs ◦ Φ)′(x) dx

=
∑
s∈S

λs

∫ q

q0

√
Φ′s(x)

(
p′C(x)ξs

(
Φ(x)

)
+ pC(x)〈Φ′(x),∇ξs

(
Φ(x)

)
〉
)

−
√

Φ′s(x)
(
p′(x)ξs

(
Φ(x)

)
+ p(x)〈Φ′(x),∇ξs

(
Φ(x)

)
〉
)
dx

≥
∑
s∈S

λs

∫ q

q0

√
Φ′s(x)

(
(p′(x) + c)ξs

(
Φ(x)

)
+ p(x)〈Φ′(x),∇ξs

(
Φ(x)

)
〉
)

−
√

Φ′s(x)
(
p′(x)ξs

(
Φ(x)

)
+ p(x)〈Φ′(x),∇ξs

(
Φ(x)

)
〉
)
dx

≥ Ω(c) ·
∫ q

q0

∑
s∈S

dx√
Φ′s(x)

(
(p′(x) + c)ξs

(
Φ(x)

)
+ p(x)〈Φ′(x),∇ξs

(
Φ(x)

)
〉
) .

By Markov’s inequality, p′(x) ≤ 2
(q−q0) on a set of x ∈ [q0, q] of measure at least q−q0

2 . For each such x, we

have Φ′s(x) ≤ O(1) and ξs(Φ(x)) ≤ O(1). We thus find

Ω(c) ·
∫ q

q0

∑
s∈S

dx√
Φ′s(x)

(
(p′(x) + c)ξs

(
Φ(x)

)
+ p(x)〈Φ′(x),∇ξs

(
Φ(x)

)
〉
) ≥ Ω

(
c(q − q0)√
q − q0 + c

)

Since c ≤ 1
q−q0 , for C sufficiently large, combining with (5.122) above implies that

∑
s∈S

λs

∫ 1

q

√
Φ′s(x)(pC × ξs ◦ Φ)′(x)−

√
Φ′s(x)(p× ξs ◦ Φ)′(x) dx > 0.

262



Since p(x) = pC(x) for x ≤ q0, we find A(p,Φ; q0) < A(pC ,Φ; q0), contradicting maximality of A(p,Φ; q0).
Having reached a contradiction for C sufficiently large, we conclude that p′ is uniformly bounded on [q, 1]
for each q ∈ (q0, 1) as desired.

Lemma 5.C.5. p(q) > 0 holds for all q > q0.

Proof. Suppose not. Then p(q) = 0 for all q ∈ [q0, q0 + ε], for some ε > 0. For δ > 0 small, define

pδ(q) = δ + (1− δ)p(q).

Then ∑
s∈S

λs

∫ q0+ε

q0

√
Φ′s(q)(pδ × ξs ◦ Φ)′(q)dq = δ1/2

∑
s∈S

λs

∫ q0+ε

q0

√
Φ′s(q)(ξ

s ◦ Φ)′(q)dq

≥ δ1/2c(ξ)
∑
s∈S

λs

∫ q0+ε

q0

√
Φ′s(q)

2dq

= δ1/2c(ξ).

while ∑
s∈S

λs

∫ q0+ε

q0

√
Φ′s(q)(p× ξs ◦ Φ)′(q)dq = 0.

On the other hand since pδ(q) ≥ p(q) for all q ∈ [q0, 1] and (pδ)
′ = (1− δ)(p)′ as measures, we obtain∑

s∈S

λs

∫ 1

q0+ε

√
Φ′s(q)(pδ × ξs ◦ Φ)′(q)dq ≥ (1− δ)

∑
s∈S

λs

∫ 1

q0+ε

√
Φ′s(q)(p× ξs ◦ Φ)′(q)dq.

Combining the above implies A(pδ,Φ; q0) > A(p,Φ; q0) for small enough δ, a contradiction.

Lemma 5.C.6. For all s ∈ S and q ∈ (0, 1), we have Φs(q) < 1.

Proof. Suppose Φs0(q∗) = 1; this implies 0 < q0 ≤ q∗ < 1. For small δ > 0 we consider the perturbation Φδ
with Φδ,s = Φs for s 6= s0 and:

Φ′δ,s0(q) =

{
Φ′s0(q) · (1− δ(1− q∗)), q ∈ [0, q∗],

δ, q ∈ [q∗, 1]

Note that Φ′δ,s(q) ≥ (1− O(δ))Φ′s(q) and so also Φδ,s(q) ≥ (1− O(δ))Φs(q) for all s ∈ S and q ∈ [0, 1]. As
A is uniformly bounded, we can thus bound

A(p,Φδ; q0)− A(p,Φ; q0) =
∑
s∈S

hsλs

√
Φδ,s(q0) + λs

∫ 1

q0

√
Φ′δ,s(q)(p× ξs ◦ Φδ)′(q) dq

−
∑
s∈S

hsλs
√

Φs(q0)− λs
∫ 1

q0

√
Φ′s(q)(p× ξs ◦ Φ)′(q) dq

≥ −O(δ) + λs0

∫ 1

1+q∗
2

√
Φ′δ,s(q)(p× ξs ◦ Φ)′(q)−

√
Φ′s(q)(p× ξs ◦ Φ)′(q) dq.

Using Lemma 5.C.5, admissibility and non-degeneracy of ξ, we find that (p × ξs ◦ Φ)′(q) ≥ Ω(q) for all
q ≥ 1+q∗

2 . Therefore

λs0

∫ 1

1+q∗
2

√
Φ′δ,s(q)(p× ξs ◦ Φ)′(q)−

√
Φ′s(q)(p× ξs ◦ Φ)′(q) dq ≥ Ω(δ1/2)

for small δ. Since δ1/2 is of larger order than δ we conclude that A(p,Φδ; q0) > A(p,Φ; q0). This is a
contradiction (recall Lemma 5.4.9) and completes the proof.
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Next we turn our attention to Φ′. Similarly to Lemma 5.C.5, the idea is that the square root function
has infinite derivative at 0.

Lemma 5.C.7. There exists η > 0 such that Φ′(q) � η~1 almost everywhere in q ∈ [q0, 1].

Proof. First, given (p,Φ; q0) choose for some s ∈ S (specified below) a Lebesgue point qs ∈ (q0, 1) of Φ′ with

Φ′s(qs) ≥ a (5.123)

for a > 0. Lemma 5.C.6 ensures this is possible for some a depending only on q0 and Φ(q0) (as long as

q0 < 1, else there is nothing to prove). In fact we can actually find two distinct such points q
(1)
s , q

(2)
s (which

will be helpful below).
Next for small ε > 0 depending only on (p,Φ), define the interval

Js,ε = (qs − ε, qs + ε).

By (5.123) and the fact that qs is a Lebesgue point of Φ′, there is a subset Is,ε ⊆ Js,ε of Lebesgue measure

at least |Is,ε| ≥ |Js,ε|2 = ε such that

Φ′s(q) ≥
a

2
, ∀q ∈ Is,ε. (5.124)

as long as ε > 0 is chosen sufficiently small. A simple consequence is the estimate

Cε := Φs(qs + ε)− Φs(qs − ε) =

∫ qs+ε

qs−ε
Φ′s(q)dq ≥

aε

2
. (5.125)

With the setup above complete (except that s is not yet specified), suppose the conclusion is false let η
be sufficiently small depending on (p,Φ, ε) for ε as above. Then there exist s, s0 ∈ S and q̂s0 ∈ (q0, 1) which
is a Lebesgue point for ∇Φ such that

Φ′s(q̂s0) ≤ η, (5.126)

Φ′s0(q̂s0) ≥ 1. (5.127)

Indeed if q is any Lebesgue point of ∇Φ satisfying (5.126) for some s, then (5.127) holds for some s0 6= s by
admissibility and we define q̂s0 = q this way. The bound (5.126) determines the species s chosen initially.

As q̂s0 is also a Lebesgue point of Φ′, in light of (5.126) and (5.127), there exists a set Is0,η ⊆ Js0,ε =
(q̂s0 − ε, q̂s0 + ε) of positive Lebesgue measure such that the inequalities

Φ′s(q) ≤ 2η, (5.128)

Φ′s0(q) ≥ a

2
. (5.129)

both hold for all q ∈ Is0,η. Moreover we can assume Js,ε, Js0,ε are disjoint, i.e. |qs − q̂s0 | > 2ε. Indeed as

noted earlier we can choose two candidate points q
(1)
s , q

(2)
s . If ε < |q(1)

s − q(2)
s |/5 is taken, at least one of them

suffices for any q̂s0 ∈ (q0, 1).
Next choose δ ∈ (0, η) small and consider the perturbation Φδ with Φδ(q0) = Φ(q0) and

Φ′δ,s(q) =


Φ′s(q) + δ, q ∈ Is0,η
Φ′s(q)

(
1− δ|Is0,η|

Cε

)
, ∀q ∈ Js,ε

Φ′s(q), otherwise

and Φδ,s′ = Φs′ for all s′ ∈ S \{s}. (Note we used disjointness of Js,ε, Js0,ε for this definition to make sense.)
By Lemma 5.4.9, we must have A(p,Φδ; q0) ≥ A(p,Φ; q0) although Φδ may not be admissible. Then for
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δ ≤ η, ∫
Is0,η

√
Φ′δ,s(q)(p× ξs ◦ Φ)′(q)−

√
Φ′s(q)(p× ξs ◦ Φ)′(q)dq

(5.128)

≥ (
√

2η + δ −
√

2η)

∫
Is0,η

√
(p× ξs ◦ Φ)′(q)dq

≥ δp(qs − ε)1/2

10η1/2

∫
Is0,η

√
(ξs ◦ Φ)′(q)dq

≥ δp(qs/2)1/2c(ξ)

10η1/2

∫
Is0,η

√
Φ′s0(q)dq

(5.129)

≥
δa1/2p(qs/2)1/2c(ξ)|Is0,η|

20η1/2
. (5.130)

We used non-degeneracy of ξ in the penultimate step. On the other hand recalling (5.125), it follows that
for all s̃ ∈ S and almost all q ∈ [q0, 1]:

Φ′δ,s̃(q) ≥
(

1−O
(
δ|Is0,η|
ε

))
Φ′s̃(q). (5.131)

Integrating on [q0, q], we find

Φδ,s̃(q) ≥
(

1−O
(
δ|Is0,η|
ε

))
Φs̃(q) (5.132)

for all q ∈ [q0, 1]. By the chain rule we similarly obtain that for all s̃ ∈ S ,

(p× ξs̃ ◦ Φδ)
′ ≥

(
1−O

(
δ|Is0,η|
ε

))
(p× ξs̃ ◦ Φ)′, (5.133)

(p× ξs̃ ◦ Φδ)(q) ≥
(

1−O
(
δ|Is0,η|
ε

))
(p× ξs̃ ◦ Φ)(q). (5.134)

It follows from (5.131), (5.132), (5.133), (5.134) that∫
Is0,η

√
Φ′δ,s(q)(p× ξs ◦ Φδ)′(q) ≥

(
1−O

(
δ|Is0,η|
ε

))∫
Is0,η

√
Φ′δ,s(q)(p× ξs ◦ Φ)′(q)dq

(5.120)

≥
∫
Is0,η

√
Φ′δ,s(q)(p× ξs ◦ Φ)′(q)dq −O

(
δ|Is0,η|
ε

)
. (5.135)

Since Φδ and Φ differ only inside [q0, 1] we use A[q0,1] below to denote the second term of A. We have:

A[q0,1](p,Φ) =
∑
s̃∈S

λs̃

∫ 1

q0

√
Φ′s̃(q)(p× ξs̃ ◦ Φ)′(q)dq

= λs

∫
Is0,η

√
Φ′s(q)(p× ξs ◦ Φ)′(q)dq + λs

∫
[q0,1]\Is0,η

√
Φ′s(q)(p× ξs ◦ Φ)′(q)dq

+
∑

s̃∈S \{s}

λs̃

∫ 1

q0

√
Φ′s̃(q)(p× ξs̃ ◦ Φ)′(q)dq

≡ I + II + III.
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Similarly for J instead of I,

A[q0,1](p,Φδ) =
∑
s̃∈S

λs̃

∫ 1

q0

√
Φ′δ,s̃(q)(p× ξs̃ ◦ Φδ)′(q)dq

= λs

∫
Is0,η

√
(Φδ,s)′(q)(p× ξs ◦ Φδ)′(q)dq + λs

∫
[q0,1]\Is0,η

√
(Φδ,s)′(q)(p× ξs ◦ Φδ)′(q)dq

+
∑

s̃∈S \{s}

λs̃

∫ 1

q0

√
Φ′δ,s̃(q)(p× ξs̃ ◦ Φδ)′(q)dq

≡ Iδ + IIδ + IIIδ.

Using (5.131), (5.132), (5.133), (5.134) again, we obtain

IIδ ≥
(

1−O
(
δ|Is0,η|
ε

))
II,

IIIδ ≥
(

1−O
(
δ|Is0,η|
ε

))
III.

Meanwhile (5.130) and (5.135) imply that for δ small compared to η,

Iδ ≥
(

1−O
(
δ|Is0,η|
ε

))
I +

δa1/2p(qs/2)1/2c(ξ)|Is0,η|
20η1/2

.

Combining, we find

A[q0,1](p,Φδ) ≥ A[q0,1](p,Φ) +
δa1/2p(qs/2)1/2c(ξ)|Is0,η|

20η1/2
−O

(
δ|Is0,η|
ε

)
.

Taking η � ε2ap(qs/2)c(ξ)2 and then δ sufficiently small contradicts the maximality of (p,Φ, q0), thus
completing the proof.

Proposition 5.C.8. If q0 > 0, then p(q0) = 0.

Proof. Assume that p(q0) > 0. Consider the perturbation

p̃(q) =

{
p(q) + (q − q0 − ε)δ, q < q0 + ε

p(q), q ≥ q0 + ε.

The function p̃ is non-decreasing, and is non-negative for sufficiently small ε, δ > 0. For q < q0 + ε we find

d

dδ
(p× ξs ◦ Φ)′(q) =

d

dδ
(p′(q)ξs(Φ(q)) + p(q)(ξs ◦ Φ)′(q))

= ξs(Φ(q))− (q0 + ε− q)(ξs ◦ Φ)′(q)

≥ ξs(Φ(q))−O(ε).

If q0 > 0, then ξs(Φ(q)) ≥ c(q0) > 0 by admissibility and non-degeneracy of Φ. This contradicts optimality
of (p,Φ, q0) and completes the proof.

Proof of Proposition 5.4.12. Follows from Lemmas 5.C.4 and 5.C.5 and Proposition 5.C.8.

Continuous differentiability on (q0, 1]

Here we show that p and Φ are continuously differentiable on compact subsets of (q0, 1] using another local
perturbation argument.

Lemma 5.C.9. The function f(x, y) =
√
xy is concave on R2

>0, with strict concavity on all lines except for
those passing through the origin.
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Proof. Given x0, y0, x1, y1 > 0 with (x0, y0) 6= (x1, y1) and c ∈ (0, 1), we have

(x0y1 − x1y0)2 ≥ 0

=⇒ x2
0y

2
1 + x2

1y
2
0 + 2x0x1y0y1 ≥ 4x0x1y0y1

=⇒ (x0y1 + x1y0) ≥ 2
√
x0x1y0y1

=⇒ c(1− c) · (x0y1 + x1y0) ≥ 2c(1− c)√x0x1y0y1

=⇒ c2x0y0 + (1− c)2x0y0) + c(1− c) · (x0y1 + x1y0) ≥ c2x0y0 + (1− c)2x0y0) + 2c(1− c)√x0x1y0y1

=⇒
√

(cx0 + (1− c)x1)(cy0 + (1− c)y1) ≥ c√x0y0 + (1− c)√x1y1.

Moreover equality holds if and only if it holds in the first step.

Lemma 5.C.10. Both p and Φ are continuously differentiable on compact subsets of (q0, 1].

Proof. We assume that q0 < 1 (else there is nothing to prove), and recall Lemma 5.C.5 throughout. Ad-
missibility implies that Φ is uniformly Lipschitz, and Lemma 5.C.4 shows that p is uniformly Lipschitz on
compact subsets of (q0, 1). Hence both p′(x) and Φ′s exist as non-negative, integrable functions which are
uniformly bounded away from q0.

By an elementary result of [Zaa86], if a measurable function [q0, 1]→ R does not agree with any continuous
function on a full measure set, then it possesses a genuine point of discontinuity q∗ ∈ (q0, 1) such that F
cannot be made continuous at q∗ even by modification on a measure zero set. We fix such a point q∗ for
sake of contradiction. By definition, this means that for some η > 0 depending only on (p,Φ, q∗) and for
arbitrarily small ε > 0, there exist measurable sets I, J ⊆ (q∗ − ε, q∗ + ε) and a ∈ R such that:

|I| = ε1 > 0,

|J | = ε1 > 0,

f(q) ≥ a+ η, ∀q ∈ I,
f(q) ≤ a− η, ∀q ∈ J.

(5.136)

Here f(q) = p′(q) or f(q) = Φ′s(q) for some s ∈ S .
Let γI : [0, ε1]→ I and γJ : [0, ε1]→ J be increasing, measure-preserving bijections (and note that their

inverse functions are also measurable). For convenience we set qI,x = γI(x) and qJ,x = γJ(x). We construct

perturbations p̃, Φ̃ of p and Φ by averaging derivatives on qI,x and qJ,x:

p̃′(qI,x) = p̃′(qJ,x) =
p′(qI,x) + p′(qJ,x)

2
;

p̃′(q) = p′(q), q /∈ I ∪ J ;

Φ̃′s(qI,x) = Φ̃′s(qJ,x) =
Φ′s(qI,x) + Φ′s(qJ,x)

2
;

Φ̃′s(q) = Φ′s(q), q /∈ I ∪ J.

We claim that for fixed q∗, η and sufficiently small ε > 0, we have

A(p̃, Φ̃; q0) > A(p,Φ; q0). (5.137)

This contradicts maximality of (p,Φ) and thus implies the desired continuity of (p′,Φ′).
To begin proving (5.137), recall from Lemma 5.C.4 that p′ is uniformly bounded away from q0, hence

on (q∗ − ε, q∗ + ε). Moreover Φ′ is uniformly bounded by definition. It follows that for all s ∈ S and
q ∈ (q∗ − ε, q∗ + ε),

|p(q)− p̃(q)| ≤ O(ε1),

|p(q)− p(q∗)| ≤ O(ε),

|Φs(q)− Φ̃s(q)| ≤ O(ε1),

|ξs(Φ(q))− ξs(Φ̃(q))| ≤ O(ε1),

|Φs(q)− Φs(q∗)| ≤ O(ε),

|ξs(Φ(q))− ξs(Φ(q∗))| ≤ O(ε).

(5.138)
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These estimates will let us treat the above functions as almost constant while proving (5.137), so we can
focus on the more important changes in their derivatives. First for q /∈ [q∗ − ε, q∗ + ε], we have p(q) = p̃(q)
and Φ(q) = Φ̃(q), so it suffices to analyze the discrepancy within q ∈ [q∗ − ε, q∗ + ε]. Next, the estimates
(5.138) together with the fact that Φ′s is uniformly bounded below (by Lemma 5.C.7) imply that∣∣∣∣√Φ′s(q)(p× ξs ◦ Φ)′(q)−

√
Φ̃′s(q)(p̃× ξs ◦ Φ̃)′(q)

∣∣∣∣ ≤ O(ε1), ∀ q ∈ [q∗ − ε, q∗ + ε]\(I ∪ J). (5.139)

Integrating, we obtain∫
q∈[q∗−ε,q∗+ε]\(I∪J)

∣∣∣∣√Φ′s(q)(p× ξs ◦ Φ)′(q)−
√

Φ̃′s(q)(p̃× ξs ◦ Φ̃)′(q)

∣∣∣∣ dq ≤ O(ε1ε). (5.140)

Next we fix x ∈ [0, ε1] and analyze the joint effect of the pertubation at the pair of points qI,x and qJ,x. This
is given by √

Φ̃′s(qI,x)(p̃× ξs ◦ Φ̃)′(qI,x)−
√

Φ′s(qI,x)(p× ξs ◦ Φ)′(qI,x)

+

√
Φ̃′s(qJ,x)(p̃× ξs ◦ Φ̃)′(qJ,x)−

√
Φ′s(qJ,x)(p× ξs ◦ Φ)′(qJ,x).

(5.141)

Recalling again (5.138), we have

(p̃× ξs ◦ Φ̃)′(qI,x) = p̃(qI,x)
∑
s′∈S

∂xs′ ξ
s(Φ̃(qI,x)) · Φ̃′s′(qI,x) + p̃′(qI,x) · ξs(Φ̃(qI,x))

= p(q∗)
∑
s′∈S

∂xs′ ξ
s(Φ(q∗)) · Φ̃′s′(qI,x) + p′(qI,x) · ξs(Φ(q∗))±O(ε).

(5.142)

Similarly to (5.139), we now control the first two terms of (5.141):√
Φ̃′s(qI,x)(p̃× ξs ◦ Φ̃)′(qI,x)−

√
Φ′s(qI,x)(p× ξs ◦ Φ)′(qI,x) +O(ε)

(5.142)

≥

√√√√Φ̃′s(qI,x) ·

(
p(q∗)

∑
s′∈S

∂xs′ ξ
s(Φ(q∗)) · Φ̃′s′(qI,x) + p̃′(qI,x) · ξs(Φ(q∗))

)

−

√√√√Φ′s(qI,x) ·

(
p(q∗)

∑
s′∈S

∂xs′ ξ
s(Φ(q∗)) · Φ′s′(qI,x) + p′(qI,x) · ξs(Φ(q∗))

) (5.143)

and analogously for J instead of I.
It remains to lower-bound the right hand side of (5.143). We break into cases depending on whether Φ′

is continuous (if so, then p′ must be discontinuous). In both cases, the idea is to argue that the concavity of
the square root function yields an increase in the value of A.

Case 1: Φ′ is continuous at q∗ In this case p′ is discontinuous, and (5.136) applies with f = p. We
estimate the right-hand side of (5.143): as |Φ′s(q)− Φ̃′s(q

′)| ≤ oε→0(1) uniformly in q, q′ ∈ (q∗ − ε, q∗ + ε) by
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definition,√√√√Φ̃′s(qI,x) ·

(
p(q∗)

∑
s′∈S

∂xs′ ξ
s(Φ(q∗)) · Φ̃′s′(qI,x) + p̃′(qI,x) · ξs(Φ(q∗))

)

−

√√√√Φ′s(qI,x) ·

(
p(q∗)

∑
s′∈S

∂xs′ ξ
s(Φ(q∗)) · Φ′s′(qI,x) + p′(qI,x) · ξs(Φ(q∗))

)

=

√√√√Φ′s(q∗) ·

(
p(q∗)

∑
s′∈S

∂xs′ ξ
s(Φ(q∗)) · Φ′s′(q∗) + p̃′(qI,x) · ξs(Φ(q∗))

)

−

√√√√Φ′s(q∗) ·

(
p(q∗)

∑
s′∈S

∂xs′ ξ
s(Φ(q∗)) · Φ′s′(q∗) + p′(qI,x) · ξs(Φ(q∗))

)
± oε→0(1). (5.144)

We analyze the last term, combined with the analogous expression for J , using the strict concavity in
Lemma 5.C.9 of x 7→

√
x together with (5.136) applied to p. We find that√√√√Φ′s(q∗) ·

(
p(q∗)

∑
s′∈S

∂xs′ ξ
s(Φ(q∗)) · Φ′s′(q∗) + p̃′(qI,x) · ξs(Φ(q∗))

)

−

√√√√Φ′s(q∗) ·

(
p(q∗)

∑
s′∈S

∂xs′ ξ
s(Φ(q∗)) · Φ′s′(q∗) + p′(qI,x) · ξs(Φ(q∗))

)

+

√√√√Φ′s(q∗) ·

(
p(q∗)

∑
s′∈S

∂xs′ ξ
s(Φ(q∗)) · Φ′s′(q∗) + p̃′(qJ,x) · ξs(Φ(q∗))

)

−

√√√√Φ′s(q∗) ·

(
p(q∗)

∑
s′∈S

∂xs′ ξ
s(Φ(q∗)) · Φ′s′(q∗) + p′(qJ,x) · ξs(Φ(q∗))

)
≥ c(η).

(5.145)

Indeed, all quantities except p′(·) and p̃′(·) are the same in the four expressions and are bounded away from
0 and infinity. Furthermore all other expressions differ by O(ε1) thanks to (5.138), which is small compared
to the discrepancy η between the values of p′ and p̃’. Hence for η fixed and ε small enough, they are bounded
away from the equality cases of Lemma 5.C.9.

Combining (5.143), (5.144), and (5.145) implies that for each x ∈ [0, ε1] and small enough ε,√
Φ̃′s(qI,x)(p̃× ξs ◦ Φ̃)′(qI,x)−

√
Φ′s(qI,x)(p× ξs ◦ Φ)′(qI,x)

+

√
Φ̃′s(qJ,x)(p̃× ξs ◦ Φ̃)′(qJ,x)−

√
Φ′s(qJ,x)(p× ξs ◦ Φ)′(qJ,x)

≥ c(η)− oε→0(1)

≥ c(η)/2.

Integrating over x ∈ [0, ε1] and combining with (5.140), we conclude that (5.137) holds in Case 1.

Case 2: Φ′ is discontinuous at q∗. (Note that p′ might also be discontinuous.)
Define for each s ∈ S the function

Fs(A1, . . . , Ar, B) =

√√√√As ·

(
p(q∗)

∑
s′∈S

∂xs′ ξ
s(Φ(q∗))As′ +Bξs(Φ(q∗))

)
.
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Lemma 5.C.9 implies that each function Fs is concave on Rr+1
≥0 , since bothAs and p(q∗)

∑
s′∈S ∂xs′ ξ

s(Φ(q∗))As′+
Bξs(Φ(q∗)) are linear functions of (A1, . . . , Ar, B). In particular, for each (s, x) ∈ S × [0, ε1] the function

fs,x(t) ≡ Fs
(

(1− t)Φ′1(qI,x) + tΦ′1(qJ,x)

2
, . . . ,

(1− t)Φ′r(qI,x) + tΦ′r(qJ,x)

2
,

(1− t)p′(qI,x) + tp′(qJ,x)

2

)
is concave for t ∈ [0, 1]. Recalling the definitions of p̃ and Φ̃, we expand the inequality 2fs,x(1/2) ≥
fs,x(0) + fs,x(1) to obtain√√√√Φ̃′s(qI,x) ·

(
p(q∗)

∑
s′∈S

∂xs′ ξ
s(Φ(q∗)) · Φ̃′s′(qI,x) + p̃′(qI,x) · ξs(Φ(q∗))

)

−

√√√√Φ′s(qI,x) ·

(
p(q∗)

∑
s′∈S

∂xs′ ξ
s(Φ(q∗)) · Φ′s′(qI,x) + p′(qI,x) · ξs(Φ(q∗))

)

+

√√√√Φ̃′s(qJ,x) ·

(
p(q∗)

∑
s′∈S

∂xs′ ξ
s(Φ(q∗)) · Φ̃′s′(qJ,x) + p̃′(qJ,x) · ξs(Φ(q∗))

)

−

√√√√Φ′s(qJ,x) ·

(
p(q∗)

∑
s′∈S

∂xs′ ξ
s(Φ(q∗)) · Φ′s′(qJ,x) + p′(qJ,x) · ξs(Φ(q∗))

)
≥ 0.

(5.146)

In light of (5.143), this means that perturbing (p,Φ) → (p̃, Φ̃) can only hurt the contribution from a given
s ∈ S by O(ε). To complete the proof we will show that the contribution from some s ∈ S is positive and

of a larger order. Which of these must occur will depend on the ratio
p′(qI,x)
p′(qJ,x) .

We will get this contribution from either smax or smin, defined now. For each x ∈ [0, ε1], let

smax(x) = arg max
s∈S

Φ′s(qI,x)

Φ′s(qJ,x)
,

smin(x) = arg min
s∈S

Φ′s(qI,x)

Φ′s(qJ,x)
.

(Both are defined up to almost everywhere equivalence if ties are broken lexicographically.) Recall the
functions Φ′s(x) are uniformly bounded above and below. It follows from (5.136) that

Φ′smin
(qI,x)

Φ′smin
(qJ,x)

≤ 1− η′ ≤ 1 + η′ ≤
Φ′smax

(qI,x)

Φ′smax
(qJ,x)

(5.147)

for some η′ depending only on (η, ξ, h). (Discontinuity of Φ′ gives one side, and admissibility forces another
s ∈ S to change in the opposite direction.)

Without loss of generality, suppose that

p′(qI,x)

p′(qJ,x)
≤ 1. (5.148)

In this case, the assumption (5.148) implies

p(q∗)
∑
s′∈S ∂xs′ ξ

smax(Φ(q∗)) · Φ′s′(qI,x) + p′(qI,x) · ξsmax(Φ(q∗))

p(q∗)
∑
s′∈S ∂xs′ ξ

smax(Φ(q∗)) · Φ′s′(qJ,x) + p′(qJ,x) · ξsmax(Φ(q∗))
≤

Φ′smax
(qI,x)

Φ′smax
(qJ,x)

− η1

for a constant η1 > 0 depending only on (η, q∗, ξ, h). Since all quantities are bounded away from 0 and
infinity, applying a simple compactness argument to the equality case in Lemma 5.C.9 implies

2fsmax,x(1/2) ≥ fsmax,x(0) + fsmax,x(1) + c(η1). (5.149)
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Similarly if (5.148) does not hold, then we find (5.149) with smin in place of smax.
Combining the above with ε� η, we find that for each x ∈ [0, ε1],∑

s∈S

2fs,x(1/2) ≥
∑
s∈S

(
fs,x(0) + fs,x(1)

)
+ c(η1)/2.

Integrating over x and recalling (5.140) and (5.143), we conclude that (5.137) also holds in Case 2. This
completes the proof.

Proof of Proposition 5.4.11. Follows from Lemmas 5.C.4, 5.C.7, and 5.C.10. The upper bound on Φ′ comes
from admissibility (5.5), which implies that Φ′s ≤ λ−1

s .

5.C.3 Type II solutions

Here we show that the type II equation implicitly takes the form of a second order ordinary differential
equation in which Φ′′(q) is Lipschitz in (Φ(q),Φ′(q)). It follows that a unique type II solution exists given
any first-order initial condition (Φ(q1),Φ′(q1)), and that the type II ODE is satisfied at all points in (q1, 1).
We will often enforce the admissibility conditions

〈~λ, ~Φ′(q)〉 = 1, (5.150)

〈~λ, ~Φ′′(q)〉 = 0. (5.151)

In particular, we denote by A≥0 the set of vectors v ∈ RS
≥0 satisfying 〈~λ, v〉 = 1. The following important

but rather lengthy Lemma 5.4.38 ensures that type II solutions are described by a Lipschitz ODE. In it, the
value q is actually irrelevant and just serves as a placeholder. Importantly there is no issue when Φs(q) or
Φ′s(q) is near zero, thanks to non-degeneracy.

Lemma 5.4.38. Fix ε > 0. For Φ(q) ∈ RS
≥0 and Φ′(q) ∈ A≥0(q), the type II equation

Ψs(q) = Ψs′(q) ∀s, s′ ∈ S ;

〈~λ,Φ′′(q)〉 = 0

is equivalent (for each fixed q) to
Φ′′(q) = F (Φ(q),Φ′(q))

for a locally Lipschitz function F : RS
≥0 ×AS

≥0 → RS . Moreover,

|Φ′′s (q)| ≤ O(|Φ′s(q)|), ∀s ∈ S .

with a uniform constant for bounded Φ′(q).

Proof. Write Ψ(q) for Ψs(q), which is independent of s ∈ S by assumption. We assume throughout that

Φ(q) lies in a bounded set in writing O(·) and Ω(·) expressions. Note that ~Φ′′(q) exists as an L1 function for

q ∈ (q1, 1] since ~Φ′ is absolutely continuous. We write

2Ψ(q) =
2

Φ′s(q)

d

dq

√
Φ′s(q)

(ξs ◦ Φ)′(q)

=

√
(ξs ◦ Φ)′(q)

Φ′s(q)
3

d

dq

Φ′s(q)

(ξs ◦ Φ)′(q)

=

√
(ξs ◦ Φ)′(q)

Φ′s(q)
3
· Φ′′s (q)(ξs ◦ Φ)′(q)− Φ′s(q)(ξ

s ◦ Φ)′′(q)

(ξs ◦ Φ)′(q)2

=
1√

Φ′s(q)
3(ξs ◦ Φ)′(q)3

· (Φ′′s (q)(ξs ◦ Φ)′(q)− Φ′s(q)(ξ
s ◦ Φ)′′(q)) .

(5.152)
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Moreover we have

Φ′′s (q)(ξs ◦ Φ)′(q)− Φ′s(q)(ξ
s ◦ Φ)′′(q)

= Φ′′s (q)
∑
s′∈S

∂xs′ ξ
s(Φ(q)) · Φ′s′(q)

− Φ′s(q)

∑
s′∈S

∂xs′ ξ
s(Φ(q)) · Φ′′s′(q) +

∑
s′,s′′∈S

∂xs′∂xs′′ ξ
s(Φ(q)) · Φ′s′(q)


Let

Bs(q) =
∑
s′∈S

∂xs′ ξ
s(Φ(q)) · Φ′s′(q).

Note that by non-degeneracy each ∂xs′ ξ
s(Φ(q)) is bounded away from 0 and ∞ for all Φ(q) ∈ [0, 1]S .

Meanwhile
∑
s∈S λsΦ

′
s(q) = 1. Thus for Φ′(q) obeying (5.150), each Bs(q) is uniformly bounded away from

0 and ∞.
Next let M(q) ∈ RS×S be a square matrix with entries

M(q)s,s′ =
Φ′s(q) · ∂xs′ ξ

s(Φ(q))

Bs(q)

and let I denote the identity S ×S matrix. Then the above equations for all s ∈ S can be expressed more
succinctly as

(M − I)Φ′′(q) = −w1(Φ(q),Φ′(q))−Ψ(q) · w2(Φ(q),Φ′(q)) (5.153)

for Lipschitz functions w1, w2 : [0, 1]2r → Rr>0 given explicitly by

(w1)s =
Φ′s(q)

∑
s′,s′′∈S ∂xs′∂xs′′ ξ

s(Φ(q)) · Φ′s′(q)
Bs(q)

;

(w2)s =
2
√

Φ′s(q)
3(ξs ◦ Φ)′(q)3

Bs(q)
.

(5.154)

Since Bs is bounded below, both w1 and w2 have uniformly bounded entries. Moreover B and w1, w2 are
uniformly Lipschitz in (Φ(q),Φ′(q)). Note also that w2 is entry-wise non-negative.

As a first observation, observe that
(M − I)Φ′(q) = 0.

Because Φ′(q) � 0 and M has positive entries, this means Φ′(q) is the unique right Perron-Frobenius
eigenvector of M , and thus rank(M − I) = r − 1. It follows that for given (Φ(q),Φ′(q)), a unique solution
(Φ′′(q),Ψ(q)) to (5.153) exists so long as

w2 /∈ range(M − I). (5.155)

In fact (5.155) is always true. To see this, note that M has a left Perron-Frobenius eigenvector v ∈ Rr>0 with
v(M − I) = 0. Then if w2 = (M − I)w for w ∈ RS , we find 〈v, w2〉 = 0. This is a contradiction: 〈v, w2〉 > 0
since all entries are strictly positive in both vectors. We denote by Λ(q) ∈ RS the value of Φ′′(q) in the
aforementioned unique solution.

Our primary aim is now to show that Λ(q) is a Lipschitz function of (Φ(q),Φ′(q)) ∈ RS × A≥0. We
would like to apply Perron-Frobenius arguments to M , but the fact that Ms,s′ � Φ′s(q) may be very small

poses an issue. To rectify this, we define M̃(q) with entries

M̃(q)s,s′ =
Φ′s′(q)∂xs′ ξ

s(Φ(q))

Bs(q)
. (5.156)

Then defining the diagonal S ×S matrix D(Φ′(q)) with entries

D(Φ′(q))s,s = Φ′s(q)
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we have
M̃(q) = D(Φ′(q))−1M D(Φ′(q)).

The key property obeyed by M̃ but not M is that for any v ∈ RS
>0, the entries of M̃v are of the same order.

Namely, all ratios (M̃v)s

(M̃v)s′
are uniformly bounded because the ratios Ms,s′/Ms′′,s′ are uniformly bounded. In

particular Lemma 5.C.12 and hence Lemma 5.C.11 (see below) apply to M̃ .

Note that M̃ has Perron-Frobenius eigenvector ~1 and M̃ is Lipschitz in (Φ(q),Φ′(q)). We set

Ṽ (q) = D(Φ′(q))−1Λ(q), i.e. Ṽ (q)s =
Λs(q)

Φ′s(q)
;

V (q)s = Ṽ (q)s −
∑
s′∈S Ṽ (q)s′

r
.

(5.157)

By construction,
∑
s V (q)s = 0. Moreover

(M̃(q)− I)V (q) = (M̃(q)− I)Ṽ (q) (5.158)

since V (q)− Ṽ (q) is proportional to ~1.

A priori estimate on Λ(q) We now prove (5.88), which will also serve as a useful intermediate step.
Note first that w1 satisfies |(w1)s| = O(Φ′s(q)) (recall that Bs is bounded below), while all entries of w2 are
non-negative. Therefore the entries of w1(q) + Ψ(q)w2(q) are bounded either above or below by O(Φ′s(q)).
Furthermore by definition,

−w1(q)−Ψ(q)w2(q) = (M(q)− I)Λ(q)

= D(Φ′(q))(M̃(q)− I)Ṽ

(5.158)
= D(Φ′(q))(M̃(q)− I)V.

We conclude that
min

(
‖((M̃(q)− I)V )+‖1, ‖((M̃(q)− I)V )−‖1

)
≤ O(1).

Lemma 5.C.11 below now implies that
‖V (q)‖1 ≤ O(1). (5.159)

Note that 〈Ṽ , λ�Φ′(q)〉 = 0 by (5.151) and (5.157). The second part of the latter also implies V (q)−Ṽ (q)
is proportional to ~1, and so ∣∣∣(V (q)− Ṽ (q))s

∣∣∣ =
∣∣∣〈V (q)− Ṽ (q), λ� Φ′(q)〉

∣∣∣
= |〈V (q), λ� Φ′(q)〉|
(5.159)

≤ O(1)

(5.160)

Using again (5.159) and (5.157) we find that ‖Ṽ (q)‖1 ≤ O(1) as well. Finally since Λ(q) = Ṽ (q)�Φ′(q), we
get (5.88) as desired.

Controlling Ψ We take a second detour to show that Ψ(q) is bounded and Lipschitz. Using that ‖w1‖1 ≤
O(1) and ‖w2‖1 ≥ Ω(1) in the first step below, we find

Ω(|Ψ(q)|)−O(1) ≤ ‖w1(q) + Ψ(q)w2(q)‖1
= ‖(M(q)− I)Λ(q)‖1
(5.153)

≤ O(1).
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The just-proved estimate (5.88) implies the weaker bound ‖Λ(q)‖1 ≤ O(1), which was used in the last step.
We conclude that Ψ(q) is uniformly bounded:

|Ψ(q)| ≤ O(1). (5.161)

Next we show that Ψ(q) is Lipschitz in (Φ(q),Φ′(q)). We begin by writing

(M(q)− I)Λ(q)− (M(q′)− I)Λ(q′) = w1(q′)− w1(q) + Ψ(q′)w2(q′)−Ψ(q)w2(q)

= w1(q′)− w1(q) + Ψ(q′)
(
w2(q′)− w2(q)

)
+
(
Ψ(q′)−Ψ(q)

)
w2(q)

= O
(
‖Φ(q)− Φ(q′)‖+ ‖Φ′(q)− Φ′(q′)‖

)
+
(
Ψ(q′)−Ψ(q)

)
w2(q).

(Note that the latter O(·) notation hides a vector in Rr.) We will rely on the fact that w2(q) is entrywise
positive and ‖w2(q)‖ ≥ Ω(1). To analyze the left-hand side above, we write

(M(q)− I)Λ(q)− (M(q′)− I)Λ(q′) = (M(q)−M(q′))Λ(q) + (M(q′)− I)
(
Λ(q)− Λ(q′)

)
≤ O

(
‖Φ(q)− Φ(q′)‖+ ‖Φ′(q)− Φ′(q′)‖

)
+ (M(q′)− I)

(
Λ(q)− Λ(q′)

)
.

The latter step holds since M(q) is Lipschitz in (Φ(q),Φ(q′)) and ‖Λ(q)‖1 ≤ O(1) from (5.88). Now, let v be
the left Perron-Frobenius eigenvector of M(q′), so v(M(q′)− I) = 0, normalized so that v � 0 and ‖v‖1 = 1.
Combining the previous displays implies that

(Ψ(q′)−Ψ(q)) · 〈v, w2(q)〉 = O
(
‖Φ(q)− Φ(q′)‖+ ‖Φ′(q)− Φ′(q′)‖

)
.

Finally we show that 〈v, w2(q)〉 is bounded away from 0. Indeed both vectors are entrywise positive, and
‖w2(q)‖1 ≥ Ω(1) while mins vs ≥ Ω(1). The latter statement holds for similar reasons to the right eigenvector

properties of M̃ explained above: for any v ∈ RS
>0, the ratios (vM)s

(vM)s′
are uniformly bounded, and this ratio

is simply vs/vs′ when v is the left Perron-Frobenius eigenvector. We conclude that

|Ψ(q)−Ψ(q′)| ≤ O
(
‖Φ(q)− Φ(q′)‖+ ‖Φ′(q)− Φ′(q′)‖

)
(5.162)

which ends this second detour.

Finishing the proof Having established (5.88) and (5.161), we return to showing that Λ(q) is Lipschitz
in (Φ(q),Φ′(q)). Fix a different pair

(Φ(q′),Φ′(q′)) 6= (Φ(q),Φ′(q)).

Accordingly define w1(q′), w2(q′),M(q′), V (q′) and so on using (Φ(q′),Φ′(q′)). (Since we don’t require ad-
missibility but only its differential version (5.150), there is no loss of generality here; q′ like q is just a
place-holder variable so e.g. Φ(q) = Φ(q′) is possible.)

Then Lemma 5.C.11 implies:

‖(M̃(q)− I)V (q)− (M̃(q)− I)V (q′)‖1 ≥ Ω
(
‖V (q)− V (q′)‖1

)
. (5.163)

Using the reverse triangle inequality in the first step, we find the lower bound

‖(M̃(q)− I)V (q)− (M̃(q′)− I)V (q′)‖1 ≥ ‖(M̃(q)− I)V (q)− (M̃(q)− I)V (q′)‖1
− ‖(M̃(q)− I)V (q′)− (M̃(q′)− I)V (q′)‖1

(5.163)

≥ Ω
(
‖V (q)− V (q′)‖1

)
−O

(
‖M̃(q)− M̃(q′)‖1

)
≥ Ω

(
‖V (q)− V (q′)‖1

)
−O

(
‖Φ(q)− Φ(q′)‖1 + ‖Φ′(q)− Φ′(q′)‖1

)
.
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By (5.153), (5.154), (5.161) (5.162), and the simple estimate max
(
|w1(q)s|, |w2(q)s|

)
≤ O(Φ′s(q)), the left-

hand side above is upper bounded by

‖(M̃(q)− I)V (q)− (M̃(q′)− I)V (q′)‖1
= ‖(M̃(q)− I)Ṽ (q)− (M̃(q′)− I)Ṽ (q′)‖1

=
∥∥∥D(Φ′(q))−1

(
(M(q)− I)Λ(q)

)
−D(Φ′(q′))−1

(
(M(q′)− I)Λ(q′)

)∥∥∥
1

=
∥∥∥D(Φ′(q))−1

(
w1(q) + Ψ(q)w2(q)

)
−D(Φ′(q′))−1

(
w1(q′) + Ψ(q′)w2(q′)

)∥∥∥
1

≤ O
(
‖Φ(q)− Φ(q′)‖1 + ‖Φ′(q)− Φ′(q′)‖1

)
.

Rearranging the previous two displays implies that

‖V (q)− V (q′)‖1 ≤ O
(
‖Φ(q)− Φ(q′)‖1 + ‖Φ′(q)− Φ′(q′)‖1

)
. (5.164)

It remains to unwind the transformations to conclude the same for Λ. Mimicking (5.160) in the first step,

∣∣∣(Vs(q)− Vs(q′))− (Ṽs(q)− Ṽs(q′))∣∣∣ =

∣∣∣∣∣∑
s

λs
(
Φ′s(q)V (q)− Φ′s(q

′)V (q′)
)∣∣∣∣∣

≤ O
(
‖Φ′(q)‖ · ‖V (q)− V (q′)‖

)
+O

(
‖Φ′(q)− Φ′(q′)‖ · ‖V (q′)‖

)
(5.164),(5.159)

≤ O
(
‖Φ(q)− Φ(q′)‖1 + ‖Φ′(q)− Φ′(q′)‖1

)
+O

(
‖Φ′(q)− Φ′(q′)

)
.

Combining the previous two displays, we conclude that

‖Ṽ (q)− Ṽ (q′)‖1 ≤ ‖V (q)− V (q′)‖1 + ‖(V (q)− V (q′))− (Ṽ (q)− Ṽ (q′))‖
≤ O

(
‖Φ(q)− Φ(q′)‖1 + ‖Φ′(q)− Φ′(q′)‖1

)
.

Finally since Λ(q) = Ṽ (q)� Φ′(q) and ‖Ṽ (q′)‖1, ‖Φ′(q)‖1 ≤ O(1), we obtain the desired:

‖Λ(q)− Λ(q′)‖1 ≤ O
(
‖Ṽ (q)− Ṽ (q′)‖1 · ‖Φ′(q)‖1

)
+O

(
‖Ṽ (q′)‖1 · ‖Φ′(q)− Φ′(q′)‖1

)
≤ O

(
‖Ṽ (q)− Ṽ (q′)‖1 + ‖Φ′(q)− Φ′(q′)‖1

)
≤ O

(
‖Φ(q)− Φ(q′)‖1 + ‖Φ′(q)− Φ′(q′)‖1

)
.

This concludes the proof.

Lemma 5.C.11. LetM⊆ RS×S
≥0 be a compact set of entry-wise non-negative matrices with unique Perron-

Frobenius eigenvector ~1 and associated eigenvalue 1.
Then for all v ∈ RS with

∑
s∈S vs = 0, we have

‖((M − I)v)+‖1 ≥ ΩM,r(‖v‖1),

‖((M − I)v)−‖1 ≥ ΩM,r(‖v‖1).

Proof. The two statements are equivalent under negation so we assume the first is false and derive a con-
tradiction. If it is false, by taking a convergent sequence of approximate counterexamples (M i, vi)→ (M̂, v̂)
with M i ∈M and ‖vi‖1 = 1, we have:

1. M̂ ∈M.

2. M̂ has Perron-Frobenius eigenvector ~1 and eigenvalue 1.

3.
∑
s∈S v̂s = 0.

4. ‖v̂‖1 = 1.
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5. M̂v̂ � v̂ (since ((M̂ − I)v̂)+ = 0).

Since M̂ has simple Perron-Frobenius eigenvalue 1, for M̂v̂ � v̂ to hold we must actually have M̂ v̂ = v̂.
Therefore v̂ = ~1/r is a multiple of the right Perron-Frobenius eigenvector, contradicting

∑
s∈S v̂s = 0.

Lemma 5.C.12. For C > 0, let MC ⊆ RS×S
≥0 consist of all matrices M such that:

1. Ms,s′ ∈ [0, C] for all s, s′ ∈ S .

2. Ms,s′ ≤ CMs′′,s′ for all s, s′, s′′ ∈ S .

3. M~1 = ~1.

4.
∑
s,s′∈S Ms,s′ ≥ 1/C.

Then M =MC satisfies the conditions of Lemma 5.C.11.

Proof. The only thing to show is that ~1 is the unique right Perron-Frobenius eigenvector associated to
the eigenvalue 1 of any M ∈ MC , even though M may include zero entries. Thus, suppose that w ∈ RS

satisfies Mw = w; we will show that w has all equal entries. Let S′ ⊆ S be the non-empty set of s′ such
that Ms,s′ > 0 (which does not depend on s by definition of MC). Then letting M ′ and w′ be the S′ × S′
and S′-dimensional restrictions of M and w, we have M ′w′ = w′. Since M ′ has strictly positive entries, we
conclude that w′ has all entries proportional. Hence for some a ≥ 0, we have ws = a for all s ∈ S′. By
definition of S′ we obtain w = Mw = MaS = aS . This concludes the proof.
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Chapter 6

Sampling from spherical spin glasses
in total variation via algorithmic
stochastic localization

Abstract – We consider the problem of algorithmically sampling from the Gibbs measure of a mixed
p-spin spherical spin glass. We give a polynomial-time algorithm that samples from the Gibbs measure
up to vanishing total variation error, for any model whose mixture satisfies

ξ′′(s) <
1

(1− s)2 , ∀s ∈ [0, 1).

Our algorithm follows the algorithmic stochastic localization (SL) approach introduced in [AMS22] and
in fact achieves a more difficult task. Namely, it (approximately) generates a sample path (yt)t≥0 from
the SL process. For large T , yT /T is an approximate sample from the target Gibbs measure, and hence
we solve the original problem as a special case.

We provide evidence that the condition ξ′′(s) < (1−s)−2 is sharp for the task of sampling SL sample paths.
Furthermore, we prove that it is optimal within a class of generalized SL processes. Remarkably this
threshold is close to the conjectured threshold for sampling from the original Gibbs measure. In particular,
for the pure p-spin glasses it is within an absolute (p-independent) constant of the so-called shattering
phase transition. Earlier work on related models was suboptimal by a factor diverging polynomially in
p.

A key step of this approach is to estimate the mean of a sequence of tilted measures. We produce an

improved estimator for this task by identifying a suitable correction to the TAP fixed point selected

by approximate message passing (AMP). As a consequence, we improve the algorithm’s guarantee over

previous work, from normalized Wasserstein to total variation error. In particular, the new algorithm

and analysis opens the way to perform inference about one-dimensional projections of the measure.

6.1 Introduction

Let γ2, γ3, . . . ≥ 0 satisfy
∑
p≥2 2pγ2

p <∞. The mixed p-spin glass Hamiltonian HN : RN → R is

HN (σ) =
∑
p≥2

γp
N (p−1)/2

N∑
i1,...,ip=1

Gi1,...,ipσi1 · · ·σip , Gi1,...,ip
i.i.d.∼ N (0, 1). (6.1)

Define the mixture function ξ(s) =
∑
p≥2 γ

2
ps
p, so that HN is the Gaussian process with covariance

EHN (σ1)HN (σ2) = Nξ
(
〈σ1,σ2〉/N

)
.
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The Gibbs measure of this model is the probability measure over the sphere SN = {x ∈ RN : ‖x‖22 = N}
given by

µHN (dσ) =
1

ZN
exp(HN (σ)) µ0(dσ), ZN =

∫
SN

exp(HN (σ)) µ0(dσ) . (6.2)

Here and below, µ0 denotes the uniform probability measure on SN . We will denote byG = (Gi1,...,ip)p≥2,i`≤N
the vector of couplings that defines the Hamiltonian. We consider the problem of efficiently sampling from
this Gibbs measure. For dist a distance on P(RN ) (the set of probability measures over RN ), we seek a
computationally efficient algorithm that generates σalg whose law µalg satisfies dist(µalg, µHN ) = oN (1), with
high probability over HN .

The most classical approach to sampling is to constructs a Markov chain that is reversible with respect to
µHN (dσ), and for which a single step can be implemented efficiently. In the present context, such a Markov
chain can be obtain by discretizing Langevin dynamics, see [Dal17, DM17, DCWY19] and Section 6.2.2.

An alternative approach has emerged recently. The basic idea is to generate (an approximation of) a
sample path from the following Ito diffusion on RN :

dyt = m(yt, t) dt+ dBt , y0 = 0 , (6.3)

where (Bt)t≥0 is a standard Brownian motion and m(y, t) = E[σ|tσ +
√
tg = y] (conditioning over G is

implicit here), with the conditional expectation being taken with respect to (σ, g) ∼ µHN ⊗N (0, IN ). The
key remark (see Section 6.3.1) is that (yt)t≥0 thus defined has the same distribution at (tσ +B′t)t≥0 (with
B′t a different Brownian motion) and therefore yt/t converges to a sample from the desired measure. Of
course, constructing an actual algorithm requires to discretize time and — crucially — to define an efficient
algorithm that approximates the conditional mean m( · , t) well enough.

This idea was introduced in [AMS22], which developed it as an algorithmic implementation of Eldan’s
stochastic localization (SL) technique for proving functional inequalities in high-dimensional probability
[Eld13, Eld20b, Eld22]. Independently, the same process attracted considerable interest in machine learn-
ing, under the name of ‘denoising diffusions’ [SDWMG15, HJA20, SSDK+21]. In that context, the target
distribution µ is unknown, but one is given access to samples σ1, . . . , σn. These are used to learn an
approximation of the drift m( · , t) and hence generate trajectories from Eq. (6.3) (We refer to [Mon23b] for
further discussion of this connection.)

The analysis of [AMS22, Cel24, AMS23b] establishes that algorithmic SL samples from the Gibbs measure
of the Sherrington-Kirkpatrick model on the (more difficult) cube ΣN = {−1, 1}N , up to vanishing normalized
Wasserstein error. That is, with probability 1 − oN (1) over the Sherrington-Kirkpatrick Hamiltonian HN ,
there is a coupling of µHN and µalg such that for (σ,σalg) drawn from this coupling,

1

N
E

σ,σalg
‖σ − σalg‖22 = oN (1). (6.4)

Remarkably, this guarantee holds throughout the ‘replica symmetric’ phase of the Sherrington-Kirkpatrick
model [Tal10], i.e. for all β < 1 [Cel24]. Conversely [AMS22] proves that no randomized algorithm whose
output is a Lipschitz continuous function of the Hamiltonian HN (for each random seed) succeeds for β > 1.
In particular, in this case, generating the whole SL path appears to not be fundamentally harder than
sampling from the target measure µHN . On the other hand, the Hamiltonian of the Sherrington-Kirkpatrick
model is quadratic, and obtaining similar results for the general polynomial Hamiltonian of Eq. (6.1) poses
entirely new challenges [AMS23b].

Despite the intense research activity in this area, it is fair to say that many fundamental questions remain
open from a mathematical viewpoint. First, previous works on algorithmic SL produced algorithms that
sampled from the target measure in the sense of vanishing normalized Wasserstein error. It is important
to ask whether this approach can be upgraded to sample with vanishing total variation error. Second,
generating an approximation of the whole SL trajectory (yt)t≥0 is a priori a more challenging task than
sampling from the target distribution µ. One may thus ask whether there is a fundamental gap between
measures µ(dσ) that can be sampled using general polynomial-time algorithms, and those that instead can
be sampled via SL paths.

In this paper, we address both questions. We first affirmatively answer the first question. Our main
result is an algorithm sampling with vanishing total variation error from the Gibbs measure of any spherical
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spin glass satisfying

ξ′′(s) <
1

(1− s)2
, ∀s ∈ [0, 1). (6.5)

As we will soon discuss, the condition (6.5) presents a fundamental barrier to algorithms for generating
sample paths from SL. The key challenge in implementing the algorithmic SL approach is the construction
of an efficient algorithm to approximate the mean of the measure µHN (dσ), as well as its conditional mean
given Gaussian observations yt. The latter corresponds to the mean of a exponential tilt µHN ,y(dσ) ∝
exp(〈yt,σ〉)µHN (dσ). Approximatingm(y) was achieved in [AMS22] by a variational approach that requires
minimizing the so called Thouless-Anderson-Palmer (TAP) free energy [TAP77]. The same paper established
that the resulting estimate satisfies (with high probability) ‖m(y) −mTAP(y)‖2 = o(N). (For the case of
a measure supported over SN , the function m( · ) does not depend on t, and we will therefore omit this
argument.)

Note that ‖m(y)‖2 = Θ(N), and therefore [AMS22] establishes the weakest non-trivial upper bound on
‖m(y)−mTAP(y)‖2. This is the standard level of precision for estimates in spin glass theory both in physics
and mathematics [MPV87, Tal10].

However, in order to obtain a sampling algorithm with guarantees in total variation distance, it is
necessary to construct an efficient estimator m̂(y) satisfying ‖m(y)−m̂(y)‖2 = o(1). The construction and
analysis of such an estimator is the main problem solved in the present paper.

In fact we prove the following:

1. The TAP estimator is significantly more accurate than what could be hoped from the analysis of
[AMS22, AMS23b]. Namely, we prove that ‖m(y)−mTAP(y)‖2 = O(1).

2. We design a correction ∆(y) to the TAP estimator that can be computed efficiently and such that,
letting m̂(y) = mTAP(y) + ∆(y), we achieve the desired accuracy ‖m(y)− m̂(y)‖2 = o(1).

To the best of our knowledge, neither of these results was known before, even at a heuristic level.
Turning to the second question on the general behavior of algorithms based on SL paths, we will show

that the general situation is richer than for the Sherrington-Kirkpatrick model. Indeed, it is reasonable
to conjecture that a necessary condition for algorithmic SL to succeed is that the conditional law of σ
given yt remains replica symmetric for all t. While one might naively expect that this conditional measure
is simpler than the original one, statistical physics calculations suggest that this might not be the case
[MRTS07, GDKZ24]. Namely, it can be the case that the original measure µHN (dσ) is replica symmetric and
does not exhibit shattering (see [GJK23, AMS25, BJ24] and below), while the localized measure µHN (dσ|yt)
exhibits replica symmetry breaking for some t.

Within the spherical spin glass studied in this paper, the conjectured threshold for efficient sampling
is ξ′(q) < q/(1 − q) for all q ∈ (0, 1), and shattering is believed to take place beyond this threshold. The
conditional measure generated by the SL process at time t is a spherical model with mixture ξt(q) = ξ(q)+tq
and the condition for absence of shattering for all t turns out to be t is ξ′(q) + t = q/(1− q) having only one
solution in [0, 1) for all t. This is in turn equivalent to (6.5), under which our sampling algorithm succeeds.

We further show that the condition (6.5) is a fundamental barrier for algorithmic SL. We show that
in the subset of the replica symmetric regime where (6.5) does not hold, a form of algorithmic SL with
generalized side-channels does not succeed. (We also expect this algorithm to continue to fail beyond the
replica symmetric regime, see Remark 6.2.4.) As the conjectured regime for efficient sampling is ξ′(q) <
q/(1 − q) for all q ∈ (0, 1), which strictly contains the regime (6.5), this suggests a separation between
sampling by general polynomial-time algorithms and by SL paths.

Remark 6.1.1. The threshold (6.5) is remarkably close to the threshold for shattering in the measure µHN .
For the special case of pure models ξ(s) = β2sp, (6.5) holds for all β < βSL(p), where we defined the stochastic
localization inverse temperature as

βSL(p) :=
1

2

√(
p

p− 1

)(
p

p− 2

)p−2

. (6.6)
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For large p we have βSL(p) = e/2 + O(1/p). On the other hands the conjectured no-shattering condition
ξ′(q) < q/(1− q) holds for all β < βsh(p) where

βsh(p) =

√
(p− 1)p−1

p(p− 2)p−2
. (6.7)

For large p, βsh(p) =
√
e + O(1/p). In particular βsh(p)/βSL(p) ≤ 2/

√
e ≈ 1.213 for all p. Further, the two

thresholds coincide in mixed models when ξ′′(0) is sufficiently large.

6.1.1 Further background and related work

A substantial line of work in probability theory studies Langevin dynamics for the Gibbs measure (6.2). This
is defined as the following diffusion on SN

dσt =

(
proj⊥σt∇HN (σt)−

N − 1

2N
σt

)
dt+

√
2proj⊥σtdBt , (6.8)

where Bt is a standard N -dimensional Brownian motion, and proj⊥σt is the projector orthogonal to σt.
Langevin dynamics is a Markov process reversible for the measure µHN of Eq. (6.2). As mentioned above,
suitable discretizations of Langevin dynamics can be used to sample from µHN [Dal17, DM17, DCWY19].

An asymptotically exact characterization of Langevin dynamics on short times horizons t = O(1), in the
high-dimensional limit N →∞, is provided by the so-called Cugliandolo-Kurchan or ‘dynamical mean-firld
theory’ equations. These were studied first in physics [CHS93, CK93] and subsequently established rigorously
in probability theory [BDG06]. Unfortunately, this approach does not give access to mixing times. On top
of that, the Cugliandolo-Kurchan equations proved difficult to analyze rigorously except at sufficiently ‘high
temperature’ (i.e. when ξ(s) = β2ξ1(s), for a fixed ξ1 and β small enough) [DGM07].

Based on a postulated asymptotic form of the Cugliandolo-Kurchan equations, as well as on thermody-
namic calculations, physicists conjecture a phase transition in the mixing time of Langevin dynamics, when
initialized uniformly at random [CHS93, CK93] . Namely, they expect the mixing time to be polynomial in
N for

ξ′(q) <
q

1− q
, ∀q ∈ (0, 1) . (6.9)

and exponentially large in the opposite case, and more precisely when supq∈(0,1)(1 − q)ξ′(q)/q > 1. This
is commonly referred to as the ‘dynamical phase transition,’ and corresponds to a phase transition in the
geometry of the Gibbs measure, known as ‘shattering phase transition.’ In the homogeneous case ξ(t) = β2tp,
the above formula implies that the dynamical/shattering phase transition takes place at β = βsh(p) given by
Eq. (6.7).

We also recall that a second phase transition (‘condensation’ or ‘static’ or ‘replica symmetry breaking’)
takes place at a lower temperature

β2
c (p) = inf

s∈[0,1]

(
1

sp
log

(
1

1− s

)
− 1

sp−1

)
. (6.10)

This corresponds to a non-analiticity of the free energy, and to the temperature at which the overlap stops
concentrating [Che13]. For large p, we have βc(p) =

√
log p(1 + op(1)).

Towards the goal of proving the dynamical phase transition phenomenon, Ben Arous and Jagannath
[BJ24] established that — for the homogeneous model — shattering takes place in a non-empty temperature
interval, implying in particular βsh(p) < βc(p) strictly. A order-optimal bound was proven in [AMS25], who
proved βsh(p) ≤ C for a p-independent constant C.

A bolder version of the dynamical phase transition conjecture postulates that not only Langevin dynamics
is slow, but indeed sampling is fundamentally hard beyond the shattering phase transition. Rigorous evidence
was provided in [AMS25], which proves that ‘stable algorithms’ fail to sample from µHN under shattering.

In the positive direction Gheissari and Jagannath [GJ19] proved that there exists β(p) > 0 such that
Langevin dynamics mixes rapidly for β < β(p). These authors also note that their proof technique extends
to mixed models.
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A closely related model is the Ising version of model (6.2), whereby the uniform measure µ0 over the
sphere SN is replaced by the uniform measure over the hypercube {+1,−1}N . A dynamical/shattering
phase transition was conjectured in that setting as well [KT87], although at a different temperature. In this
context, shattering for a non-empty interval of temperatures was proven in [GJK23], while mixing of Glauber
dynamics at high temperature was proven in [ABXY24, AJK+24]. As for the spherical case, positive and
negative results are separated by a large gap, indeed diverging with p.

The algorithmic stochastic localization approach was applied to Ising mixed p-spin spin classes in [AMS23b],
which established the Wasserstein guarantee (6.4).

6.1.2 Notations

Throughout this paper, ‖σ‖N = ‖σ‖/
√
N =

√
σ>σ/N is the norm corresponding to the inner product

〈σ1,σ2〉N = 〈σ1,σ2〉/N = σ>1 σ2/N . There will be no confusion with the `p norm, which will not appear.
Given a matrix A, we denote by ‖A‖F its Frobenius norm. For m ∈ RN , measurable I ⊆ R, and ρ > 0, we
define

Band(m, I) := {σ ∈ SN : 〈m,σ〉N ∈ I} ,
BN (m, ρ) :=

{
x ∈ RN : ‖x−m‖N ≤ ρ

}
.

We will occasionally abuse notations and write, for q ∈ R, Band(m, q) instead of Band(m, {q}).
We will often state that certain events occur with probability 1 − e−cN . When we do, c > 0 is an

unspecified constant, which may change from line to line and may depend on all parameters other than N .
We use p-lim to denote limit in probability.

We write G ∼ GOE(N) if G is a symmetric matrix with independent centered Gaussian entries on or
above the diagonal with Gii ∼ N (0, 2/N) and Gij ∼ N (0, 1/N) for i < j.

Throughout the paper, the mixture ξ is fixed and various constants can depend on ξ but we will track
this dependence. If ι is a small constant, we write ι′ = oι(1) if |ι′| ≤ h(ι) where h is a function independent
of N , such that limι→0 h(ι) = 0.

6.2 Main result

In this section we describe the sampling algorithm and state our main result. Throughout, we assume the
model ξ satisfies (6.5).

6.2.1 Mean estimation of tilted measure

We first describe the main subroutine of our algorithm, which estimates the mean of the following exponen-
tially tilted version of µHN . For y ∈ RN , define

µHN ,y(dσ) =
1

Z(y)
exp {HN (σ) + 〈y,σ〉} µ0(dσ) . (6.11)

The tilt y will be generated by the outer loop of the algorithm described in Subsection 6.2.2, which implements
a discretized version of the stochastic localization process. The outer loop also provides a time t > 0, which
this subroutine will take as input. The algorithm consists of three steps as outlined below. We defer the
description of the correction ∆(m) to Section 6.2.3.

(1) Let ξt(s) = ξ(s) + ts, and define the sequence {qk : k ≥ 0} by q0 = 0 and

qk+1 =
ξ′t(qk)

1 + ξ′t(qk)
. (6.12)

Starting from initialization m−1 = w0 = 0, run the approximate message passing (AMP) iteration

mk = (1− qk)wk, wk+1 = ∇HN (mk) + y − (1− qk)ξ′′(qk)mk−1, (6.13)

for KAMP iterations. Let mAMP = mKAMP .
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(2) Define
θ(s) = ξ(1)− ξ(s)− (1− s)ξ′(s) (6.14)

and the TAP free energy

FTAP(m;y) = HN (m) + 〈y,m〉+
N

2
θ(‖m‖2N ) +

N

2
log(1− ‖m‖2N ). (6.15)

Starting from mAMP, run gradient ascent on FTAP(·;y) for KGD(N) := bK∗GD logNc iterations, and let
the resulting point be mGD.

(3) Output malg := mGD + ∆(mGD), with ∆(m) defined as in Section 6.2.3.

Pseudocode for the computation of malg is provided in Algorithm 1.

Algorithm 1: Approximate mean computation

Input: HN , y ∈ RN , t > 0. Parameters: KAMP, KGD(N), η > 0
1 m−1 = w0 = 0,
2 For k = 0, . . . ,KAMP, run iteration (6.13)

3 Let u0 = mAMP = mKAMP

4 for k = 0, . . . ,KGD(N)− 1 do
5 uk+1 = uk − η∇FTAP(u

k;y)
6 end

7 Let mGD = uKGD(N)

8 return malg(HN ,y, t) = mGD + ∆(mGD)

6.2.2 Stochastic localization sampling

We are now in position to describe the sampling algorithm, which uses Algorithm 1 as a subroutine. The
main idea is to truncate the diffusion process (6.3) to the interval [0, T ], and to replace it by its Euler
discretization (see Step 6 in Algorithm 2 below).

We will prove that, for T a sufficiently large constant, the tilted measure of Eq. (6.11), with y = yT
is well approximated by a strongly log-concave measure. As a consequence, we can sample from it in total
variation using standard approaches such as the Metropolis-adjusted Langevin algorithm, or MALA (see
[CLA+21] and references therein). Formally, define

σy(ρ) =
ŷ +Uρ√
1 + ‖ρ‖2N

, ŷ =
y

‖y‖N
, (6.16)

where U ∈ RN×(N−1) is an orthonormal basis of the orthogonal complement of y, and

Hproj
N,y(ρ) = HN,y(σy(ρ))− N

2
log(1 + ‖ρ‖2N ). (6.17)

Note that σy is the inverse of the stereographic projection T y from SN ∩{σ : 〈σ,y〉 > 0} to the affine plane
{ŷ+Uρ : ρ ∈ RN−1}. We will see (Lemma 6.9.5) that the push-forward of µHN ,y(·|〈σ,y〉 > 0) under T y is
precisely

νprojHN ,y
(dρ) =

1

Ẑ(y)
expHproj

N,y(ρ) dρ. (6.18)

Let ε0 = 0.1 and ϕ : [0,+∞) → [0,+∞) be a twice continuously differentiable function satisfying ϕ(x) = 0
for x ∈ [0, ε0] and

1

(1 + x)3/2
+ ϕ′(x) ≥ ε0,

1− 2x

(1 + x)5/2
+ ϕ′(x) + 2xϕ′′(x) ≥ ε0 (6.19)
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for all x ≥ 0. (Existence of such a function is shown in Fact 6.9.9.) Define the following measure on RN−1:

ν̃projHN ,y
(dρ) =

1

Z̃(y)
exp H̃proj

N,y(ρ) dρ, H̃proj
N,y(ρ) = Hproj

N,y(ρ)− TN

2
ϕ(‖ρ‖2N ). (6.20)

We will show that for sufficiently large T , ν̃projHN ,y
is strongly log-concave (Proposition 6.9.8) and approximates

νprojHN ,y
in total variation (Corollary 6.9.7). Thus, we may sample from it using MALA, and produce samples

from µHN ,y by pushing forward through σy.

Algorithm 2: Sampling

Input: HN . Parameters: KAMP, KGD(N), η, T > 0, where T is a multiple of N−4

1 Set δ = N−4, L = T/δ
2 Set y0 = 0
3 for ` = 0, . . . , L− 1 do
4 Let m` = malg(HN ,y

`, `δ) be the output of Algorithm 1 on input (HN ,y
`, `δ,KAMP(N),KGD, η)

5 Draw w` ∼ N (0, IN ) independent of everything else

6 Set y`+1 = y` + δm` +
√
δw`

7 end

8 Let ν̃proj
HN ,yL

be defined according to Eq. (6.20)

9 Use MALA to sample from ρMALA ∼ νMALA, to accuracy TV(νMALA, ν̃proj
HN ,yL

) ≤ 1/N

10 return σyL(ρMALA)

Theorem 6.2.1. Suppose ξ satisfies (6.5). There exist constants KAMP,K
∗
GD, η, T depending on ε and ξ such

that running Algorithm 2 with parameters KAMP, KGD(N) = K∗GD logN , η, T , the following holds. With
probability 1− oN (1) over HN , µalg = L(σalg) satisfies

TV(µalg, µHN ) ≤ oN (1).

Further the complexity of the algorithm is upper bounded by CN4 (N + χ∇H) logN + χlog-conc, where χ∇H
is the complexity of evaluating ∇HN (m) at a point m with ‖m‖N ≤ 1, and χlog-conc is the complexity of
sampling from a 1-strongly log-concave measure in N dimension using MALA to accuracy 1/N in total
variation.

Remark 6.2.2. The main result of [CLA+21] implies that, for a ‘warm start’ initialization χlog-conc is of
order N3/2 logN . In the present case we do not have a good warm start, and obtain χlog-conc ≤ C ·N5/2. We
believe this bound is suboptimal, but made no attempt at improving it.

6.2.3 The correction ∆(m)

We now describe the computation of the correction ∆(m). Let Tm be the (N − 1)-dimensional subspace
orthogonal to m and define HN ( · ;m) : Tm → R via HN (x;m) := HN (m+x). We then define the tensors

A(2)(m) := ∇2
xHN (0;m) , A(3)(m) := ∇3

xHN (0;m) . (6.21)

These should be interpreted as tensors A(i)(m) ∈ T⊗im . Let γ∗,N (m) be the unique solution of{
Tr
(
(γ∗,NIN−1 −A(2)(m))−1

)
= N ·

(
1− ‖m‖2/N

)
,

γ∗,N > λmax(A(2)(m)) .
(6.22)

Here IN−1 denotes the identity matrix acting on Tm, and the inverse is over quadratic forms on Tm.
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Then we define

∆i(m) =
1

2
〈A(3)(m),Q(m)⊗Q(m)i,·〉 =

1

2

N∑
a,b,c=1

A
(3)
abc(m)Qia(m)Qbc(m) , (6.23)

Q(m) :=
(
γ∗,N (m)IN−1 −A(2)(m)

)−1
. (6.24)

It is useful to make two additional remarks about the evaluation of ∆(m):

1. For any fixed m, A(2)(m)
d
=
√
ξ′′(‖m‖2N ) · N−1

N W , for W ∼ GOE(N −1). It turns out that, although

mTAP is itself random, this nonetheless gives the correct asymptotics for γ∗,N (mTAP). Let q∗ = q∗(t) be
the solution to q∗

1−q∗ = ξ′t(q∗), existence and uniqueness of which is shown in Fact 6.4.2. We will show

(see Proposition 6.4.4) that typically ‖mTAP‖2N = q∗ + oN (1), and (see Lemma 6.6.22) γ∗,N (mTAP) =
γ∗+ oN (1), for γ∗ = (1− q∗)−1 + (1− q∗)ξ′′(q∗). For the computation of ∆, we can replace γ∗,N by γ∗
with negligible error.

2. The tensors A(2)(m) and A(3)(m) can be written as explicit linear functions of the couplings g, and
hence can be computed efficiently without need to take any numerical derivative.

6.2.4 Fundamental limits of algorithmic SL, replica symmetry breaking, and
shattering

It is useful to compare condition (6.5) with the condition for (absence of) shattering, and replica symmetry
breaking:

• As mentioned above (cf. Eq. (6.9)), it is conjectured [CHS93, CS95, BCKM98] that shattering is absent
if and only if

ξ′(q) <
q

1− q
, ∀q ∈ (0, 1) . (6.25)

This is implied by the condition under which our algorithm succeeds, namely Eq. (6.5), by integrating
once.

• The tight condition for replica symmetry was identified in [Tal06a, Proposition 2.3].

ξ(q) + q + log(1− q) ≤ 0, ∀q ∈ [0, 1) (6.26)

Note that this holds under (6.25) by integrating once, and hence under (6.5).

In this section, we prove that the condition (6.5) is necessary not only for Algorithm 2 to succeed, but indeed
for a broader class of stochastic localization schemes that we next introduce. This points at a fundamental
gap between such schemes and the possible computational limit for sampling, a fact that was suggested in
[GDKZ24] and, in a related context, in [MRTS07].

By the key remark below (6.3), the process yt generated by (6.3) consists of observations of some σ ∼
µHN through a progressively less noisy Gaussian channel. A natural generalization of this process outputs
observations of σ,σ⊗2,σ⊗3, . . . through Gaussian channels of varying signal strengths, and can similarly be
converted to a sampling algorithm.

Consider any J ∈ N and continuously differentiable, coordinate-wise increasing τ : [0,+∞)→ [0,+∞)J ,
normalized to ‖τ(t)‖1 = t for all t ∈ [0,+∞), and such that limt→∞ τj(t) = ∞ for at least one odd j ≤ J .

For each j ≤ J , let (Bj
t )t≥0 be a standard Brownian motion in (RN )⊗j . Let (~yt)t≥0 = (y1

t , . . . ,y
J
t ) ∈

RN × · · · × (RN )⊗J be given by the Ito diffusion

dyjt = τ ′j(t)mj(~yt, t) dt+ τ ′j(t)
1/2 dBj

t , ~y0 = 0, (6.27)

where, with expectation over σ ∼ µHN and Gj ∼ N (0, I⊗jN ),

mj(~yt, t) = E[σ⊗j |τi(t)σ⊗i + τi(t)
1/2Gi = yit,∀1 ≤ i ≤ J ]. (6.28)
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The process (6.3) corresponds to the case J = 1. As in that case, a sampling algorithm can be constructed
from Eq. (6.27) by discretizing time and approximating the calculation ofmj(~yt, t) (see Remark 6.2.5 below).

For A ∈ (RN )⊗j and 1 ≤ ` ≤ j, let A(`) be the tensor obtained by rotating coordinates by i (mod j),
that is

A
(`)
i1,...,ij

= Ai`+1,...,ij ,i1,...,i` .

Then, for B ∈ (RN )⊗j−1, let (A,B)sym ∈ RN be the vector satisfying

〈v, (A,B)sym〉 =

j∑
`=1

〈B ⊗ v,A(`)〉

for all v ∈ RN . Let

ξ̌t(s) = ξ(s) +

J∑
j=1

τj(t)s
j

and define sequence {q̌k : k ≥ 0} by q0 = 0 and

q̌k+1 =
ξ̌′t(qk)

1 + ξ̌′t(qk)
(6.29)

Finally define an AMP iteration analogous to (6.13) by

m̌k = (1− q̌j)w̌k, w̌k+1 = ∇HN (m̌k) +

J∑
j=1

1

N j−1
((m̌k)⊗j−1,yjt )sym − (1− q̌k)ξ̌′′(q̌k)m̌k−1. (6.30)

The next theorem is proved in Section 6.10, under the following condition which is a strict form of (6.26).

ξ′′(0) < 1, ξ(q) + q + log(1− q) < 0, ∀q ∈ (0, 1). (6.31)

Theorem 6.2.3. Suppose that (6.31) holds and that there exists q ∈ [0, 1) such that ξ′′(q) > 1
(1−q)2 . There

exists a positive measure set I ⊆ [0,+∞) such that for all t ∈ I the following holds. There exists 1 ≤ j ≤ J
such that τ ′j(t) > 0 and, for ~yt generated from (6.27),

lim
k→∞

lim inf
N→∞

E
1

N j

∥∥(m̌k)⊗j −mj(~yt, t)
∥∥2

2
> 0.

Remark 6.2.4. In this theorem we assume Eq. (6.31) to hold, but note that this an artifact of our proof
technique. Indeed efficient sampling is believed to be impossible beyond the threshold (6.31). Indeed [AMS25]
implies that ‘stable’ algorithms fail under replica symmetry breaking.

Remark 6.2.5. As alluded to above, we can define a natural analog of Algorithm 1 for this generalized
setting, which computes an estimator m̌alg for m1(~yt, t). For some KAMP ∈ N, the point m̌KAMP is the result
of the first phase of this algorithm. The output m̌alg of this algorithm satisfies ‖m̌KAMP − m̌alg‖N → 0 as
KAMP → ∞; see Theorem 6.4.1 and Proposition 6.4.4 below, which show this for Algorithm 1 when (6.5)
holds.

The analog of Algorithm 2 simulates the SDE (6.27) via an Euler discretization, estimating eachmj(~yt, t)
with (m̌alg)⊗j . Theorem 6.2.3 shows that for a interval of t of positive measure, this algorithm fails for a
tensor order j relevant to the Euler discretization.

6.3 Preliminaries

In this section we provide further background. The contents of Subsections 6.3.1 and 6.3.2 are known and we
often refer to [AMS22, Sections 3 and 4.1] for proofs. Subsection 6.3.4 introduces a lemma about conditioning
a Gaussian process on a random vector: this is a fairly standard but crucial technical tool.
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6.3.1 Stochastic localization

Fix a realization of HN . The stochastic localization process is defined by the SDE (6.3), which has unique
strong solutions provided y 7→m(y, t) is Lipschitz continuous. Note that, for µHN ,yt as in (6.11), m is the
mean

m(y, t) =

∫
σ µHN ,y(dσ).

Therefore Lipschitz continuity is implied by supy ‖Cov(µHN ,y)‖op < ∞ which always holds since µHn,y is
supported on a compact set.

As already mentioned in the introduction, we have the following facts (see for instance [AM22]).

Proposition 6.3.1. Let (yt)t≥0 be the unique solution of the SDE (6.3). Then there exists a standard
Brownian motion B′t independent of σ ∼ µHN , such that, for all t, yt = tσ +B′t.

Further, ECov(µHN ,yt) � IN / t. In particular µHN ,yt ⇒ δσ almost surely as t→∞.

6.3.2 Planted model and contiguity

Recall that µ0 denotes the uniform probability measure on SN . Further, let HN be the space of Hamiltonians
HN (i.e. continuous functionsHN : SN → R endowed with the uniform convergence topology and the induced
Borel sigma-algebra) and µnull ∈ P(HN ) be the law induced on HN by Eq. (6.1). Define the planted measure
µpl ∈ P(SN ×HN ) by

µpl(dx, dHN ) :=
1

Zpl
exp

{
HN (x)

}
dµ0(x)dµnull(HN ).

For HN ∈HN , define the partition function

Z(HN ) :=

∫
exp

{
HN (σ)

}
µ0(dσ) .

Lemma 6.3.2 (Proved in Section 6.8). Suppose ξ satisfies (6.31). Let W ∼ N (− 1
2σ

2, σ2), where σ2 =
− 1

2 log(1− ξ′′(0)). As N →∞, for HN ∼ µnull, the Radon-Nykodym derivative of µpl with respect to µnull is

dµpl

dµnull
(HN ) =

Z(HN )

EZ(HN )

d→ exp(W ).

Remark 6.3.3. In most of this paper, we are interested in ξ satisfying the condition (6.5), which implies
(6.31) by integrating twice. However, the proof of Theorem 6.2.3 in Section 6.10 only assumes ξ satisfies
(6.31), so we state this lemma with the more general condition.

For any T > 0, let P,Q ∈ P(SN ×HN × C([0, T ],RN )) be the laws of (σ, HN , (yt)t∈[0,T ]), generated as
follows.

• Under Q:

HN ∼ µnull, σ ∼ µHN , yt = tσ +Bt , (6.32)

for Bt a standard Brownian motion independent of σ, HN . By Proposition 6.3.1, an equivalent de-
scription of this distribution is: HN ∼ µnull, (yt)t≥0 given by the SDE (6.3) and σ = limt→∞ yt/t.

• Under P:

(HN ,σ) ∼ µpl, yt = tσ +Bt , (6.33)

for Bt a standard Brownian motion independent of σ, HN . As before, we can equivalently generate
first HN , then (yt)t≥0 given by the SDE (6.3) and finally σ.

The joint distribution of (HN ,σ) ∼ µpl can be described in two equivalent ways. In the first one, we
generate first HN and then σ conditional on HN :

HN ∼ µpl(dHN ) =
Z(HN )

EZ(HN )
µnull(dHN ) , σ ∼ µHN . (6.34)
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In the second, we generate first σ and then HN :

σ ∼ µ0 , HN ∼ µpl(dHN |σ) ∝ eHN (σ)µnull(dHN ). (6.35)

A short calculation shows that HN ∼ µpl(·|x) is given by

HN (σ) = Nξ(〈x,σ〉N ) + H̃N (σ), (6.36)

where H̃N ∼ µnull. The above definition has the following immediate consequence.

Proposition 6.3.4 ([AMS22, Proposition 4.2]). For all T ≥ 0,

dP
dQ

(σ, HN , (yt)t∈[0,T ]) =
Z(HN )

EZ(HN )
.

As a consequence of Lemma 6.3.2 and Proposition 6.3.4, Le Cam’s first lemma implies the following.

Corollary 6.3.5. The measures P and Q are mutually contiguous. That is, for any sequence of events EN ,
P(EN )→ 0 if and only if Q(EN )→ 0.

Thus it suffices to analyze our algorithm under the planted distribution P.

6.3.3 Basic regularity estimate

For a tensor A ∈ (RN )⊗k, define the operator norm

‖A‖op,N =
1

N
sup

‖σ1‖N ,...,‖σk‖N≤1

|〈A,σ1 ⊗ · · · ⊗ σk〉|.

Notice that this normalization is different from the standard injective norm ‖·‖inj in that ‖A‖op,N =

N (k−2)/2‖A‖inj.

Proposition 6.3.6 ([HS25, Proposition 2.3]). There exists a sequence of constants (Ck)k≥0 independent of
N for which the following holds. Define the event

KN :=

{
sup
‖σ‖N≤1

‖∇kHN (σ)‖op,N ≤ Ck ∀k ≥ 0

}
.

Then P(KN ) ≥ 1− e−cN .

6.3.4 Conditioning lemma

Lemma 6.3.7. Let D ⊆ RN be an open set and F : D → R be a (not necessarily centered) C2 Gaussian
process on a probability space (Ω,Σ,P). Let X be a random variable on (Ω,Σ) taking values in [0, 1], and m0

be a random vector on the same space taking values in RN . For ε, cspec, cop > 0 satisfying ε ≤ c2spec/10cop,
define Um0 := BN (m0, 5ε/cspec) and the events

G(ε, cspec) :=
{
‖∇F(m0)‖N ≤ ε , ∇2F(m0) � −cspecIn

}
,

H(cop) :=
{

sup
m∈D

‖∇2F(m)‖op,N ≤ cop, sup
m∈D

‖∇3F(m)‖op,N ≤ cop
}
,

Econd := G(ε, cspec) ∩H(cop) ∩ {‖m0‖N ≤ 1} ∩ {Um0 ⊆ D} .

Finally, assume m 7→ E∇F(m) is continuous and λmin(Cov(∇F(m))) is bounded away from 0 uniformly
over m ∈ D. Then, with ϕ∇F(m) the probability density of ∇F(m) w.r.t. Lebesgue measure on RN and dN

denoting integration against this measure,

E(X1{Econd}) =

∫
D

E
[
|det∇2F(m)|X1{Econd ∩ {m ∈ Um0

}}
∣∣∇F(m) = 0

]
ϕ∇F(m)(0) dNm.
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Proof. On event Econd, for all m ∈ Um0 we have

λmax(∇2F(m)) ≤ λmax(∇2F(m0)) + cop‖m−m0‖N ≤ −cspec +
5εcop
cspec

≤ −1

2
cspec. (6.37)

Since ‖∇F(m0)‖N ≤ ε, there is exactly one solution to ∇F(m∗) = 0 in Um0
, which is measurable on (Ω,Σ)

and furthermore lies in BN (m0, 4ε/cspec). The strong concavity (6.37) implies that ∇F is injective on Um0

and its image contains a neighborhood of 0. By the area formula, for sufficiently small ι > 0,

1 =
1

|BN (0, ι)|

∫
Um0

|det∇2F(m)|1{‖∇F(m)‖N ≤ ι} d
Nm.

Multiplying by X1{Econd} and taking expectations of both sides by Fubini yields

E(X1{Econd})

=
1

|BN (0, ι)|

∫
D

E
[
|det∇2F(m)|X1{Econd ∩ {m ∈ Um0

} ∩ {‖∇F(m)‖N ≤ ι}}
]
dNm

=

∫
D

E
[
|det∇2F(m)|X1{Econd ∩ {m ∈ Um0

}}
∣∣‖∇F(m)‖N ≤ ι

] P(‖∇F(m)‖N ≤ ι)
|BN (0, ι)|

dNm.

Note that on Econd, |det∇2F(m)| ≤ cNop. Since Econd is contained in the event ‖m0‖N ≤ 1, {m ∈ Um0
} can

only occur for m on a bounded set. Since λmin(Cov(∇F(m))) is bounded away from 0, ϕ∇F(m) is bounded,
and thus so is P(‖∇F(m)‖N ≤ ι)/|BN (0, ι)|. Therefore the integral in the last display is dominated by
a bounded integrable function. Continuity of E∇F(m) implies that ϕ∇F(m)(z) is continuous in z in a
neighborhood of 0. We take the ι→ 0 limit of the last display by dominated convergence to conclude.

6.4 Analysis of mean computation algorithm

The next several sections are devoted to the analysis of Algorithm 1. We fix t ∈ [0, T ] and consider
(x, HN , (yt)t≥0) ∈ SN ×HN ×C([0, T ],RN ) distributed according to the planted law P defined in Eq. (6.33).
Define

HN,t(σ) = HN (σ) + 〈yt,σ〉 (6.38)

= Nξ(〈x,σ〉N ) + H̃N (σ) + 〈yt,σ〉.

where we recall H̃N (σ) ∼ µnull. The tilted measure µt = µHN ,yt defined in (6.11) has the form

µt(dσ) =
1

Z
expHN,t(σ) µ0(dσ).

Let mt be the mean of µt. The main result of our analysis is the following.

Theorem 6.4.1. Under condition (6.5), there exist parameters (KAMP,K
∗
GD, η) depending only on (ξ, t) such

that the point malg output by Algorithm 1 on input (HN ,yt), with parameters KAMP, KGD(N) = K∗GD logN ,
η satisfies

E ‖malg −mt‖2N = o(N−1).

Recall that we defined ξt(q) = ξ(q) + tq.

Fact 6.4.2. For any t ∈ [0,∞), there is a unique solution q∗ = q∗(t) ∈ [0, 1) to

ξ′t(q) =
q

1− q
. (6.39)

Proof. Define f(q) = ξ′t(q)−
q

1−q . Since f(0) = t > 0 and limq→1− f(q) = −∞, there is at least one solution.
As

d

dq

(
ξ′t(q)−

q

1− q

)
= ξ′′(q)− 1

(1− q)2

(6.5)
< 0,

this solution is unique.
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Henceforth let q∗ denote this solution. It will also be useful to rewrite (6.38) as

HN,t(σ) = Nξt(〈x,σ〉N ) + H̃N,t(σ), (6.40)

where
H̃N,t(σ) = H̃N (σ) + 〈Bt,σ〉 (6.41)

is a spin glass with mixture ξt. In the proofs below, we will switch between these two representations of
HN,t as convenient.

The first step of our analysis characterizes the limiting performance of the AMP iteration (6.13), on
(HN ,yt) generated from the planted process (6.33). Recall the TAP free energy FTAP introduced in (6.15).
With the notation (6.40), we can write

FTAP(m) = Nξt(〈x,m〉N ) + H̃N,t(m) +
N

2
θ(‖m‖2N ) +

N

2
log(1− ‖m‖2N ).

Proposition 6.4.3. For any ι > 0, there exists k0 ∈ N, depending only on (ξ, t, ι), such that for any fixed
k, k ≥ k0 the following holds with probability 1− e−cN . The AMP iterate mk satisfies

|〈x,mk〉N − q∗|, |〈mk,mk〉N − q∗| ≤ ι (6.42)

and ∥∥∇FTAP(m
k)
∥∥
N
,

∥∥∥∥∇H̃N,t(m
k) + ξ′t(q∗)x−

(
(1− q∗)ξ′′(q∗) +

1

1− q∗

)
mk

∥∥∥∥
N

≤ ι. (6.43)

Moreover, with I = I(ι) = [q∗ − ι, q∗ + ι],

µt(Band(mk, I) ∩ Band(x, I)) ≥ 1− e−cN . (6.44)

The proof of this proposition is presented in Section 6.5. For ι > 0, define

Sι :=
{
m ∈ RN : |〈m,x〉N − q∗|, |〈m,m〉N − q∗| ≤ ι

}
. (6.45)

Proposition 6.4.4. There exist Cspec
max > Cspec

min > 0 and L > 0 such that, for any sufficiently small ι > 0,
there is an event E0 with probability 1− e−cN , on which the following holds.

(a) The event KN from Proposition 6.3.6 holds.

(b) FTAP has a unique critical point mTAP in Sι, which further satisfies

spec(∇2FTAP(m
TAP)) ⊆ [−Cspec

max,−C
spec
min ]. (6.46)

(c) For KAMP large enough (depending on ι), we have mAMP ∈ Sι/2 and ‖mAMP −mTAP‖N ≤ ι/2.

Note that under (a), there exists cop such that
∥∥∇2FTAP(m)

∥∥
op,N

,
∥∥∇3FTAP(m)

∥∥
op,N

≤ cop uniformly over

m ∈ Sι, for all sufficiently small ι > 0. Let

ε = min

(
ιcop
10

,
(Cspec

min )2

40cop

)
. (6.47)

Let E = E0 ∩ {‖∇FTAP(m
AMP)‖N ≤ ε}. (For KAMP large enough, this holds with probability 1 − e−cN by

Proposition 6.4.3.) We further have:

(d) For any δ > 0 there exists Cδ > 0 such that the following holds. For any random variable X with
0 ≤ X ≤ 1 almost surely,

E[X1{E}] ≤ Cδ sup
m∈Sι

E
[
X1+δ1{E}

∣∣∇FTAP(m) = 0
]1/(1+δ)

.

Proposition 6.4.5. For sufficiently small ι > 0, with probability 1−e−cN , the event E from Proposition 6.4.4
holds and:
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(a) For I = I(ι) as above, we have

µt(Band(mTAP, I) ∩ Band(x, I)) ≥ 1− e−cN .

(b) For η small enough and K∗GD large enough, we have ‖mGD −mTAP‖N ≤ N−10.

(c) For any m1,m2 ∈ BN (mTAP, ι), we have ‖∆(m1)−∆(m2)‖N ≤ L
N ‖m1 −m2‖N .

The proofs of the last two propositions are given in Section 6.6.
For ι > 0, define the truncated magnetization

m̃ι(m) =

∫
Band(m,I(ι))∩Band(x,I(ι))

σ exp(HN,t(σ)) µ0(dσ)∫
Band(m,I(ι))∩Band(x,I(ι))

exp(HN,t(σ)) µ0(dσ)
.

Proposition 6.4.6. Let ∆( · ) be defined as in Section 6.2.3. Then, for sufficiently small ι, δ > 0, we have

sup
m∈Sι

E
[
‖m+ ∆(m)− m̃2ι(m)‖2+δ

N

∣∣∇FTAP(m) = 0
]
≤ N−(1+δ).

The proof of this proposition is given in Section 6.7.

Proof of Theorem 6.4.1. Let E1 be the intersection of E from Proposition 6.4.4 and the event in Proposi-
tion 6.4.5. On E1, the point mTAP is well-defined and we can write

malg −mt = mGD + ∆(mGD)−mt

= (mGD −mTAP) + (∆(mGD)−∆(mTAP)) + (m̃2ι(m
TAP)−mt)

+ (mTAP + ∆(mTAP)− m̃2ι(m
TAP)) ,

whence

‖malg −mt‖2N ≤ 4‖mGD −mTAP‖2N + 4‖∆(mGD)−∆(mTAP)‖2N + 4‖m̃2ι(m
TAP)−mt‖2N

+ 4‖mTAP + ∆(mTAP)− m̃2ι(m
TAP)‖2N

The following also holds on E1. By Proposition 6.4.5(b) and 6.4.5(c), for some constant C (changing from
line to line below),

‖mGD −mTAP‖2N , ‖∆(mGD)−∆(mTAP)‖2N ≤ CN−20.

By Proposition 6.4.4(a), the complement of Band(mTAP, I) ∩ Band(x, I) accounts for a e−cN fraction of the
Gibbs measure. Because the spins σ are bounded, this implies

‖m̃2ι(m
TAP)−mt‖2N ≤ e−cN .

Therefore, on E1, for all sufficiently large N

‖malg −mt‖2N ≤ CN−20 + 4‖mTAP + ∆(mTAP)− m̃2ι(m
TAP)‖2N .

Thus

E[‖malg −mt‖2N ] ≤ P(Ec1) + E[‖malg −mt‖2N1{E1}]
≤ CN−20 + 4E

[
‖mTAP + ∆(mTAP)− m̃2ι(m

TAP)‖2N1{E1}
]

≤ CN−20 + 4Cδ/2 sup
m∈Sι

E
[
‖m+ ∆(m)− m̃2ι(m)‖2+δ

N 1{E1}
∣∣∇FTAP(m) = 0

]1/(1+δ/2)

≤ CN−20 + 4Cδ/2N
−(1+δ)/(1+δ/2) = o(N−1).

In the second-last line, we applied Proposition 6.4.4(d), noting that on E1 and conditioned on ∇FTAP(m) = 0,
we have mTAP = m almost surely. The last line is Proposition 6.4.6.
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6.5 Analysis of AMP iteration: proof of Proposition 6.4.3

6.5.1 State evolution limit

We first prove (6.42) and (6.43) using the state evolution result of [Bol14, BM11, JM13]. Recalling the
change of notation (6.40), the AMP iteration (6.13) can be rewritten as m−1 = w0 = 0,

mk = (1− qk)wk, (6.48)

wk+1 = ∇HN,t(m
k)− (1− qk)ξ′′(qk)mk−1

= ∇H̃N,t(m
k) + ξ′t(〈x,mk〉N )x− (1− qk)ξ′′(qk)mk−1.

Here and below, the sequence (qk)k≥0 is defined as per Eq. (6.12).
Set γ0 = Σ0,i = Σi,0 = 0 for all i ≥ 0, and define the following recurrence. Sample X ∼ N (0, 1) and, for

k ≥ 0,
(G1, . . . , Gk) ∼ N (0,Σ≤k), Wi = Gi + γiX.

Then, let

γk+1 = ξ′t((1− qk)γk) (6.49)

Σk+1,j+1 = ξ′t ((1− qk)(1− qj)E[WkWj ]) . (6.50)

The following proposition is an immediate consequence of [AMS21, Proposition 3.1], which generalizes
to the tensor case [BM11, Theorem 1].

Proposition 6.5.1. For any k ≥ 0, the empirical distribution of the AMP iterates’ coordinates converges
in W2 in probability:

1

N

N∑
i=1

δxi,w1
i ,...,w

k
i

W2→ L(X,W1, . . . ,Wk).

(In words, the left-hand side is the probability distribution on Rk+1 that puts mass 1/N on each point
(xi, w

1
i , . . . , w

k
i ), for i ∈ [N ].)

Lemma 6.5.2. For all k, j ≥ 0, we have Σk,j = γk∧j =
qk∧j

1−qk∧j .

Proof. We first prove by induction that γk = qk
1−qk . For k = 0 this is clear, and then by induction

γk+1 = ξ′t(qk) =
qk+1

1− qk+1
.

Similarly, by induction

(1− qk)(1− qj)E[WkWj ] = (1− qk)(1− qj) (Σk,j + γkγj) = (1− qk∨j)qk∧j + qkqj = qk∧j ,

and thus
Σk+1,j+1 = ξ′t(qk∧j) =

qk∧j+1

1− qk∧j+1
.

Lemma 6.5.3. As k →∞, we have qk → q∗.

Proof. Since the function f(q) =
ξ′t(q)

1+ξ′t(q)
is increasing, with f(0) > 0, f(1) < 1, qk must converge to a

solution of q = f(q). This rearranges to ξ′t(q) = q
1−q , which has unique solution q∗ by Fact 6.4.2.

Proposition 6.5.4. With probability 1− e−cN , (6.42) and (6.43) hold for all k ≥ k0.

291



Proof. Let ' denote equality up to an additive error oP,N (1) (a term vanishing in probability as N → ∞).
By Proposition 6.5.1,

〈x,mk〉N = (1− qk)〈x,wk〉N ' (1− qk)γk = qk. (6.51)

Moreover,
〈mk,mk〉N = (1− qk)2〈wk,wk〉N ' (1− qk)2

(
Σk,k + γ2

k

)
= qk. (6.52)

By Lemma 6.5.3, for all k large enough we have |qk − q∗| ≤ ι/3, whence (6.42) holds with high probability.
Rearranging the AMP iteration gives

∇H̃N,t(m
k) = −ξ′t(〈x,mk〉N )x+wk+1 + (1− qk)ξ′′(qk)mk−1

= −ξ′t(〈x,mk〉N )x+
1

1− qk+1
mk+1 + (1− qk)ξ′′(qk)mk−1, (6.53)

By Proposition 6.5.1, Lemma 6.5.2, and Lemma 6.5.3, we have

lim
k→∞

p-lim
N→∞

‖mk+1 −mk‖ = 0 , (6.54)

lim
k→∞

p-lim
N→∞

‖wk+1 −wk‖ = 0 . (6.55)

and therefore, by Eq. (6.53),

lim
k→∞

p-lim
N→∞

∥∥∥∥∇H̃N,t(m
k) + ξ′t(q∗)x+

(
1

1− q∗
+ (1− q∗)ξ′′(q∗)

)
mk

∥∥∥∥
N

= 0 .

As

∇FTAP(m) = ∇H̃N,t(m) + ξ′t(〈x,m〉N )x+

(
1

1− ‖m‖2N
+ (1− ‖m‖2N )ξ′′(‖m‖2N )

)
m, (6.56)

equations (6.51), (6.52) further imply

lim
k→∞

p-lim
N→∞

‖∇FTAP(m
k)‖N = 0 .

Thus, for large enough k, (6.43) holds with high probability.
To improve these assertions to 1 − e−cN probability, note that by [HS25, Section 8], the AMP iterate

mk is, on an event ELip with probability 1 − e−cN , a O(1)-Lipschitz function of the disorder Gaussians in

H̃N,t. By Kirszbraun’s extension theorem, there is a measurable, O(1)-Lipschitz function m̃
k

of the disorder

which agrees with mk on ELip. Thus 〈x, m̃k〉N and 〈m̃k
, m̃

k〉N are O(N−1/2)-Lipschitz in the disorder. By
Gaussian concentration of measure

|〈x, m̃k〉N − E〈x, m̃k〉N |, |〈m̃k
, m̃

k〉N − E〈m̃k
, m̃

k〉N | ≤ ι/3

with probability 1− e−cN . Since mk = m̃
k

on ELip, (6.42) holds with probability 1− e−cN .

By Proposition 6.3.6, m 7→ ∇H̃N,t(m) is also O(1)-Lipschitz over ‖m‖N ≤ 1 with probability 1− e−cN .
A similar argument shows that (6.43) holds with probability 1− e−cN .

6.5.2 Overlap with AMP iterates

The following proposition constitutes the first half of the proof of Eq. (6.44).

Proposition 6.5.5. Let ι > 0 and I = I(ι). With probability 1− e−cN , for all k ≥ k0 (with k0 a sufficiently
large constant depending on (ξ, t, ι)),

µt(Band(mk, I)) ≥ 1− e−cN .
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To prove Proposition 6.5.5, we will combine Lemma 6.5.7 below, which identifies a band on which the
Gibbs measure µt concentrates, with a self-reduction argument. We return to the earlier representation
(6.38) of HN,t, which we reproduce below.

HN,t(σ) = HN (σ) + 〈yt,σ〉, where

HN (σ) = Nξ(〈x,σ〉N ) + H̃N (σ),

yt = tx+
√
tg, g ∼ N (0, IN ).

Let 〈·〉 denote average with respect to σ ∼ µt. The following fact is a restatement of Bayes theorem:
sampling x and then yt is equivalent to sampling yt and then x from the posterior. In the context of
statistical physics, this is known as ‘Nishimori’s property.’

Fact 6.5.6. For any bounded measurable f , E f(x,yt) = E〈f(σ,yt)〉.

Lemma 6.5.7. Let ι > 0 be arbitrary. With probability 1− e−cN ,∣∣∣‖yt‖2N − t2 − t∣∣∣ ≤ ι, |〈x,yt〉N − t| ≤ ι, µt(Band(yt, [t− ι, t+ ι])) ≥ 1− e−cN .

Proof. Clearly ‖yt‖
2
N ' t2 + t and 〈x,yt〉N ' t, so the first two conclusions follow by standard concentration

arguments. By Fact 6.5.6,

E 〈1 {〈σ,yt〉N 6∈ [t− ι, t+ ι]}〉 = P (〈x,yt〉N 6∈ [t− ι, t+ ι]) ≤ e−cN .

By Markov’s inequality,

P
{
〈1 {〈σ,yt〉N 6∈ [t− ι, t+ ι]}〉 ≥ e−cN/2

}
≤ e−cN/2.

This implies the final conclusion after adjusting c.

We next introduce a self-reduction property of models obtained by restriction to a certain band. Define

U =
{
σ ∈ RN : 〈σ,yt〉N = 0

}
.

Recall that (qk)k≥0 is defined by Eq. (6.12), and in particular q1 = t/(1 + t). Let ŷt = yt/‖yt‖N and
r =
√
q1. Consider the Hamiltonian on ρ ∈ U defined by

Ĥ(ρ) = HN (rŷt +
√

1− r2ρ)−HN (rŷt).

Further define
ξ(1)(s) = ξ(q1 + (1− q1)s)− ξ(q1).

Let r1 = 〈x, ŷt〉N and define x⊥ ∈ U by x = r1ŷt +
√

1− r2
1x
⊥. Note that conditionally on (yt, r1), x⊥ is

a uniformly random vector in U ∩ SN . Also define the Hamiltonian

Ĥ ′(ρ) = Nξ(1)(〈x⊥,ρ〉N ) + H̃ ′(ρ),

where H̃ ′ is a Gaussian process on U with covariance

E H̃ ′(ρ1)H̃ ′(ρ2) = Nξ(1)(〈ρ1,ρ2〉N ).

Note that Ĥ ′ is of the form (6.40), with one fewer dimension and ξ(1) in place of ξt.

Proposition 6.5.8 (Self-reduction). There exists a constant C such that the following holds. Let ι > 0. Let
S be the (yt, r1)-measurable event∣∣∣‖yt‖N −√t(1 + t)

∣∣∣ , |〈x, ŷt〉N −√q1| ≤ ι. (6.57)
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Then P(S) ≥ 1 − e−cN and for any (yt, r1) ∈ S the following holds. There is a coupling C of L(Ĥ|yt, r1)

and L(Ĥ ′) such that almost surely,

1

N
sup

ρ∈U∩SN
|Ĥ(ρ)− Ĥ ′(ρ)| ≤ Cι ,

sup
ρ∈U∩SN

∥∥∥∇U Ĥ(ρ)−∇U Ĥ ′(ρ)
∥∥∥
N
≤ Cι.

(6.58)

Proof. Suppose the event in Lemma 6.5.7 holds. Then, using q1 = t/(1 + t),

r1 =
〈x,yt〉N
‖yt‖N

=
t+O(ι)√

t(1 + t) +O(ι)
=
√
q1 +O(ι).

This proves P(S) ≥ 1 − e−cN , after adjusting ι by a constant factor. Now suppose (yt, r1) ∈ S. We have

Ĥ(ρ) = Ĥ1(ρ) + Ĥ2(ρ), where

Ĥ1(ρ) = N

{
ξ

(
R

(
rŷt +

√
1− r2ρ, r1ŷt +

√
1− r2

1x
⊥
))
− ξ

(
R

(
rŷt, r1ŷt +

√
1− r2

1x
⊥
))}

,

Ĥ2(ρ) =
{
H̃N

(
rŷt +

√
1− r2ρ

)
− H̃N (rŷt)

}
.

The first summand simplifies as

Ĥ1(ρ) = N

{
ξ

(
rr1 +

√
(1− r2)(1− r2

1)〈ρ,x⊥〉N
)
− ξ(rr1)

}
= Nξ(1)(〈ρ,x⊥〉N ) +N ·O(ι).

The second summand is a Gaussian process on U with covariance

E Ĥ2(ρ1)Ĥ2(ρ2) = N
(
ξ(r2 + (1− r2)〈ρ1,ρ2〉N )− ξ(r2)

)
= Nξ(1)(〈ρ1,ρ2〉N ).

Thus we can couple Ĥ2 and H̃ ′ so that Ĥ2 = H̃ ′ almost surely.

Define q̂0 = 0 and, similarly to (6.12),

q̂k+1 =
ξ′(1)(q̂k)

1 + ξ′(1)(q̂k)
.

Lemma 6.5.9. For all k ≥ 0, we have q1 + (1− q1)q̂k = qk+1.

Proof. We induct on k. The base case k = 0 is trivial. Recalling q1 = t
1+t , the inductive step follows from

q1 + (1− q1)q̂k+1 = q1 + (1− q1)
ξ′(1)(q̂k)

1 + ξ′(1)(q̂k)
= 1− (1− q1)

(
1−

ξ′(1)(q̂k)

1 + ξ′(1)(q̂k)

)

= 1− 1− q1

1 + (1− q1)ξ′(qk+1)
= 1− 1

1 + t+ ξ′(qk+1)

=
ξ′t(qk+1)

1 + ξ′t(qk+1)
= qk+2.

Define the AMP iteration, analogous to (6.48), on the reduced model Ĥ ′, by m̂
−1

= ŵ0 = 0 and

m̂
k

= (1− q̂k)ŵk, ŵk+1 = ∇U Ĥ ′(m̂k
)− (1− q̂k)ξ′′(1)(q̂k)m̂

k−1
.

Note that m̂
k
, ŵk ∈ U .
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Proposition 6.5.10 (Self-reduction of AMP iterates). Let ι > 0. Suppose (yt, r1) ∈ S for S as in Propo-

sition 6.5.8, and couple L(Ĥ|yt, r1) and Ĥ ′ as in that proposition. Then (conditionally on yt, r1) with
probability 1− e−cN , for all 1 ≤ k ≤ O(1),

‖mk − m̃k‖N ≤ O(ι), where m̃
k+1

=
√
q1ŷt +

√
1− q1m̂

k
. (6.59)

Proof. We induct on the claim that (6.59) holds for all 1 ≤ k ≤ K. First, we have

m1 = (1− q1)yt =
yt

1 + t
, m̃

1
=
√
q1ŷt =

√
t

1 + t
ŷt. (6.60)

For (yt, r1) ∈ S, we have |‖yt‖N −
√
t(1 + t)| ≤ ι, and thus

‖m1 − m̃1‖N =

∣∣∣∣
√
‖yt‖N
1 + t

−
√

t

1 + t

∣∣∣∣ ≤ ι

1 + t
.

This proves the base case K = 1. Suppose (6.59) holds for 1 ≤ k ≤ K. By Proposition 6.5.1, for all
1 ≤ j, k ≤ K + 1,

〈mj ,mk〉N →p qj∧k, 〈m̂j
, m̂

k〉N →p q̂j∧k,

and thus, by Lemma 6.5.9,

〈m̃j
, m̃

k〉N →p q1 + (1− q1)q̂(j−1)∧(k−1) = qk.

Because AMP iterates are Lipschitz in the disorder (see the proof of Proposition 6.5.4), on an event with
probability 1− e−cN ,

〈mj ,mk〉N , 〈m̃j
, m̃

k〉N ∈ [qj∧k − ι, qj∧k + ι] (6.61)

for all 1 ≤ j, k ≤ K + 1. Since m1 is a multiple of yt = ∇HN,t(0),

mK+1 ∈ span(m1, . . . ,mK ,∇HN,t(m
K)) = span(m1, . . . ,mK ,∇UHN (mK)).

As
m̂
K ∈ span(m̂

1
, . . . , m̂

K−1
,∇U Ĥ ′(m̂K−1

)),

we have
m̃
K+1 ∈ span(m̃

1
, . . . , m̃

K
,∇U Ĥ ′(m̂K−1

)).

Note that
√

1− q1∇UHN (m̃
K

) = ∇U Ĥ(m̂
K−1

). Thus (on an event where ∇HN is O(1)-Lipschitz, and the
event in Proposition 6.5.8, both of which are probability 1− e−cN )∥∥∥√1− q1∇UHN (mK)−∇U Ĥ ′(m̂K−1

)
∥∥∥
N
≤
√

1− q1

∥∥∥∇UHN (mK)−∇UHN (m̃
K

)
∥∥∥
N

+
∥∥∥∇U Ĥ(m̂

K−1
)−∇U Ĥ ′(m̂K−1

)
∥∥∥
N

= O(ι).

This and (6.61) imply ‖mK+1 − m̃K+1‖N = O(ι), completing the induction.

Proposition 6.5.11. For all ι > 0 and k ≥ 1 fixed, the following holds. Let

Vk(ι) =
{
σ ∈ SN : |〈σ,mj〉N − qj | ≤ ι, ∀1 ≤ j ≤ k

}
.

Then, with probability 1− e−cN ,
µt(Vk(ι)) ≥ 1− e−cN .

Proof. We induct on k. By Lemma 6.5.7, with probability 1− e−cN ,

µt(Band(yt, [t− ι, t+ ι])) ≥ 1− e−cN . (6.62)
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As calculated in (6.60), m1 = yt/(1 + t), so σ ∈ Band(yt, [t− ι, t+ ι]) if and only if

〈σ,m1〉N =
t

1 + t
+O(ι) = q1 +O(ι).

This proves the base case k = 1 after adjusting ι by a constant factor.
For the inductive step, let ι1 be suitably small in ι. Let S1 be the event (6.57) with right-hand side ι1.

By Proposition 6.5.8, (yt, r1) ∈ S1 with probability 1 − e−cN . Condition on any such (yt, r1). Along with
(6.62), this implies

µt(Band(ŷt, [
√
q1 − Cι1,

√
q1 + Cι1])) ≥ 1− e−cN

for suitable C. For r2 ∈ [
√
q1 − Cι1,

√
q1 + Cι1], let µ̂r2t be the Gibbs measure on U ∩ SN given by

µ̂r2t = Q#µt(·|〈σ, ŷt〉N = r2), where Q(σ) =
P⊥ŷt(σ)

‖P⊥ŷt(σ)‖N
.

Note that µ̂
√
q1

t is the Gibbs measure on U ∩ SN corresponding to Hamiltonian Ĥ. Couple Ĥ and Ĥ ′ as in

Proposition 6.5.8, and let µ̂′t be the Gibbs measure on U ∩ SN corresponding to Hamiltonian Ĥ ′.

By the inductive hypothesis applied to Hamiltonian Ĥ ′ and mixture ξ(1), with probability 1−e−cN ,

µ̂′t(V̂k(ι)) ≥ 1− e−cN , where

V̂k(ι) =
{
ρ ∈ U ∩ SN : |〈ρ, m̂j〉N − q̂j | ≤ ι, ∀1 ≤ j ≤ k

}
.

By Proposition 6.5.8,
1

N
sup

ρ∈U∩SN
|Ĥ(ρ)− Ĥ ′(ρ)| ≤ ι1.

For ι1 small enough in ι, this implies

µ̂
√
q1

t (V̂k(2ι)) ≥ 1− e−cN .

By Lipschitz continuity of HN,t, for ι1 small enough in ι, we have

µ̂r2t (V̂k(3ι)) ≥ 1− e−cN , ∀r2 ∈ [
√
q1 − Cι1,

√
q1 + Cι1].

This implies µt(Ṽk+1(4ι)) ≥ 1− e−cN , where

Ṽk(ι) =
{
σ ∈ SN : |〈σ, m̃j〉N − qj | ≤ ι, ∀1 ≤ j ≤ k

}
.

However, by Proposition 6.5.10, with probability 1− e−cN , ‖mj − m̃j‖N ≤ ι for all 1 ≤ j ≤ k + 1. On this

event, Ṽk+1(4ι) ⊆ Vk(5ι). Thus µt(Vk(5ι)) ≥ 1− e−cN . This completes the induction, upon adjusting ι.

Proof of Proposition 6.5.5. Let

V +
k (ι) =

{
σ ∈ SN : |〈σ,mk〉N − qk| ≤ ι

}
,

so clearly V +
k (ι) ⊇ Vk(ι). By Proposition 6.5.4, for all k ≥ k0 we have |qk − q∗| ≤ ι. Thus

Band(mk, [q∗ − 2ι, q∗ + 2ι]) ⊇ V +
k (ι).

By Proposition 6.5.11, with probability 1− e−cN ,

µt(Band(mk, [q∗ − 2ι, q∗ + 2ι])) ≥ 1− e−cN .

The result follows by adjusting ι.
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6.5.3 Overlap with planted signal

The following proposition completes the proof of (6.44).

Proposition 6.5.12. Let ι > 0 and I = I(ι). With probability 1− e−cN ,

µt(Band(x, I)) ≥ 1− e−cN .

Lemma 6.5.13. The function
f(q) = ξt(q) + q + log(1− q)

is maximized over [0, 1] uniquely at q = q∗.

Proof. We calculate

f ′(q) = ξ′t(q)−
q

1− q
, f ′′(q) = ξ′′(q)− 1

(1− q)2
.

By (6.39), f is stationary at q∗. By (6.5), it is concave on [0, 1).

We will use the following replica-symmetric upper bound on the free energy. Let ĤN be the Hamiltonian
a spherical spin glass with mixture ξ̂, which may contain a degree-1 term (i.e., possibly ξ̂′(0) > 0).

Define the partition function

ẐN =

∫
SN

exp
{
ĤN (σ)

}
µ0(dσ). (6.63)

Proposition 6.5.14. For any u ∈ [0, 1), we have

p-lim
N→∞

1

N
log ẐN ≤

1

2

(
ξ̂(1)− ξ̂(u) +

u

1− u
+ log(1− u)

)
. (6.64)

Furthermore, equality holds if

g(s) =

∫ s

0

(
ξ̂′(r)− r

(1− u)2

)
dr (6.65)

is maximized over s ∈ [0, u] at s = u, and ξ̂u(s) = ξ̂(u+ (1− u)s)− ξ̂(u)− (1− u)ξ̂′(u)s satisfies

ξ̂u(s) + s+ log(1− s) ≤ 0 (6.66)

for all s ∈ [0, 1).

Proof. The bound (6.64) is the spherical Parisi formula [Tal06a, Theorem 1.1] with order parameter δu. The
equality condition follows from the extremality condition [Tal06a, Proposition 2.1].

Let HN,t be as in (6.40). Let ψN denote the probability density of z1, where z is a sample from the
uniform Haar measure on the unit sphere SN−1. It is known that

ψN (q) =
1

ZN,ψ
(1− q2)(N−3)/2, q ∈ [−1, 1] (6.67)

for some normalizing constant ZN,ψ. For q ∈ [−1, 1], define

Z(q) =

∫
Band(x,q)

exp
{
HN,t(σ)

}
dµ(q)(σ) , (6.68)

where µ(q) is the uniform measure on Band(x, q), normalized to µ(q)(Band(x, q)) = ψN (q). Note that∫ 1

−1

Z(q) dq =

∫
SN

exp
{
HN,t(σ)

}
dµ0(σ).
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Proposition 6.5.15. For any fixed q ∈ (−1, 1),

p-lim
N→∞

1

N
logZ(q) ≤ 1

2

(
ξt(1) + ξt(|q|) + |q|+ log(1− |q|)

)
. (6.69)

Equality holds for q = q∗, and does not hold for any q < 0.

Proof. Consider first q ∈ [0, 1]. On Band(x, q), if we write σ = qx +
√

1− q2ρ, where 〈x,ρ〉 = 0, then the
random part

ĤN,q(ρ) := H̃N,t(σ)− H̃N,t(qx) = H̃N,t(qx+
√

1− q2ρ)

is a spin glass with one fewer dimension and mixture ξ replaced by

ξ̂(s) = ξt(q
2 + (1− q2)s)− ξt(q2).

Then,

p-lim
N→∞

1

N
logZ(q) = ξt(q) +

1

2
log(1− q2) + p-lim

N→∞

1

N
log ẐN,q, (6.70)

where ẐN,q is the free energy of the spin glass with Hamiltonian ĤN,q. By Proposition 6.5.14 with u = q
1+q ,

p-lim
N→∞

1

N
log ẐN,q ≤

1

2
(ξt(1)− ξt(q) + q − log(1 + q)) . (6.71)

Combining with (6.70) proves (6.69). For q < 0, (6.70) still holds. Since ξt(q) < ξt(|q|), and the remaining
terms on the right-hand side of (6.70) depend on q only through |q|, (6.69) holds with strict inequality.

To show that equality holds in (6.69) for q = q∗, we will verify that (6.71) holds with equality. Let
u∗ = q∗

1+q∗
. Then

dξ̂

du
(u∗) = (1− q2

∗)ξ
′
t(q∗)

(6.39)
= q∗(1 + q∗) =

u∗
(1− u∗)2

,

while
d2ξ̂

du2
(u∗) = (1− q2

∗)
2ξ′′(q∗)

(6.5)
< (1 + q∗)

2 =
1

(1− u∗)2
.

Thus, for g in (6.65), g′(u∗) = 0 and g′′(u∗) < 0. However, over s ∈ [0, u∗],

g′(s) = ξ̂′(s)− 1

(1− u∗)2

is convex because ξ̂′ is convex. So, g′′(s) < 0 for all s ∈ [0, u∗], which implies g′(s) ≥ 0 for all s ∈ [0, u∗]. It
follows that g(s) is maximized over s ∈ [0, u∗] at u∗, verifying (6.65). Since

ξ̂u∗(s) = ξt(q∗ + (1− q∗)s)− ξt(q∗)− (1− q∗)ξ′t(q∗)s
(6.39)

= ξt(q∗ + (1− q∗)s)− ξt(q∗)− q∗s,

we have

ξ̂u∗(s) + s+ log(1− s) =
{
ξt(q∗ + (1− q∗)s) + (q∗ + (1− q∗)s) + log [1− (q∗ + (1− q∗)s)]

}
−
{
ξt(q∗) + q∗ + log(1− q∗)

}
≤ 0,

where the final inequality is by Lemma 6.5.13. This verifies (6.66) and completes the proof.

Proof of Proposition 6.5.12. Fix ι > 0 arbitrarily (independent of N). We will choose υ = υ(ι) a sufficiently
small constant to verify the derivations below. Let

q+
k = q∗ + ι+ kυ, q−k = q∗ − ι− kυ,

and let k+ (resp. k−) be the largest integer such that q+
k+ ≤ 1 (resp. q−k− ≥ −1). Let

J = {q−k− , . . . , q
−
1 , q

+
1 , . . . , q

+
k+}.

Define h(q) = 1
2 (ξt(1) + ξt(|q|) + |q|+ log(1− |q|)) to be the right-hand side of (6.69). Consider the event:
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• KN from Proposition 6.3.6 holds,

• 1
N logZ(q∗) ≥ h(q∗)− υ,

• 1
N logZ(q) ≤ h(q) + υ for all q ∈ J .

This holds with probability 1− e−cN by concentration properties of Z(q). Further let

Z0 =

∫
SN

1{〈σ,x〉N ∈ [q∗ − υ, q∗ + υ]}
{

expHN,t(σ)
}
dµ0(σ) =

∫ q∗+υ

q∗−υ
Z(q) dq,

Z+
k =

∫
SN

1{〈σ,x〉N ∈ [q+
k , q

+
k + υ]}

{
expHN,t(σ)

}
dµ0(σ) =

∫ q+k +υ

q+k

Z(q) dq,

Z−k =

∫
SN

1{〈σ,x〉N ∈ [q−k − υ, q
−
k ]}
{

expHN,t(σ)
}
dµ0(σ) =

∫ q−k

q−k −υ
Z(q) dq.

Since KN holds, HN,t(σ) is O(1)-Lipschitz, and thus

Z0 ≥ Z(q∗)e
−oυ(1)N , Z+

k ≤ Z(q+
k )eoυ(1)N , Z−k ≤ Z(q−k )eoυ(1)N .

Here and below, oυ(1) denotes a term independent of N that vanishes as υ → 0. So

1

N
log

∫
SN

1{〈σ,x〉N ∈ [q∗ − ι, q∗ + ι]} expHN,t(σ)dµ0(σ) ≥ 1

N
logZ0 ≥ h(q∗)− oυ(1)

while

1

N
log

∫
SN

1{〈σ,x〉N 6∈ [q∗ − ι, q∗ + ι]} ≤ 1

N
log

 k+∑
k=0

Z+
k +

k−∑
k=0

Z−k


≤ max

q∈J
h(q) + oυ(1).

By Lemma 6.5.13, for υ small enough,

h(q∗)− oυ(1) > max
q∈J

h(q) + oυ(1)

and thus µt([q∗ − ι, q∗ + ι]) ≥ 1− e−cN .

Proof of Proposition 6.4.3. Follows from Propositions 6.5.4, 6.5.5, and 6.5.12.

6.6 Description of TAP fixed point: proof of Proposition 6.4.4

6.6.1 Existence and uniqueness of TAP fixed point

We say that m is a ι-approximate critical point of FTAP if ‖∇FTAP(m)‖N ≤ ι. In this subsection we show the
following result.

Proposition 6.6.1. There exist Cspec
max > Cspec

min > 0 such that, for sufficiently small ι > 0, the following holds
with probability 1− e−cN .

(a) FTAP has a unique critical point mTAP in Sι, which further satisfies (6.46).

(b) There exists ι′ = oι(1) such that any ι-approximate critical point m ∈ Sι of FTAP satisfies ‖m −
mTAP‖N ≤ ι′.
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The proof of this proposition depends on an understanding of the landscape of H̃N,t restricted to S0, given

in Proposition 6.6.2 below (recall that H̃N,t is the centered version of the Hamiltonian HN,t, cf. Eqs. (6.40)
and (6.41)). Note that S0 is an affine transformation of the sphere SN−2; we will view it as a Riemannian
manifold. We first recall notions of Riemannian gradient and Hessian. For m ∈ S0, let

m⊥ =
m− q∗x√
q∗(1− q∗)

,

so that 〈x,m⊥〉N = 0 and ‖m⊥‖N = 1. The Riemannian gradient and radial derivative of H̃N,t are

∇spH̃N,t(m) = P⊥span(m,x)∇H̃N,t(m), ∂radH̃N,t(m) = 〈m⊥,∇H̃N,t(m)〉/
√
N.

In the below calculations, it will be convenient to work with the following rescaled radial derivative, whose
typical maximum is O(1):

∂̃radH̃N,t(m) = ∂radH̃N,t(m)/
√
N = 〈m⊥,∇H̃N,t(m)〉N .

Similarly to above, we say m ∈ S0 is a Riemannian critical point of H̃N,t if ∇spH̃N,t(m) = 0, and an

ι-approximate Riemannian critical point if ‖∇spH̃N,t(m)‖N ≤ ι. Further define the tangential and
Riemannian Hessian (these will be used in the next subsection)

∇2
tanH̃N,t(m) = P⊥span(m,x)∇

2H̃N,t(m)P⊥span(m,x),

∇2
spH̃N,t(m) = ∇2

tanH̃N,t(m)− ∂̃radH̃N,t(m)√
q∗(1− q∗)

P⊥span(m,x).

Proposition 6.6.2. There exist Cspec
max > Cspec

min > 0 such that for any ι > 0, the following holds with
probability 1− e−cN .

(a) H̃N,t has exactly two Riemannian critical points m± on S0, and their (rescaled) radial derivatives
satisfy ∣∣∣∣∂̃radH̃N,t(m±)∓

√
q∗

1− q∗
(
1 + (1− q∗)2ξ′′(q∗)

)∣∣∣∣ ≤ ι. (6.72)

Moreover, there exists ι′ = oι(1) such that all ι-approximate Riemannian critical points m on S0 satisfy
‖m−m±‖N ≤ ι′ for some choice of sign ±.

(b) The point m+ is an ι-approximate critical point of FTAP (i.e. ‖∇FTAP(m)‖N ≤ ι).

(c) The point m+ satisfies
spec(∇2FTAP(m+)) ⊆ [−Cspec

max,−C
spec
min ].

We will prove this proposition in Subsection 6.6.2. We first show Proposition 6.6.1 given Proposition 6.6.2.

Lemma 6.6.3. For sufficiently small ι > 0, with probability 1− e−cN , FTAP has a unique critical point m in
the region ‖m−m+‖N ≤ ι, which further satisfies (6.46).

Proof. Throughout this proof, assume the event KN from Proposition 6.3.6 holds, which occurs with prob-
ability 1− e−cN . By Proposition 6.6.2(c), with probability 1− e−cN , m+ is well-defined and

spec(∇2FTAP(m+)) ⊆ [−Cspec
max,−C

spec
min ].

On KN , the maps m 7→ λmax(∇2FTAP(m)) and m 7→ λmin(∇2FTAP(m+)) are O(1)-Lipschitz (over ‖m‖N ≤
1− ε, for any ε > 0). Thus, for suitably small ι,

spec(∇2FTAP(m)) ⊆
[
−2Cspec

max,−
1

2
Cspec

min

]
∀‖m−m+‖N ≤ ι. (6.73)

Let υ be suitably small in ι. By Proposition 6.6.2(b), with probability 1 − e−cN , ‖∇FTAP(m+)‖N ≤ υ.
Combined with (6.73), this implies FTAP has a unique critical point m in the region ‖m−m+‖N ≤ ι. By
(6.73), this critical point also satisfies (6.46), upon adjusting the constants Cspec

min , C
spec
max.
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Lemma 6.6.4. For any sufficiently small ι > 0, there exists ι′ = oι(1) such that with probability 1− e−cN ,
all ι-approximate critical points m ∈ Sι of FTAP satisfy ‖m−m+‖N ≤ ι′.

Proof. Suppose KN holds. Let m ∈ Sι be an ι-approximate critical point of FTAP, and let m̃ be the nearest
point in S0 to m, so that ‖m− m̃‖N ≤ 2ι. On KN , the map m 7→ ∇FTAP(m) is O(1)-Lipschitz. Thus m̃ is
a O(ι)-approximate critical point of FTAP(m), i.e.∥∥∥∥∇H̃N,t(m̃) + ξ′t(q∗)x−

(
(1− q∗)ξ′′(q∗) +

1

1− q∗

)
m̃

∥∥∥∥
N

≤ O(ι). (6.74)

Thus ‖∇spH̃N,t(m̃)‖N ≤ O(ι). By Proposition 6.6.2(a), there exists ι′ = oι(1) such that on an event with
probability 1− e−cN , ‖m̃−m±‖N ≤ ι′/2 for some choice of sign ±. We now show the sign must be +. By
(6.74),

∂̃radH̃N,t(m̃) =
1√

q∗(1− q∗)
R

(
m̃− q∗x,−ξ′t(q∗)x+

(
(1− q∗)ξ′′(q∗) +

1

1− q∗

)
m̃

)
+O(ι)

=

√
q∗

1− q∗
(
1 + (1− q∗)2ξ′′(q∗)

)
+O(ι). (6.75)

If we had ‖m̃−m−‖N ≤ ι′/2, then Eq. (6.72) and Lipschitzness of m 7→ ∇FTAP(m) would imply

∂̃radH̃N,t(m̃) = −
√

q∗
1− q∗

(
1 + (1− q∗)2ξ′′(q∗)

)
+O(ι′),

which contradicts (6.75) for small enough ι. Thus ‖m̃ −m+‖N ≤ ι′/2. Recalling ‖m− m̃‖N ≤ 2ι implies
the conclusion.

Proof of Proposition 6.6.1. By Lemma 6.6.3, (m+ is well-defined and) there is a unique critical point of FTAP

in the region ‖m−m+‖N ≤ ι, which also satisfies (6.46). Let mTAP denote this point.
Let ι′ = oι(1) be given by Lemma 6.6.4. For ι sufficiently small, Lemma 6.6.3 also implies that mTAP is

the unique critical point of FTAP in the region ‖m−m+‖N ≤ ι′.
By Lemma 6.6.4, all ι-approximate critical points m ∈ Sι of FTAP satisfy ‖m−m+‖N ≤ ι′. In particular

all critical points are in this region, and thus mTAP is the unique critical point. This proves part (a).
Furthermore, for ι-approximate critical points m ∈ Sι,

‖m−mTAP‖N ≤ ‖m−m+‖N + ‖mTAP −m+‖N ≤ 2ι′.

This proves part (b) upon adjusting ι′.

6.6.2 Characterization of Riemannian critical points: proof of Proposition 6.6.2

The proof builds on a sequence of recent results on topological trivialization in spherical spin glasses
[FLD14, Fyo15, BČNS22, HS23c].

Proof of Proposition 6.6.2(a). For m ∈ S0, we may write m = q∗x+
√
q∗(1− q∗)τ , where 〈x, τ 〉N = 0 and

‖τ‖N = 1. Let

Ĥ(τ ) = H̃N,t(q∗x+
√
q∗(1− q∗)τ )− H̃N,t(q∗x).

This is a spin glass (in 1 fewer dimension) with mixture

ξ̃(s) = ξt(q
2
∗ + q∗(1− q∗)s)− ξt(q2

∗). (6.76)

Note that

ξ̃′(1) = q∗(1− q∗)ξ′t(q∗)
(6.39)

= q2
∗, ξ̃′′(1) = q2

∗(1− q∗)2ξ′′(q∗)
(6.5)
< q2

∗.
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Thus ξ̃′(1) > ξ̃′′(1), which is the condition for topological trivialization identified in [Fyo15, Equation 64],

see also [BČNS22, Theorem 1.1]. Thus, with high probability, Ĥ has exactly two critical points τ±, which
have radial derivative

∂̃radĤ(τ±) = ±

√ξ̃′(1) +
ξ̃′′(1)√
ξ̃′(1)

+O(ι) = ±q∗
(
1 + (1− q∗)2ξ′′(1)

)
+O(ι).

By [HS23c, Theorem 1.6], this actually holds with probability 1 − e−cN . On this event, H̃N,t has exactly
two Riemannian critical points m± on S0, which have radial derivative

∂̃radH̃N,t(m±) =
1√

q∗(1− q∗)
· ∂̃radĤ(τ±) = ±

√
q∗

1− q∗
(
1 + (1− q∗)2ξ′′(1)

)
+O(ι).

The estimate (6.72) holds by adjusting ι. The claim about approximate critical points also follows from
[HS23c, Theorem 1.6], which shows that all approximate critical points are close to exact critical points.

We will prove parts (b) and (c) by slightly modifying the calculation in [Fyo15, BČNS22]. This calculation
is based on the Kac–Rice formula, which we now recall. Let Crt denote the set of Riemannian critical points
of H̃N,t on S0 and µS0 denote the (N − 2)-dimensional Hausdorff measure on S0. The Kac–Rice Formula

[Ric44, Kac48] (see [AT09] for a textbook treatment), applied to ∇H̃N,t on the Riemannian manifold S0,
states that for any (random) measurable set T ⊆ S0,

E |Crt ∩ T | =
∫
S0

E
[
|det∇2

spH̃N,t(m)|1{m ∈ T }
∣∣∇spH̃N,t(m) = 0

]
ϕ∇spH̃N,t(m)(0) dµS0(m). (6.77)

Here ϕX denotes the probability density of the random variable X, and ∇2
spH̃N,t(m) is understood as a

(N − 2)× (N − 2) matrix. The following fact is standard, see, e.g., [AB13, Lemma 1].

Fact 6.6.5. For any m ∈ S0, the random variables ∂radH̃N,t(m), ∇spH̃N,t(m), and ∇2
tanH̃N,t(m) are

independent and Gaussian. Moreover, with G ∼ GOE(N − 2), we have

∇2
tanH̃N,t(m)

d
=

√
ξ′′(q∗)

N − 2

N
G.

We defer the proof of the following lemma to Subsection 6.6.5.

Lemma 6.6.6. Let G ∼ GOE(N). For any t ≥ 1, r > 2, there exists Cr,t > 0, uniform for r in compact
subsets of (2,+∞), such that

E
[
|det(rI −G)|t

]1/t ≤ Cr,t E [|det(rI −G)|] .

Proposition 6.6.7. We have E |Crt| = 2 + oN (1).

Proof. As shown in the proof of Proposition 6.6.2(a) above, after reparametrizing S0 to a sphere of radius√
N , the restriction of H̃N,t to S0 is a spherical spin glass in one fewer dimension with mixture ξ̃ (6.76),

which satisfies ξ̃′(1) > ξ̃′′(1). The claim follows from [Fyo15, Equation 64] or [BČNS22, Theorem 1.2].

We will use (6.77) through the following lemma. Let

r∗ =

√
q∗

1− q∗
(
1 + (1− q∗)2ξ′′(q∗)

)
. (6.78)

Lemma 6.6.8. Let ι > 0 be sufficiently small, Iι = [r∗ − ι, r∗ + ι], and

Tι =
{
m ∈ S0 : ∂̃radH̃N,t(m) ∈ Iι

}
.

There exists a constant C > 0 (independent of ι) such that for any measurable T ⊆ Tι,

E |Crt ∩ T | ≤ C sup
m∈S0

sup
r∈Iι

P
[
m ∈ T

∣∣∇spH̃N,t(m) = 0, ∂̃radH̃N,t(m) = r
]1/2

.
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Proof. By Fact 6.6.5, ∂̃radH̃N,t(m) is independent of ∇spH̃N,t(m). Explicitly integrating ∂̃radH̃N,t(m) in
(6.77) gives

E |Crt ∩ T | =
∫
S0

∫
Iι

E
[
|det∇2

spH̃N,t(m)|1{m ∈ T }
∣∣∇spH̃N,t(m) = 0, ∂̃radH̃N,t(m) = r

]
× ϕ∂̃radH̃N,t(m)(r)ϕ∇spH̃N,t(m)(0) dr dµS0(m).

By Cauchy-Schwarz,

E
[
|det∇2

spH̃N,t(m)|1{m ∈ T }
∣∣∇spH̃N,t(m) = 0, ∂̃radH̃N,t(m) = r

]
≤ E

[
|det∇2

spH̃N,t(m)|2
∣∣∇spH̃N,t(m) = 0, ∂̃radH̃N,t(m) = r

]1/2
× P

[
m ∈ T

∣∣∇spH̃N,t(m) = 0, ∂̃radH̃N,t(m) = r
]1/2

.

By Fact 6.6.5, conditional on ∇spH̃N,t(m) = 0, ∂̃radH̃N,t(m) = r,

∇2
spH̃N,t(m)

d
=

√
ξ′′(q∗)

N − 2

N
G− r√

q∗(1− q∗)
I

=

√
ξ′′(q∗)

N − 2

N

(
G−

√
N

N − 2

r√
q∗(1− q∗)ξ′′(q∗)

I

)
.

In light of (6.5),
r∗√

q∗(1− q∗)ξ′′(q∗)
= (1− q∗)ξ′′(q∗)1/2 +

1

(1− q∗)ξ′′(q∗)1/2
> 2,

and thus, for r ∈ Iι and ι suitably small,√
N

N − 2

r√
q∗(1− q∗)ξ′′(q∗)

> 2.

By Lemma 6.6.6, for some C > 0,

E
[
|det∇2

spH̃N,t(m)|2
∣∣∇spH̃N,t(m) = 0, ∂̃radH̃N,t(m) = r

]1/2
= E

∣∣∣∣∣det

√
ξ′′(q∗)

N − 2

N

(
G−

√
N

N − 2

r√
q∗(1− q∗)ξ′′(q∗)

I

)∣∣∣∣∣
2
1/2

≤ C E

[∣∣∣∣∣det

√
ξ′′(q∗)

N − 2

N

(
G−

√
N

N − 2

r√
q∗(1− q∗)ξ′′(q∗)

I

)∣∣∣∣∣
]

= C E
[
|det∇2

spH̃N,t(m)|
∣∣∇spH̃N,t(m) = 0, ∂̃radH̃N,t(m) = r

]
. (6.79)

Combining, we find

E |Crt ∩ T | ≤ C sup
m∈S0

sup
r∈Iι

P
[
m ∈ T

∣∣∇spH̃N,t(m) = 0, ∂̃radH̃N,t(m) = r
]1/2

×
∫
S0

∫
Iι

E
[
|det∇2

spH̃N,t(m)|
∣∣∇spH̃N,t(m) = 0, ∂̃radH̃N,t(m) = r

]
× ϕ∂̃radH̃N,t(m)(r)ϕ∇spH̃N,t(m)(0) dr dµS0(m).

By the Kac–Rice formula, the last integral is the expected number of Riemannian critical points m of H̃N,t

with radial derivative ∂̃radH̃N,t(m) ∈ Iι. This is upper bounded by E |Crt| = 2 + oN (1), by Proposition 6.6.7.
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Proposition 6.6.9. There exist Cspec
max > Cspec

min > 0 such that for all sufficiently small ι > 0, there exists
ι′ = h(ι) = oι(1) such that the following holds. For any m ∈ S0 define the events

E1(m, ι′) := {‖∇FTAP(m)‖N ≤ ι′} , E2(m) :=
{
spec(∇2FTAP(m)) ⊆ [−Cspec

max,−C
spec
min ]

}
.

Then,

inf
r∈Iι

P
[
E1(m, ι′) ∩ E2(m)

∣∣∇spH̃N,t(m) = 0, ∂̃radH̃N,t(m) = r
]
≥ 1− e−cN .

Here the constant c is uniform over m ∈ S0.

We prove this proposition in the next subsection. Assuming it, we first complete the proof of Proposi-
tion 6.6.2.

Proof of Proposition 6.6.2(b)(c). Let υ be small enough that max(υ, h(υ)) ≤ ι, for the h from Proposi-
tion 6.6.9. Also let Cspec

max, C
spec
min be given by this proposition. Let T ⊆ S0 be the set of points m such

that

• ∂̃radH̃N,t(m) ∈ Iυ, and

• E1(m, ι) ∩ E2(m) does not hold.

Thus T ⊆ Tυ. By Lemma 6.6.8 and Proposition 6.6.9 (with υ for ι)

E |Crt ∩ T | ≤ C sup
m∈S0

sup
r∈Iυ

P
[
(E1(m, ι) ∩ E2(m))c

∣∣∇spH̃N,t(m) = 0, ∂̃radH̃N,t(m) = r
]1/2

≤ e−cN .

Thus, with probability 1 − e−cN , there do not exist points m ∈ S0 such that ∂̃radH̃N,t(m) ∈ Iυ and
E1(m, ι) ∩ E2(m) does not hold.

However, by Proposition 6.6.2(a) with υ in place of ι, ∂̃radH̃N,t(m+) ∈ Iυ with probability 1 − e−cN .
Thus E1(m+, ι) ∩ E2(m+) holds, completing the proof.

6.6.3 Approximate stationarity and local concavity of FTAP: proof of Proposition
6.6.9

Lemma 6.6.10. Let m ∈ S0 and r ∈ Iι. Conditional on ∇spH̃N,t(m) = 0 and ∂̃radH̃N,t(m) = r,

〈x,∇H̃N,t(m)) is Gaussian with mean q∗(1− q∗)ξ′′(q∗) +O(ι) and variance O(N−1).

Proof. All the random variables considered are jointly Gaussian, so it suffices to compute the conditional
mean and variance. A short linear-algebraic calculation shows

E
[
〈x,∇H̃N,t(m)〉N

∣∣∇spH̃N,t(m), ∂̃radH̃N,t(m)
]

=
q

3/2
∗ (1− q∗)1/2ξ′′(q∗)

ξ′t(q∗) + q∗(1− q∗)ξ′′(q∗)
∂̃radH̃N,t(m).

Thus

E
[
〈x,∇H̃N,t(m)〉N

∣∣∇spH̃N,t(m) = 0, ∂̃radH̃N,t(m) = r
]

=
q

3/2
∗ (1− q∗)1/2ξ′′(q∗)

ξ′t(q∗) + q∗(1− q∗)ξ′′(q∗)
r∗ +O(ι)

(6.39),(6.78)
=

q
3/2
∗ (1− q∗)1/2ξ′′(q∗)
q∗

1−q∗ + q∗(1− q∗)ξ′′(q∗)
·
√

q∗
1− q∗

(
1 + (1− q∗)2ξ′′(q∗)

)
+O(ι)

= q∗(1− q∗)ξ′′(q∗) +O(ι).

Before any conditioning, 〈x,∇H̃N,t(m)〉N is Gaussian with variance O(N−1), and conditioning only reduces
variance.
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Proposition 6.6.11. Let m ∈ S0 and r ∈ Iι. Conditional on ∇spH̃N,t(m) = 0 and ∂̃radH̃N,t(m) = r,
E1(m, ι′) holds with probability 1− e−cN , for some ι′ = oι(1).

Proof. By Lemma 6.6.10, with conditional probability 1− e−cN ,

|〈x,∇H̃N,t(m)〉N − q∗(1− q∗)ξ′′(q∗)| ≤ O(ι).

Suppose this event holds. Since ∇spH̃N,t(m) = 0,

∇H̃N,t(m) = ∂̃radH̃N,t(m)
m− q∗x√
q∗(1− q∗)

+ 〈x,∇H̃N,t(m)〉x

=

√
q∗

1− q∗
(
1 + (1− q∗)2ξ′′(q∗)

) m− q∗x√
q∗(1− q∗)

+ q∗(1− q∗)ξ′′(q∗)x+O(ι)x+O(ι)m

= −ξ′t(q∗)x+

(
1

1− q∗
+ (1− q∗)ξ′′(q∗)

)
m+O(ι)x+O(ι)m.

Since

∇FTAP(m) = ∇H̃N,t(m) + ξ′t(q∗)x−
(

1

1− q∗
+ (1− q∗)ξ′′(q∗)

)
m,

it follows that ‖∇FTAP(m)‖N ≤ O(ι).

The next lemma is a linear-algebraic calculation of the conditional law given ∇H̃N,t(m) of ∇2H̃N,t(m),
now as a Hessian in RN rather than a Riemannian Hessian in S0. While m ∈ S0 for the proofs in the current
subsection, we will not assume this for use in Fact 6.6.18 below.

Lemma 6.6.12. Let m ∈ RN with ‖m‖2N = qm < 1. Conditional on ∇H̃N,t(m) = z, we have

∇2H̃N,t(m)
d
=
ξ′′(qm)

ξ′t(qm)
· mz

> + zm>

N
+

〈m, z〉N
ξ′t(qm) + qmξ′′(qm)

(
ξ(3)(qm)− 2ξ′′(qm)2

ξ′t(qm)

)
mm>

N
+M ,

where M is the following symmetric random matrix. Let (e1, . . . , eN ) be an orthonormal basis of RN with
e1 = m/‖m‖2, and to reduce notation let M(i, j) = 〈Mei, ej〉. Then the random variables {M(i, j) : 1 ≤
i ≤ j ≤ N} are independent centered Gaussians with variance

EM(i, j)2 = N−1 ×


(irrelevant O(1)) 1 = i = j

ξ′′(qm) + qmξ
(3)(qm)− qmξ′′(qm)2

ξ′t(qm) 1 = i < j

2ξ′′(qm) 1 < i = j

ξ′′(qm) 1 < i < j

(6.80)

Remark 6.6.13. The covariance calculation in the proof of Lemma 6.6.12 implies ξ′′(qm) + qmξ
(3)(qm)−

qmξ′′(qm)2

ξ′t(qm) ≥ 0, but this can also be seen directly by Cauchy-Schwarz:

(
ξ′′(qm) + qmξ

(3)(qm)
)
ξ′t(qm) ≥ qm

∑
p≥2

p(p− 1)2γ2
p(qm)p−2

∑
p≥2

pγ2
p(qm)p−2


≥ qm

∑
p≥2

p(p− 1)γ2
p(qm)p−2

2

= qmξ
′′(qm)2.

Proof. It suffices to compute the conditional mean and covariance. Let u1,u2 ∈ SN−1. Then

E
[
〈∇2H̃N,t(m)u1,u2〉

∣∣∇H̃N,t(m)
]

= 〈v,∇H̃N,t(m)〉

305



for v = v(u1,u2,m) such that for all w ∈ RN ,

〈∇2H̃N,t(m)u1,u2〉 − 〈v,∇H̃N,t(m)〉⊥⊥〈w,∇H̃N,t(m)〉.

We calculate that

E〈∇2H̃N,t(m)u1,u2〉〈w,∇H̃N,t(m)〉 = N−1
(
〈u1,w〉〈u2,m〉+ 〈u1,m〉〈u2,w〉

)
ξ′′(qm)

+N−2〈u1,m〉〈u2,m〉〈w,m〉ξ(3)(qm),

E〈v,∇H̃N,t(m)〉〈w,∇H̃N,t(m)〉 = 〈v,w〉ξ′t(qm) +N−1〈v,m〉〈w,m〉ξ′′(qm).

Thus, v must satisfy

N−1
(
〈u2,m〉u1 + 〈u1,m〉u2

)
ξ′′(qm) +N−2〈u1,m〉〈u2,m〉ξ(3)(qm)m

= ξ′t(qm)v +N−1〈v,m〉ξ′′(qm)m.

This has solution v = a1u
1 + a2u

2 + a3m, where

a1 =
ξ′′(qm)

Nξ′t(qm)
〈u2,m〉, a2 =

ξ′′(qm)

Nξ′t(qm)
〈u1,m〉,

a3 =
〈u1,m〉〈u2,m〉

N2(ξ′t(qm) + qmξ′′(qm))

(
ξ(3)(qm)− 2ξ′′(qm)2

ξ′t(qm)

)
.

Thus

E
[
〈∇2H̃N,t(m)u1,u2〉

∣∣∇H̃N,t(m)
]

= a1〈u1,∇H̃N,t(m)〉+ a2〈u2,∇H̃N,t(m)〉+ a3〈m,∇H̃N,t(m)〉,

which implies

E
[
∇2H̃N,t(m)

∣∣∇H̃N,t(m)
]

=
ξ′′(qm)

Nξ′t(qm)
(m∇H̃N,t(m)> +∇H̃N,t(m)m>)

+
〈m,∇H̃N,t(m)〉N

N(ξ′t(qm) + qmξ′′(qm))

(
ξ(3)(qm)− 2ξ′′(qm)2

ξ′t(qm)

)
mm>,

as desired. The conditionally random part of ∇2H̃N,t is thus

M = ∇2H̃N,t(m)− E
[
∇2H̃N,t(m)

∣∣∇H̃N,t(m)
]
.

Direct evaluation of covariances EM(i1, j1)M(i2, j2) gives the covariance structure (6.80). The calcula-
tion is greatly simplified by the fact that 〈ei,m〉 = 0 for all i 6= 1, which implies e.g. that M(i, j) =

〈∇2H̃N,t(m)ei, ej〉 for all i, j 6= 1.

Corollary 6.6.14. Let ι > 0 be sufficiently small. Let m, z ∈ RN with ‖m‖2N = qm and 〈m,x〉N = qx,
such that |qm − q∗|, |qx − q∗|, ‖z‖N ≤ ι. Conditional on ∇FTAP(m) = z,

∇2FTAP(m)
d
=

(
2 + q∗
q∗

ξ′′(q∗)− (1− q∗)ξ(3)(q∗)−
2

(1− q∗)2

)
mm>

N
+ ξ′′(q∗)

(x−m)(x−m)>

N

−
(

(1− qm)ξ′′(qm) +
1

1− qm

)
I +M +E. (6.81)

Here, M is as in (6.80), and E is a (x,m, z)-measurable symmetric matrix satisfying ‖E‖op ≤ oι(1), whose
kernel contains span(x,m, z)⊥.

Proof. In the below calculations, E is an error term satisfying the above, which may change from line to
line. Conditioning on ∇FTAP(m) = z is equivalent to conditioning on

∇H̃N,t(m) = z̃ ≡ z − ξ′t(qx)x+

(
(1− qm)ξ′′(qm) +

1

1− qm

)
m.
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By Lemma 6.6.12,

∇2H̃N,t(m)
d
=
ξ′′(qm)

ξ′t(qm)
· mz̃

> + z̃m>

N
+

〈m, z̃〉N
ξ′t(qm) + qmξ′′(qm)

(
ξ(3)(qm)− 2ξ′′(qm)2

ξ′t(qm)

)
mm>

N
+M

= −ξ′′(q∗)
mx> + xm>

N
+

2ξ′′(q∗)

ξ′t(q∗)

(
(1− q∗)ξ′′(q∗) +

1

1− q∗

)
mm>

N

+
q∗(−ξ′t(q∗) + (1− q∗)ξ′′(q∗) + 1

1−q∗ )

ξ′t(q∗) + q∗ξ′′(q∗)

(
ξ(3)(q∗)−

2ξ′′(q∗)
2

ξ′t(q∗)

)
mm>

N
+M +E

(6.39)
= −ξ′′(q∗)

mx> + xm>

N
+

(
2ξ′′(q∗)

q∗
+ (1− q∗)ξ(3)(q∗)

)
mm>

N
+M +E.

Then

∇2FTAP(m) = ∇2H̃N,t(m) + ξ′′(q∗)
xx>

N
−
(

(1− q∗)ξ(3)(q∗)− ξ′′(q∗) +
1

(1− q∗)2

)
2mm>

N

−
(

(1− qm)ξ′′(qm) +
1

1− qm

)
I +E.

Combining gives the conclusion.

Lemma 6.6.15. Let ι > 0 be sufficiently small and |qm − q∗| ≤ ι. Fix an orthonormal basis e1, . . . , eN of
RN as discussed above (6.80). Let M be as in (6.80). Let M∗ be sampled from the same law, except with
qm replaced by q∗, and with

M∗(i, j) = 0, ∀i, j ∈ {1, 2}.
There is a coupling of M ,M∗ such that with probability 1− e−cN , ‖M −M∗‖op ≤ oι(1).

Proof. Let M ′ be the matrix with M ′(i, j) = 0 for all i, j ∈ {1, 2}, and otherwise M ′(i, j) = M(i, j). Since
the M(i, j) have variance O(N−1), with probability 1− e−cN , ‖M −M ′‖op ≤ ι.

For all (i, j) 6∈ {1, 2}2, |EM(i, j)2 − EM∗(i, j)
2| ≤ O(ι)/N . We couple M and M∗ as follows. If

EM(i, j)2 ≤ EM∗(i, j)
2, we first sample M(i, j) from its law, and then sample

M∗(i, j) = M(i, j) + υi,jgi,j ,

for gi,j ∼ N (0, 1/N) and suitable υi,j = O(ι1/2). If EM(i, j)2 ≥ EM∗(i, j)
2, we follow a similar procedure,

sampling M∗(i, j) first. Let E = M ′ −M∗. Then

E(i, j) = (εi,jυi,jgi,j)i,j∈[N ],

for some (deterministic) signs εi,j ∈ {±1}. Let υ = maxi,j(υi,j). There exists a random symmetric Gaussian
matrix E′, independent of E, such that E +E′ =d υG, where G ∼ GOE(N). Define

K =
{
A ∈ RN×N symmetric : ‖A‖op ≤ 3υ

}
,

Note that
P(E +E′ 6∈ K) = P(‖G‖op > 3) ≤ e−cN ,

while by convexity of K and symmetry of E′,

P(E +E′ 6∈ K|E 6∈ K) ≥ 1

2
.

It follows that P(E 6∈ K) ≤ 2e−cN , concluding the proof.

Lemma 6.6.16. Let G ∼ GOE(N) and g ∼ N (0, IN/N). For any a, b ∈ R, ι > 0,∣∣∣∣ sup
v∈SN−1

{a〈Gv,v〉+ 2b〈g,v〉} − 2
√
a2 + b2

∣∣∣∣ ≤ ι
with probability 1− e−cN .
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Proof. By [CS17, Proposition 1.1],

p-lim
N→∞

sup
‖v‖2=1

a〈Gv,v〉+ 2b〈g,v〉 = 2
√
a2 + b2.

For each fixed v ∈ SN−1, a〈Gv,v〉+ 2b〈g,v〉 has variance O(N−1). The result follows from Borell-TIS.

Proposition 6.6.17. Let ∇2FTAP(m) be as in Eq. (6.81). There exist Cspec
max > Cspec

min > 0 such that for
sufficiently small ι > 0,

spec(∇2FTAP(m)) ⊆ [−Cspec
max,−C

spec
min ]

with probability 1− e−cN .

Proof. Let m̃ = m/‖m‖2, x̃ = P⊥mx/‖P⊥mx‖2. Throughout this proof, we will denote by E, E1, E2, and
so on error terms with the same meaning as in Corollary 6.6.14, namely (x,m, z)-measurable symmetric
matrices satisfying ‖E‖op ≤ oι(1), whose kernel contains span(x,m, z)⊥. In particular

q∗m̃m̃
> − mm

>

N
=: E1, (1− q∗)x̃x̃> −

(x−m)(x−m)>

N
=: E2.

Let e1, . . . , eN be an orthonormal basis of RN with e1 = m̃, e2 = x̃. Let M∗ be defined in Lemma 6.6.15,
coupled to M so that ‖M −M∗‖op ≤ oι(1) with probability 1− e−cN . Taking ι small, it suffices to show

− Cspec
maxI � A � −C

spec
minI, (6.82)

for

A =

(
(2 + q∗)ξ

′′(q∗)− q∗(1− q∗)ξ(3)(q∗)−
2q∗

(1− q∗)2

)
m̃m̃

>
+ (1− q∗)ξ′′(q∗)x̃x̃>

−
(

(1− q∗)ξ′′(q∗) +
1

1− q∗

)
I +M∗.

By comparing M∗ to a large constant multiple of a GOE, identically to the proof of Lemma 6.6.15, we can
show ‖M∗‖op = O(1) with probability 1−e−cN . On this event, all terms in A have bounded operator norm,
and thus −Cspec

maxI � A. For the upper bound in (6.82), let

ψ = ξ′′(q∗) + q∗ξ
(3)(q∗)−

q∗ξ
′′(q∗)

2

ξ′t(q∗)
.

which (recall Remark 6.6.13) is nonnegative. Then

A =

(
−(1− q∗)ψ + q∗

(
ξ′′(q∗)−

1

(1− q∗)2

)
− (1− q∗)2

(
ξ′′(q∗)−

1

(1− q∗)2

)2
)
e1e
>
1

− 1

1− q∗
e2e
>
2 −

(
(1− q∗)ξ′′(q∗) +

1

1− q∗

) N∑
i=3

eie
>
i +M∗

By (6.5), there exists c0 > 0 depending only on ξ such that

A � A′ − c0(e1e
>
1 + e2e

>
2 ), where

A′ = −(1− q∗)ψe1e
>
1 − (1− q∗)ξ′′(q∗)e2e

>
2 −

(
(1− q∗)ξ′′(q∗) +

1

1− q∗

) N∑
i=3

eie
>
i +M∗

= −(1− q∗)ψe1e
>
1 − (1− q∗)ξ′′(q∗)

N∑
i=2

eie
>
i −

1

1− q∗

N∑
i=3

eie
>
i +M∗.
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By (6.80), (with M∗(i, j) having the same meaning as above)

(M∗(1, i) : 3 ≤ i ≤ N)
d
=
√
ψg1, g1 ∼ N (0, IN−2/N),

(M∗(2, i) : 3 ≤ i ≤ N)
d
=
√
ξ′′(q∗)g

2, g2 ∼ N (0, IN−2/N),

(M∗(i, j) : 3 ≤ i, j ≤ N)
d
=

√
ξ′′(q∗) ·

N − 2

N
G G ∼ GOE(N − 2),

and g1, g2,G are independent. Fix a, b with a2 + b2 ≤ 1 and consider temporarily the restricted set

SN−1
a,b =

{
v ∈ SN−1 : 〈v, e1〉 = a, 〈v, e2〉 = b

}
.

For any v ∈ SN−1
a,b we can write

v = ae1 + be2 +
√

1− a2 − b2w,
where w ∈ SN−1

0,0 . Because we defined M∗(i, j) = 0 for all i, j ∈ {1, 2},

〈M∗v,v〉 = 2a
√

(1− a2 − b2)ψ〈g1,w〉+ 2b
√

(1− a2 − b2)ξ′′(q∗)〈g2,w〉

+ (1− a2 − b2)

√
ξ′′(q∗) ·

N − 2

N
〈Gw,w〉.

By Lemma 6.6.16, with probability 1− e−cN ,∣∣∣∣ sup
v∈SN−1

a,b

〈M∗v,v〉 − 2
√
f(a, b)

∣∣∣∣ ≤ ι,
where

f(a, b) = (1− a2 − b2)2ξ′′(q∗) + a2(1− a2 − b2)ψ + b2(1− a2 − b2)ξ′′(q∗)

= (1− a2 − b2)
(
(1− a2)ξ′′(q∗) + a2ψ

)
.

On this event, for all v ∈ SN−1
a,b ,

〈Av,v〉 ≤ −(1− q∗)ψa2 − (1− q∗)ξ′′(q∗)(1− a2)− 1− a2 − b2

1− q∗
+ 2
√
f(a, b)− c0(a2 + b2) + ι

= −

(√
(1− q∗) ((1− a2)ξ′′(q∗) + a2ψ)−

√
1− a2 − b2

1− q∗

)2

− c0(a2 + b2) + ι.

At a = b = 0, the first term is strictly negative by (6.5). So, there exists c1 > 0, depending only on ξ, such
that for all a2 + b2 ≤ 1,

−

(√
(1− q∗) ((1− a2)ξ′′(q∗) + a2ψ)−

√
1− a2 − b2

1− q∗

)2

− c0(a2 + b2) ≤ −c1.

We have thus shown that, for fixed a, b, with probability 1− e−cN ,

sup
v∈SN−1

a,b

〈Av,v〉 ≤ −c1 + ι. (6.83)

Recall that ‖A‖op = O(1) with probability 1− e−cN . So, the map

(a, b) 7→ sup
v∈SN−1

a,b

〈Av,v〉

is O(1)-Lipschitz. By a union bound, with proability 1−e−cN (6.83) holds for all (a, b) in a ι-net of a2+b2 ≤ 1.
On this event,

sup
v∈SN−1

〈Av,v〉 ≤ −c1 +O(ι).

Taking Cspec
min = c1/2 and ι small enough completes the proof.
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Proof of Proposition 6.6.9. Let ι′ be given by Proposition 6.6.11. By this proposition, for any m ∈ S0,
r ∈ Iι,

P
(
E1(m, ι′)c

∣∣∇spH̃N,t(m) = 0, ∂̃radH̃N,t(m) = r
)
≤ e−cN .

Since ‖∇FTAP(m)‖N ≤ ι′ on E1(m, ι′), and ∇spH̃N,t(m), ∂̃radH̃N,t(m) are ∇FTAP(m)-measurable,

P
(
E1(m, ι′) ∩ E2(m)c

∣∣∇spH̃N,t(m) = 0, ∂̃radH̃N,t(m) = r
)
≤ sup
‖z‖N≤ι′

P
(
E2(m)c

∣∣∇FTAP(m) = z
)
.

By Corollary 6.6.14 and Proposition 6.6.17, this last probability is ≤ e−cN . This completes the proof.

6.6.4 Proof of conditioning bound

Propositions 6.3.6 and 6.6.1 directly imply parts (a) and (b) of Proposition 6.4.4. We now prove the remainder
of this proposition.

Proof of Proposition 6.4.4(c). Set υ > 0 small enough that max(υ, ι′(υ)) ≤ ι/2, for the function ι′ from
Proposition 6.6.1. Suppose KN holds and the events in Propositions 6.4.3 and 6.6.1 hold with tolerance υ.
This occurs with probability 1− e−cN .

By (6.42) and (6.43), for suitably large KAMP, m
AMP ∈ Sυ ⊆ Sι/2 and mAMP is an υ-approximate critical

point of FTAP. By Proposition 6.6.1(b), this implies ‖mAMP −mTAP‖N ≤ ι/2.

We now turn to the proof of part (d). Define

K(m) = P⊥span(x,m)∇
2FTAP(m)P⊥span(x,m).

We will treat this as a (N − 2)× (N − 2) matrix, after a suitable change of coordinates. The following fact
is a consequence of Corollary 6.6.14.

Fact 6.6.18. Let ‖m‖2N = qm < 1. Conditional on ∇FTAP(m) = 0,

K(m)
d
= −

(
(1− qm)ξ′′(qm) +

1

1− qm

)
I +

√
ξ′′(qm)

N − 2

N
G, G ∼ GOE(N − 2).

The next fact is verified by direct calculation.

Fact 6.6.19. For any m, ∇H̃N,t(m) is Gaussian, with variance ξ′t(qm) + qmξ
′′(qm) in the direction of m

and ξ′t(qm) in all directions orthogonal to m.

We will need the following technical lemma, which we prove in Subsection 6.6.5.

Lemma 6.6.20. For all ι > 0 sufficiently small, there exists a constant C > 0 such that∫
Sι

E
[
|detK(m)|

∣∣∇FTAP(m) = 0
]
ϕ∇FTAP(m)(0) dN (m) ≤ C.

Proof of Proposition 6.4.4(d). We will apply Lemma 6.3.7 with FTAP for F , mAMP for m0, the interior of Sι
for D, and Cspec

min/2 for cspec. Note that (6.47) implies ε ≤ c2spec/10cop. We next verify that the event E is
contained in the event Econd defined in Lemma 6.3.7. Suppose E holds. Then event H(cop) holds by part (a).
‖∇FTAP(m

AMP)‖N ≤ ε by definition, and by parts (a), (b), and (c),

λmax(∇2FTAP(m
AMP)) ≤ λmax(∇2FTAP(m

TAP)) + cop‖mAMP −mTAP‖op,N ≤ −C
spec
min + copι/2 ≤ −Cspec

min/2

for small enough ι. Thus G(ε, cspec) holds. We have ‖mAMP‖N ≤ 1 because mAMP ∈ Sι/2, by part (c). Also,

(6.47) implies 5ε
cspec
≤ ι

2 , so U = BN (mAMP, 5ε/cspec) ⊆ Sι.
By (6.56), E∇FTAP(m) is continuous inm, and by Fact 6.6.19, Cov(∇FTAP(m)) is uniformly lower bounded

for all m ∈ Sι. This verifies the regularity condition in Lemma 6.3.7. By this lemma,

E[X1{E}] ≤
∫
Sι

E
[
|det∇2FTAP(m)|X1{E}

∣∣∇FTAP(m) = 0
]
ϕ∇FTAP(m)(0) dN (m).
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By Hölder’s inequality,

E
[
|det∇2FTAP(m)|X1{E}

∣∣∇FTAP(m) = 0
]

≤ E
[
|det∇2FTAP(m)|1+δ−1

1{E}
∣∣∇FTAP(m) = 0

]δ/(1+δ)

E
[
X1+δ1{E}

∣∣∇FTAP(m) = 0
]1/(1+δ)

.

On event E , the eigenvalues of ∇2FTAP(m) lie in [−Cspec
max,−C

spec
min ] and interlace those of K(m). So,

|det∇2FTAP(m)| ≤ (Cspec
max)2|detK(m)|.

Thus,

E
[
|det∇2FTAP(m)|1+δ−1

1{E}
∣∣∇FTAP(m) = 0

]δ/(1+δ)

≤ (Cspec
max)2 E

[
|detK(m)|1+δ−1 ∣∣∇FTAP(m) = 0

]δ/(1+δ)

≤ (Cspec
max)2C ′δ E

[
|detK(m)|

∣∣∇FTAP(m) = 0
]
.

for some C ′δ > 0. The last estimate is by Fact 6.6.18, (6.5), and Lemma 6.6.6, similarly to (6.79). Combining,

E[X1{E}] ≤ (Cspec
max)2C ′δ

∫
Sι

E
[
|detK(m)|

∣∣∇FTAP(m) = 0
]
ϕ∇FTAP(m)(0) dN (m)

× sup
m∈Sι

E
[
X1+δ1{E}

∣∣∇FTAP(m) = 0
]1/(1+δ)

.

Finally, by Lemma 6.6.20, this integral is bounded by a constant C > 0. Thus the result holds with
Cδ = (Cspec

max)2C ′δC.

6.6.5 Determinant concentration and estimate of Kac–Rice integral

In this subsection, we provide the deferred proofs of Lemmas 6.6.6 and 6.6.20. These are the final ingredients
to the proof of Proposition 6.4.4.

Proof of Lemma 6.6.6. For any compact K ⊆ (2,+∞), we may pick ε > 0 such small enough that r ≥ 2+2ε
for all r ∈ K. Let Eε be the event that ‖G‖op ≤ 2 + ε. It is classical that P(Eε) ≥ 1− e−cN . For r ∈ K, let

f(x) = log max(|r − x|, ε),

which is ε−1-Lipschitz. Let λ1, . . . , λN be the eigenvalues of G and define

Trf(G) =

N∑
i=1

f(λi).

By [GZ00, Theorem 1.1(b)], for all s ≥ 0,

P (|Trf(G)− ETrf(G)| ≥ s) ≤ 2 exp(−ε2s2/8). (6.84)

Note that |det(rI −G)| ≤ exp(Trf(G)), and equality holds if G ∈ Eε. Thus,

E
[
|det(rI −G)|t

]
≤ E [exp(tTrf(G))] , E [|det(rI −G)|] ≥ E [exp(Trf(G))1{Eε}] .

By (6.84), there exists Cε,t depending on ε, t such that

E [exp(tTrf(G))] ≤ Cε,t exp(tETrf(G)).

By Cauchy–Schwarz,

E [exp(Trf(G))1{Ecε}] ≤ E [exp(2Trf(G))]
1/2 P(Ecε )1/2 ≤ C1/2

ε,2 e
−cN/2 exp(ETrf(G)),
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which implies

E [exp(Trf(G))1{Eε}] ≥ E [exp(Trf(G))]− C1/2
ε,2 e

−cN/2 exp(ETrf(G))

≥ (1− C1/2
ε,2 e

−cN/2) exp(ETrf(G)).

Thus,

E [|det(rI −G)|t]1/t

E [|det(rI −G)|]
≤

C
1/t
ε,t exp(ETrf(G))

(1− C1/2
ε,2 e

−cN/2) exp(ETrf(G))

is bounded by a constant depending only on ε, t.

Lemma 6.6.21. Let G ∼ GOE(N). For all r in any compact subset of (2,+∞), there exists C > 0 such
that

E[|det(rI −G)|] ≤ C exp(NΦ(r)),

where

Φ(r) =
1

4
r2 − 1

2
− 1

4
r
√
r2 − 4 + log

r +
√
r2 − 4

2
.

Proof. Follows from [BČNS22, Lemma 2.1 and 2.2(i)] with N + 1 for N and
√

N
2(N+1)r for x. Note that the

matrix GOEN−1(N−1) therein is defined with typical spectral radius
√

2, while our GOE(N) has spectral
radius 2.

Proof of Lemma 6.6.20. Throughout this proof, C > 0 is a constant, uniform over m ∈ Sι, which may
change from line to line. Let ‖m‖2N = qm and 〈x,m〉N = qx, so that qm, qx ∈ [q∗− ι, q∗+ ι]. By Fact 6.6.18,
for G ∼ GOE(N − 2),

E
[
|detK(m)|

∣∣∇FTAP(m) = 0
]

=

(
ξ′′(qm) · N − 2

N

)(N−2)/2

E

[∣∣∣∣∣det

(√
N

N − 2
rmI −G

)∣∣∣∣∣
]

where rm = (1− qm)ξ′′(qm)1/2 +
1

(1− qm)ξ′′(qm)1/2
.

By (6.5), for qm ∈ [q∗ − ι, q∗ + ι], rm takes values in a compact subset of (2,+∞). By Lemma 6.6.21,

E
[
|detK(m)|

∣∣∇FTAP(m) = 0
]
≤ C exp(Nf1(qm)), f1(qm) :=

1

2
log ξ′′(qm) + Φ(rm).

By (6.5), √
r2
m − 4 =

1

(1− qm)ξ′′(qm)1/2
− (1− qm)ξ′′(qm)1/2.

So, f1 simplifies to

f1(qm) =
1

2
(1− qm)2ξ′′(qm)− log(1− qm).

On the other hand, by (6.56),

∇FTAP(m) = ∇H̃N,t(m) + ξ′t(qx)

(
x− qx

qm
m

)
−
(

(1− qm)ξ′′(qm) +
1

1− qm
− qxξ

′
t(qx)

qm

)
m.

Since x− qx
qm
m is orthogonal to m, Fact 6.6.19 yields

ϕ∇FTAP(m)(0) ≤ C exp(Nf2(qm, qx))

where

f2(qm, qx) = −1

2
log(2πξ′t(qm))− ξ′t(qx)2

2ξ′t(qm)

(
1− q2

x

qm

)
− qm

2(ξ′t(qm) + qmξ′′(qm))

(
(1− qm)ξ′′(qm) +

1

1− qm
− qxξ

′
t(qx)

qm

)2

.
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Combining the above,∫
Sι

E
[
|detK(m)|

∣∣∇FTAP(m) = 0
]
ϕ∇FTAP(m)(0) dN (m)

≤ CN
∫ q∗+ι

q∗−ι

∫ q∗+ι

q∗−ι
exp (N(f1(qm) + f2(qm, qx) + f3(qm, qx))) dqxdqm. (6.85)

Here CN exp(Nf3(qm, qx)) is a volumetric factor and

f3(qm, qx) =
1

2
+

1

2
log(2π(qm − q2

x)).

Let

F (qm, qx) = f1(qm) + f2(qm, qx) + f3(qm, qx)

=
1

2
+

1

2
log

qm − q2
x

ξ′t(qm)(1− qm)2
+

1

2
(1− qm)2ξ′′(qm)− ξ′t(qx)2

2ξ′t(qm)

(
1− q2

x

qm

)
− qm

2(ξ′t(qm) + qmξ′′(qm))

(
(1− qm)ξ′′(qm) +

1

1− qm
− qxξ

′
t(qx)

qm

)2

.

To conclude, we will verify that F (q∗, q∗) = 0, ∇F (q∗, q∗) = 0, and F is Ω(1)-strongly concave over qm, qx ∈
[q∗ − ι, q∗ + ι]. This will imply that the integral in (6.85) is O(N−1) and finish the proof.

Recall from (6.39) that ξ′t(q∗) = q∗
1−q∗ . The following identity will be used repeatedly in the calculations

below to simplify the final term in F and its derivatives:

1

ξ′t(q∗) + q∗ξ′′(q∗)

(
(1− q∗)ξ′′(q∗) +

1

1− q∗
− ξ′t(q∗)

)
=

1− q∗
q∗

.

Using this, we verify that

F (q∗, q∗) =
1

2
+

1

2
(1− q∗)2ξ′′(q∗)−

q∗
2
− q∗

2( q∗
1−q∗ + q∗ξ′′(q∗))

((1− q∗)ξ′′(q∗) + 1)
2

=
1

2
(1− q∗)2ξ′′(q∗) +

1− q∗
2
− 1− q∗

2
((1− q∗)ξ′′(q∗) + 1) = 0.

We also calculate

∂F

∂qm
(qm, qx) =

1

2(qm − q2
x)
− ξ′′(qm)

2ξ′t(qm)
+

1

1− qm
− (1− qm)ξ′′(qm) +

1

2
(1− qm)2ξ(3)(qm)

+
ξ′t(qx)2ξ′′(qm)

2ξ′t(qm)2

(
1− q2

x

qm

)
− ξ′t(qx)2

2ξ′t(qm)

q2
x

q2
m

− ξ′t(qm)− qmξ′′(qm)− q2
mξ

(3)(qm)

2(ξ′t(qm) + qmξ′′(qm))2

(
(1− qm)ξ′′(qm) +

1

1− qm
− qxξ

′
t(qx)

qm

)2

− qm
ξ′t(qm) + qmξ′′(qm)

(
(1− qm)ξ′′(qm) +

1

1− qm
− qxξ

′
t(qx)

qm

)
×
(
−ξ′′(qm) + (1− qm)ξ(3)(qm) +

1

(1− qm)2
+
qxξ
′
t(qx)

q2
m

)
,

∂F

∂qx
(qm, qx) = − qx

qm − q2
x

− ξ′t(qx)ξ′′(qx)

ξ′t(qm)

(
1− q2

x

qm

)
+
qxξ
′
t(qx)2

qmξ′t(qm)

+
ξ′t(qx) + qxξ

′′(qx)

ξ′t(qm) + qmξ′′(qm)

(
(1− qm)ξ′′(qm) +

1

1− qm
− qxξ

′
t(qx)

qm

)
.
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Thus

∂F

∂qm
(q∗, q∗) =

1

2q∗(1− q∗)
− (1− q∗)ξ′′(q∗)

2q∗
+

1

1− q∗
− (1− q∗)ξ′′(q∗) +

1

2
(1− q∗)2ξ(3)(q∗)

+
(1− q∗)ξ′′(q∗)

2
− q∗

2(1− q∗)
− (1− q∗)2

2q2
∗

(
q∗

1− q∗
− q∗ξ′′(q∗)− q2

∗ξ
(3)(q∗)

)
− (1− q∗)

(
−ξ′′(q∗) + (1− q∗)ξ(3)(q∗) +

1

(1− q∗)2
+

1

1− q∗

)
= 0,

and
∂F

∂qx
(q∗, q∗) = − 1

1− q∗
− (1− q∗)ξ′′(q∗) + ξ′t(q∗) +

(
(1− q∗)ξ′′(q∗) +

1

1− q∗
− ξ′t(q∗)

)
= 0.

By similar calculations, we find the following formulas for the second derivative. Let

∆0 = ξ′′(q∗)−
1

(1− q∗)2

(6.5)
< 0

and

∆1 =
(1− q∗)3∆3

0 − q∗(1− q∗)∆2
0

2q2
∗(1 + (1− q∗)ξ′′(q∗))

, ∆2 = − (1− q∗)2

q∗
∆2

0 + ∆0.

Then
∂2F

∂q2
m

(q∗, q∗) = ∆1 + ∆2,
∂2F

∂qm∂qx
(q∗, q∗) = −∆2,

∂2F

∂q2
x

(q∗, q∗) = ∆2.

It follows that
∇2F (q∗, q∗) = ∆1(1, 0)⊗2 + ∆2(1,−1)⊗2 � −CI2

for some C > 0 depending only on ξ. Since ∇2F is clearly locally Lipschitz around (q∗, q∗), ∇2F (qm, qx) �
−CI2/2 for all qm, qx ∈ [q∗ − ι, q∗ + ι] for suitably small ι. This concludes the proof.

6.6.6 Algorithmic guarantees and Lipschitz continuity of correction

In this subsection, we prove Proposition 6.4.5.

Proof of Proposition 6.4.5(a). By (6.44),

µt(Band(mAMP, [q∗ − ι/2, q∗ + ι/2])) ≥ 1− e−cN .

Since ‖mAMP −mTAP‖N ≤ ι/2, we have

Band(mTAP, [q∗ − ι, q∗ + ι]) ⊇ Band(mAMP, [q∗ − ι/2, q∗ + ι/2]).

Proof of Proposition 6.4.5(b). On KN , the maps m 7→ λmax(∇2FTAP(m)) and m 7→ λmin(∇2FTAP(m+)) are
O(1)-Lipschitz (over ‖m‖N ≤ 1− ε, for any ε > 0). Combined with (6.46), this implies

spec(∇2FTAP(m)) ⊆
[
−2Cspec

max,−
1

2
Cspec

min

]
, ∀‖m−mTAP‖N ≤ ι.

Thus ∇2FTAP is strongly concave and well-conditioned in the convex region ‖m−mTAP‖N ≤ ι. It is classical
(see e.g. [Nes03]) that for suitable η > 0, gradient descent

uk+1 = uk − η∇FTAP(u
k)

initialized from u0 in this region satisfies

‖uk −mTAP‖N ≤ (1− ε)k‖u0 −mTAP‖N ≤ ι(1− ε)k.

for some ε > 0. In particular u0 = mAMP is in this region. Recalling mGD = uKGD(N) and KGD(N) =
bK∗GD logNc, we conclude

‖mGD −mTAP‖N ≤ ι(1− ε)KGD(N) ≤ N−10

for suitably large K∗GD. This implies part (b).
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We now turn to the proof of part (c). Recall from below (6.22) that IN−1 denotes the identity operator
on Tm; we sometimes write this as ImN−1 to emphasize the dependence on m.

Lemma 6.6.22. Let γ∗ = (1 − q∗)−1 + (1 − q∗)ξ′′(q∗). Let ι,mTAP ∈ Sι be as in Proposition 6.4.4. There
exists ι′ = oι(1) such that with probability 1− e−cN , (mTAP is defined and)

spec A(2)(mTAP) ⊆ [−(2 + ι′)
√
ξ′′(q∗), (2 + ι′)

√
ξ′′(q∗)] (6.86)

and ∣∣∣∣ 1

N
Tr
(

(γ∗IN−1 −A(2)(mTAP))−1
)
− (1− q∗)

∣∣∣∣ ≤ ι′. (6.87)

Proof. Let Espec be the event that (6.86), (6.87) both hold, and let E be as in Proposition 6.4.4. By Propo-
sition 6.4.4(d) with δ = 1/2,

P(Ecspec) ≤ P(Ec) + P(Ecspec ∩ E)

≤ e−cN + C1/2 sup
m∈Sι

P
[
Ecspec ∩ E

∣∣∇FTAP(m) = 0
]1/2

.

We will show that this probability is e−cN , uniformly in m ∈ Sι. Note that on E , we have deterministically
mTAP = m.

Let qm = ‖m‖2N =∈ [q∗−ι, q∗+ι]. One checks analogously to Fact 6.6.5 that conditional on ∇FTAP(m) =

0, we have A(2)(m) =d

√
ξ′′(qm)N−1

N G, G ∼ GOE(N − 1). It is classical that spec(G) ⊆ [−2− ι, 2 + ι] with

probability 1− e−cN , so (6.86) holds with conditional probability 1− e−cN . Note that by (6.5),

γ∗ − 2
√
ξ′′(q∗) =

1

1− q∗

(
1− (1− q∗)ξ′′(q∗)1/2

)2

> 0. (6.88)

So, for small enough ι, when (6.86) holds the matrix γ∗IN−1−A(2)(m) is positive semidefinite with smallest
eigenvalue bounded away from 0. Recall the semicircle measure

ρsc(λ) =
1

2π

√
4− λ2 dλ. (6.89)

Applying [GZ00, Theorem 1.1(b)] as in the proof of Lemma 6.6.6 shows that with probability 1− e−cN ,∣∣∣∣∣ 1

N
Tr
(

(γ∗IN−1 −A(2)(m))−1
)
−
∫

ρsc(dλ)

γ∗ −
√
ξ′′(qm)λ

∣∣∣∣∣ ≤ ι.
This integral evaluates as ∫

ρsc(dλ)

γ∗ −
√
ξ′′(q∗)λ

+ oι(1) = 1− q∗ + oι(1).

Thus, for suitable ι′, (6.87) holds with conditional probability 1− e−cN , as desired.

Lemma 6.6.23. Suppose the event KN in Proposition 6.3.6 holds. For any δ > 0, there exists L such that
for all δ ≤ ‖m1‖N , ‖m2‖N ≤ 1, (treating A(2)(mi) as a matrix in RN×N , and A(3)(mi) as a tensor in
(RN )⊗3)

‖A(2)(m1)−A(2)(m2)‖op,N ≤ L‖m1 −m2‖N ,

‖A(3)(m1)−A(3)(m2)‖op,N ≤ L‖m1 −m2‖N .

Proof. Let proj⊥m denote the projection operator to the orthogonal complement of m. Then A(2)(m) =
P⊥m∇2HN (m)P⊥m. So,

‖A(2)(m1)−A(2)(m2)‖op,N ≤ ‖P⊥m1
∇2HN (m1)P⊥m1

− P⊥m1
∇2HN (m1)P⊥m2

‖op,N
+ ‖P⊥m1

∇2HN (m1)P⊥m2
− P⊥m2

∇2HN (m1)P⊥m2
‖op,N

+ ‖P⊥m2
∇2HN (m1)P⊥m2

− P⊥m2
∇2HN (m2)P⊥m2

‖op,N
≤ 2‖P⊥m1

− P⊥m2
‖op,N max(‖∇2HN (m1)‖op,N , ‖∇2HN (m2)‖op,N )

+ ‖∇2HN (m1)−∇2HN (m2)‖op,N
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On event KN ,

‖∇2HN (m1)‖op,N , ‖∇2HN (m2)‖op,N ≤ C2,

‖∇2HN (m1)−∇2HN (m2)‖op,N ≤ C3‖m1 −m2‖N .

Finally, for a constant Cδ depending on δ,

‖P⊥m1
− P⊥m2

‖op,N =

∥∥∥∥∥m1m
>
1

‖m1‖2
− m2m

>
2

‖m2‖2

∥∥∥∥∥
op,N

≤

∥∥∥∥∥m1m
>
1

‖m1‖2
− m1m

>
1

‖m2‖2

∥∥∥∥∥
op,N

+

∥∥∥∥∥m1m
>
1

‖m2‖2
− m2m

>
2

‖m2‖2

∥∥∥∥∥
op,N

≤ Cδ‖m1 −m2‖N .

This proves the inequality for A(2). The proof for A(3) is analogous.

Lemma 6.6.24. There exists L > 0 such that with probability 1 − e−cN , for all m1,m2 ∈ BN (mTAP, ι)
(treating Q(mi) as a matrix in RN×N )

‖Q(m1)‖op,N ≤ L ,
‖Q(m1)−Q(m2)‖op,N ≤ L‖m1 −m2‖N .

Proof. Suppose KN holds and (6.86), (6.87) from Lemma 6.6.22 hold. Then, for some ι′′ = oι(1) and all
m ∈ BN (mTAP, ι),

spec A(2)(m) ⊆ [−(2 + ι′′)
√
ξ′′(q∗), (2 + ι′′)

√
ξ′′(q∗)] (6.90)

and ∣∣∣∣ 1

N
Tr
(

(γ∗IN−1 −A(2)(m))−1
)
− (1− q∗)

∣∣∣∣ ≤ ι′′. (6.91)

When (6.90) holds, the calculation (6.88) shows γ∗ is bounded away from spec A(2)(m). Thus,

γ 7→ 1

N
Tr
(

(γIN−1 −A(2)(m))−1
)

has derivative Ω(1) in a neighborhood of γ∗. It follows from (6.91) that γ∗,N (m) = γ∗ + oι(1) uniformly for

all m ∈ BN (mTAP, ι). This is also bounded away from spec A(2)(m), so

‖Q(m)‖op,N = ‖(γ∗,N (m)IN −A(2)(m))−1‖op,N

is bounded. Let m1,m2 ∈ BN (mTAP, ι). There exists a rotation operator R from Tm1 to Tm2 such that∥∥R− Im1

N−1

∥∥
op,N

≤ ‖m1 −m2‖N . Recall qm = ‖m‖2N . The definition of γ∗,N (m) implies

qm2
− qm1

=
1

N
Tr
(

(γ∗,N (m1)Im1

N−1 −A
(2)(m1))−1 − (γ∗,N (m2)Im1

N−1 −A
(2)(m2))−1

)
=

1

N
Tr

(
Q(m1)

(
(γ∗,N (m2)− γ∗,N (m1))IN − (A(2)(m1)−R−1A(2)(m2)R)

)
R−1Q(m2)R

)
.

Thus,

(γ∗,N (m1)− γ∗,N (m2))
1

N
Tr(Q(m1)R−1Q(m2)R)

= qm2 − qm1 +
1

N
Tr

(
Q(m1)(A(2)(m1)−R−1A(2)(m2)R)R−1Q(m2)R

)
. (6.92)
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Note that

‖A(2)(m1)−R−1A(2)R(m2)‖op,N ≤ ‖A(2)(m1)‖op,N‖Im1

N−1 −R‖op,N + ‖A(2)(m1)−A(2)(m2)‖op,N ,

and thus the absolute value of the right-hand side of (6.92) is upper bounded by

|qm2
− qm1

|+ ‖Q(m1)‖op,N‖Q(m2)‖op,N‖A(2)(m1)−R−1A(2)R(m2)‖op,N ≤ L‖m1 −m2‖N ,

by Lemma 6.6.23. As discussed above, Q(m1),R−1Q(m2)R � cIm1

N−1 for some constant c > 0, so

1

N
Tr(Q(m1)R−1Q(m2)R) ≥ 1

N
Tr((cIm1

N−1)2) ≥ c2/2

is bounded away from 0. It follows that, after adjusting L,

|γ∗,N (m1)− γ∗,N (m2)| ≤ L‖m1 −m2‖N .

Finally, (adjusting L again)

‖Q(m1)−Q(m2)‖op,N

=
∥∥∥Q(m1)

(
(γ∗,N (m1)− γ∗,N (m2))IN − (A(2)(m1)−A(2)(m2))

)
Q(m2)

∥∥∥
op,N

≤ ‖Q(m1)‖op,N‖Q(m2)‖op,N
(
|γ∗,N (m1)− γ∗,N (m2)|+ ‖A(2)(m1)−A(2)(m2)‖op,N

)
≤ L‖m1 −m2‖N .

Proof of Proposition 6.4.5(c). For any ‖v‖2 = 1,

2|〈∆(m1)−∆(m2),v〉| = |〈A(3)(m1)⊗ v,Q(m1)⊗Q(m1)〉 − 〈A(3)(m2)⊗ v,Q(m2)⊗Q(m2)〉|

≤ |〈(A(3)(m1)−A(3)(m2))⊗ v,Q(m1)⊗Q(m1)〉|

+ |〈A(3)(m2)⊗ v, (Q(m1)−Q(m2))⊗Q(m1)〉|

+ |〈A(3)(m2)⊗ v,Q(m2)⊗ (Q(m1)−Q(m2))〉|.

By the previous two lemmas, this is bounded by L√
N
‖m1 −m2‖N , for some L > 0. Since this holds for all

v, we have ‖∆(m1)−∆(m2)‖2 ≤
L

2
√
N

, and thus ‖∆(m1)−∆(m2)‖N ≤
L

2N .

6.7 Local computation of magnetization: proof of Proposition
6.4.6

Recall that HN,t(σ) = HN (σ) + 〈yt,σ〉 with yt = tx+Bt, and define

x⊥ = x− 〈x,m〉N
‖m‖2N

m .

as well as the bands (for ‖m‖2N = q)

Band∗(ι) := Band(m, I(ι)) ∩ Band(x, I(ι)) , I(ι) := [q∗ − ι, q∗ + ι] , (6.93)

DN (a, b) =
{
σ ∈ SN : 〈σ,m〉N = aq, 〈σ,x〉N = b

}
. (6.94)

We recall the definition of truncated magnetization from Proposition 6.4.6:

m̃2ι(m) =

∫
Band∗(2ι)

σ exp(HN,t(σ)) µ0(dσ)∫
Band∗(2ι)

exp(HN,t(σ)) µ0(dσ)
. (6.95)

In Sections 6.7.1 and 6.7.2 we will prove Proposition 6.4.6. For the readers’ convenience, we reproduce
the statement below.

317



Proposition 6.4.6. Define A2 := A(2)(m), A3 := A(3)(m) as per Eq. (6.21) and γ∗ = γ∗,N as per
Eq. (6.22). Further recall the definition of Sι on Eq. (6.45), namely Sι :=

{
m ∈ RN : |〈m,x〉N − q∗|, |〈m,m〉N − q∗| ≤ ι

}
.

Then we have, for appropriate constant δ, ι > 0,

sup
m∈Sι

E
[
‖m+ ∆(m)− m̃2ι(m)‖2+δ

N

∣∣∇FTAP(m) = 0
]

= sup
m∈Sι

E

N−1−δ/2

 N∑
i=1

([
m̃2ι(m)−m

]
i
−
(

1

2
〈A3,Qi,· ⊗Q〉

))2
)1+δ/2

∣∣∣∣∣∣∇FTAP(m) = 0


≤ N−1−δ , (6.96)

Q := (γ∗I −A2)−1 . (6.97)

Our approach to proving Proposition 6.4.6 is based on decomposing

Band∗(2ι) = ∪r,s∈I(2ι)Band(m, {r}) ∩ Band(x, {s}) = ∪a,b∈L(2ι)DN (a, b) , (6.98)

where, for q = ‖m‖2N , c = 〈x,m〉N ,

L(2ι) = {(a, b) : qa ∈ I(2ι), b ∈ I(2ι)} .

Note that for m ∈ Sι, we have q, c ∈ I(ι), and thus L(2ι) is a neighborhood of (0, 0) of radius of order ι.
For any r, s ∈ I(2ι), we will see that the Hamiltonian restricted to Band(m, {r})∩Band(x, {s}) (conditional
on ∇FTAP(m) = 0) is equivalent to that of a mixed p-spin model in its replica symmetric phase with a small
magnetic field. We will therefore devote Section 6.7.1 to study this problem. In Section 6.7.2 we will use
this result, and integrate it over a, b to prove Proposition 6.4.6.

6.7.1 Conditional magnetization per band

As anticipated, in this section we will compute a good approximation to the magnetization for general
spherical models with small external field. While we will apply this result to the effective Hamiltonian in
the band, hence in dimension N − 2, throughout this section, we adopt general notations for such a model,
cf. Eq. (6.1) and recast N − 2 as N . We write

H(σ) = 〈u,σ〉+H≥2(σ) = 〈u,σ〉+
∑
p≥2

Hp(σ) , (6.99)

Hp(σ) =
1

N (p−1)/2

N∑
i1,...,ip=1

gi1,...,ipσi1 . . . σip , gi1,...,ip
i.i.d.∼ N (0, β2

p) . (6.100)

We will write throughout H≥i(σ) =
∑
p≥iHp(σ). We recast the mixture of H≥2 as ξ(s) =

∑
p≥2 β

2
ps
p.

The results of this subsection hold for all models satisfying the replica symmetry condition (6.31), which
we reproduce for convenience:

ξ′′(0) < 1, ξ(q) + q + log(1− q) < 0 ∀q ∈ (0, 1). (6.101)

This holds under the main condition (6.5) by integrating twice and, as we will see in (6.203), will hold for the
effective model on the band Band(m, {r}) ∩ Band(x, {s}), for all r, s ∈ I(2ι). Note that the first inequality
in (6.101) implies β2

2 < 1/2.
We will always assume ‖u‖2 ≤ c0

√
N , with c0 a small constant, and in some lemmas ‖u‖2 ≤ N c0 . We

will denote by µ(dσ) ∝ exp(H(σ))µ0(dσ) the corresponding Gibbs measure.

Note that we can view H2 as a quadratic form with H2(σ) = 〈σ,W (2)σ〉 (with entries W
(2)
ij =

(gij + gji)/2
√
N). Hence W (2) is a GOE matrix scaled by β2/

√
2. We will work in the orthonormal

basis diagonalizing W (2) and its the spectrum of be Λ = (Λi)i≤N , with Λ1 ≥ Λ2 ≥ · · · ≥ ΛN . We will

occasionally identify Λ with the diagonal matrix with diagonal entries Λi. We also write W (3) for the sym-
metric 3rd-order tensor such that H3(σ) = 〈W (3),σ⊗3〉, written in the basis of eigenvectors of W (2). That

is, W (3) is obtained by rotating w̃(3) with entries W̃
(3)
ijk = (gijk + permutations)/6N .

318



Given a symmetric matrix A ∈ RN×N , we define

G(γ) = G(γ;A,u) := γ − 1

2N
log det(γI −A) +

1

4N
〈u, (γI −A)−1u〉, (6.102)

γ∗ = γ∗(A,u) = arg min
γ>λmax(A)

G(γ;A,u) . (6.103)

Note that G is convex with limγ↓λmax(A)G
′(γ) = −∞, limγ↑+∞G′(γ) = +∞, so γ∗ is also the unique solution

to G′(γ) = 0. We will omit the argument A or u whenever clear from the context (in particular, we typically
omit u and omit A when A = Λ is the diagonal matrix containing the eigenvalues of W ).

Lemma 6.7.1. There exits c0 > 0 such that, for ‖u‖ ≤ N c0 , and under the additional assumptions above,
the following holds. Let γ∗ = γ∗(Λ) and define, for j ≤ N

m̂j :=
uj

2(γ∗ − Λj)
+

1

2(γ∗ − Λj)

N∑
i=1

W
(3)
jii

γ∗ − Λi
. (6.104)

Then, for some c > 0, with probability 1−N−c, the following holds for all i ∈ [N ]:∫
σi µ(dσ) = (1 +O(N−c))

(
m̂i +O(N−1/2−c)

)
.

Together with further estimates, we will use Lemma 6.7.1 to prove the following lemma, which is the
main result of the section.

Lemma 6.7.2. Let α ≥ 2. There exists c0 > 0 such that, for ‖u‖ ≤ N c0 , and under the additional
assumptions above, we have for some c > 0 that

E
[∥∥∥∥∫ σ µ(dσ)− m̂

∥∥∥∥α
N

]
= O(N−α/2−c). (6.105)

The rest of this section is devoted to the proof of Lemma 6.7.1 and Lemma 6.7.2.

Quadratic Hamiltonians

We begin by proving several supporting lemmas about quadratic models. The Laplace transform allows us
to compute accurately various statistics of quadratic models. We note that the use of Laplace transforms
in studying spherical quadratic models has been utilized before, for example for analyzing the fluctuation of
the free energy in [BL16]. We will however need accurate control over a number of statistics beyond the free
energy.

Lemma 6.7.3. For A ∈ RN×N a GOE matrix scaled by α < 1/2, and u ∈ RN such that ‖u‖2 ≤ εN for
ε > 0 depending only on 1/2 − α, there exists a constant c > 0 such that, defining and G(γ) = G(γ;A),
γ∗ = γ∗(A), we have that the following claim holds with probability at least 1− exp(−cN):∫

e〈σ,Aσ〉+〈u,σ〉µ0(dσ) = (1 +O(N−c))

√
2

G′′(γ∗)
(2e)−N/2 eNG(γ∗), (6.106)

and, for vk any eigenvector of A (uniformly over k)∫
〈vk,σ〉e〈σ,Aσ〉+〈u,σ〉 µ0(dσ)∫

e〈σ,Aσ〉+〈u,σ〉 µ0(dσ)
= (1 +O(N−c))

〈vk,u〉
2(γ∗ − λk(A))

. (6.107)

Proof. By a change of basis, we can assume that A = Λ is diagonal (and its entries ordered). Let

E(`) := `N/2−1

∫
exp

(
〈u,σ〉

√
`+ 〈Λ,σ⊗2〉`

)
µ0(dσ) . (6.108)
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Then the Laplace transform of E is given by

F (t) =

∫ ∞
0

e−t`E(`) d`,

and one has (for <(γ) > Λ1 = maxi≤N Λi)

E(`) =
1

2πi

∫ Nγ+i∞

Nγ−i∞
et` F (t) dt.

We evaluate, for <(t) > Λ1,

F (Nt) =

∫ ∞
0

∫
e−Nt` exp

(
〈u,σ〉

√
`+ 〈Λ,σ⊗2〉`

)
`N/2−1µ0(dσ) d`

=
Γ(N/2)

(Nπ)N/2

∫
RN

exp
(
− t‖y‖2 + 〈u,y〉+ 〈Λ,y⊗2〉

)
dy

=
Γ(N/2)

(Nπ)N/2

∫
RN

exp
{
−

N∑
i=1

(t− Λi)y
2
i +

N∑
i=1

uiyi

}
dy

=
Γ(N/2)

NN/2
exp

{
−1

2

N∑
i=1

log(t− Λi) +

N∑
i=1

u2
i

4(t− Λi)

}
.

Hence, by the inverse Laplace transform, for all γ ∈ R, γ > maxi≤N Λi,

E(1) =
N

2πi

∫ γ+i∞

γ−i∞
eNt F (Nt) dt

=
Γ(N/2)

2πNN/2−1

∫ ∞
−∞

exp

{
N(γ + iz)− 1

2

N∑
i=1

log(γ + iz − Λi) +

N∑
i=1

u2
i

4(γ + iz − Λi)

}
dz

=
Γ(N/2)

2πNN/2−1

∫ ∞
−∞

exp
(
NG(γ + iz)

)
dz, (6.109)

where G(x) = G(x; Λ) is defined as per Eq. (6.102).
Let γ∗ be defined as per Eq. (6.103). Per the discussion below (6.103), γ∗ is the unique solution to

G′(γ∗) = 0. Explicitly,

N − 1

2

N∑
i=1

1

γ∗ − Λi
−

N∑
i=1

u2
i

4(γ∗ − Λi)2
= 0.

Our assumption on α and ‖u‖ implies that γ∗−maxi Λi > δ for an appropriate δ depending only on 1/2−α.
We will set γ = γ∗ in Eq. (6.109). Note that

<(G(γ∗ + iz)−G(γ∗)) = − 1

4N

N∑
i=1

log(1 + z2/(γ∗ − Λi)
2)− 1

4N

N∑
i=1

u2
i z

2

(γ∗ − Λi)(z2 + (γ∗ − Λi)2)
.

For |z| ∈ ((logN)/
√
N, 1), we have <(G(γ∗ + iz)−G(γ∗)) < −cz2, and for |z| ≥ 1, we have <(G(γ∗ + iz)−

G(γ∗)) < −c log(1 + cz2). This implies that∫
|z|> logN√

N

exp
(
NG(γ∗ + iz)−NG(γ∗)

)
dz < e−c(logN)2 .

On the other hand, for |z| ≤ (logN)/
√
N we use the Taylor expansion:

G(γ∗ + iz) = G(γ∗) +

k∑
j=1

(iz)j

j!
G(j)(γ∗) + ErrN,k+1 ,

ErrN,k+1 ≤
C

k!

(
logN√
N

)k
sup

|z|≤(logN)/
√
N

∣∣G(k)(γ∗ + iz)
∣∣ .
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We have that

G(1)(z) = 1− 1

2N

N∑
i=1

1

z − Λi
− 1

4N

N∑
i=1

u2
i

(z − Λi)2
,

G(j)(z) =
(−1)j(j − 1)!

2N

N∑
i=1

1

(z − Λi)j
+

(−1)jj!

4N

N∑
i=1

u2
i

(z − Λi)j+1
.

In particular, with probability 1 − exp(−cN) over A, sup|z|≤(logN)/
√
N |G(j)(γ∗ + iz)| ≤ j!Cj for a finite

constant C > 0 as long as ‖u‖2 ≤ N . Hence, we have (for `N := (logN)/
√
N and JN := [−`N , `N ])∫

JN

exp
(
NG(γ∗ + iz)−NG(γ∗)

)
dz =

∫
JN

e−NG
(2)(γ∗)z

2/2 exp
(
O(N`3N )

)
dz

=

√
2π

NG(2)(γ∗)

(
1 +O(N−1/2+ε)

)
.

Together with Eq. (6.109), we get

E(1) =
Γ(N/2)

2πNN/2−1
eNG(γ∗)

{√
2π

NG(2)(γ∗)
+O(N−1+ε)

}
,

which yields (6.106) by Stirling’s formula.
By a similar argument, we obtain the integral of the spin σk = 〈vk,σ〉 (recall we are working in the basis

in which A is diagonal). Let

Ek(`) := `N/2−1

∫ √
`σk exp

(
〈u,σ〉

√
`+ 〈Λ,σ⊗2〉`

)
µ0(dσ).

Then the Laplace transform can be evaluated as

Fk(Nt) =

∫ ∞
0

∫
e−Nt`

√
`σk exp

(
〈u,σ〉

√
`+ 〈Λ,σ⊗2〉`

)
`N/2−1µ0(dσ) d`

=
Γ(N/2)

(Nπ)N/2

∫
RN

yk exp
(
−t‖y‖2 + 〈u,y〉+ 〈Λ,y⊗2〉

)
dy

=
Γ(N/2)

NN/2

uk
2(t− Λk)

exp

{
−1

2

N∑
i=1

log(t− Λi) +

N∑
i=1

u2
i

4(t− Λi)

}
.

Then we apply the same strategy as for computing E(1). By inverse Laplace transform:

Ek(1) =
Γ(N/2)

2πNN/2−1
uk

∫ ∞
−∞

1

2(γ∗ + iz − Λk)
exp

(
NG(γ∗ + iz)

)
dz, (6.110)

We make a negligible error in restricting to JN := [−`N , `N ] (for `N := (logN)/
√
N)

Ek(1) =
Γ(N/2)

2πNN/2−1
uk

{∫
JN

1

2(γ∗ + iz − Λk)
exp

(
NG(γ∗ + iz)

)
dz +O(e−c(logN)2)

}
=

Γ(N/2)

2πNN/2−1
uk

{√
2π

NG(2)(γ∗)

1

2(γ∗ − Λk)
+O(N−1+ε)

}
.

Comparing with the above, we get

Ek(1) = (1 +O(N−c))
uk

2(γ∗ − Λk)

∫
e〈σ,Aσ〉+〈u,σ〉µ0(dσ).

This gives (6.107).

321



Lemma 6.7.4. Let A ∈ RN×N be a GOE matrix scaled by α < 1/2. Assume that u ∈ RN is such that
‖u‖ ≤ N c0 . For ` ∈ [L], consider a collection of pairs of indices (i`, j`) with i` 6= j` ∈ [2k] and integers

r` ≥ 3. Let R =
∑L
`=1 r`. We have that the following claim holds with probability at least 1− exp(−cN):

Uniformly in h ∈ [N ],∫ ∏2k
i=1 σ

i
h

∏L
`=1〈σi` ,σj`〉r` exp

(∑2k
i=1〈u,σi〉+ 〈σi,Λσi〉

)
µ⊗2k

0 (dσ)∫
exp

(∑2k
i=1〈u,σi〉+ 〈σi,Λσi〉

)
µ⊗2k

0 (dσ)

= Ok,L

(
|uh|2k−2 min(k,L)N (R−min(k,L))/2(1 + ‖u‖)2R

)
.

Proof. As before, we perform a change of basis and assume that A = Λ is diagonal. Consider

E(z1, . . . , z2k)

:= (

2k∏
i=1

zi)
N/2−1

∫ 2k∏
i=1

(σih
√
zi)

L∏
`=1

〈σi`√zi` ,σj`
√
zj`〉r` exp

(
2k∑
i=1

〈u,σi〉
√
zi + 〈σi,Λσi〉zi

)
µ⊗2k

0 (dσ).

Then the multivariate Laplace transform of E is

F (N(t1, . . . , t2k)) =
Γ(N/2)2k

(Nπ)kN

∫
RN

2k∏
i=1

yih

L∏
`=1

〈yi` ,yj`〉r` exp

(
−

2k∑
i=1

(
ti‖yi‖2 − 〈u,yi〉 − 〈Λ, (yi)⊗2〉

))
dy

=
Γ(N/2)2k

NkN
exp

{
−

2k∑
i=1

(
1

2

N∑
h′=1

log(ti − Λh′) +

N∑
h′=1

u2
h′

4(ti − Λh′)

)}
·G,

where, for yi = 1
2 (ti −Λ)−1u+wi and wi independently distributed according N

(
0, 1

2 (ti −Λ)−1
)
,

G := E

[
2k∏
i=1

yih

L∏
`=1

〈yi` ,yj`〉r`
]

= E
[ 2k∏
i=1

(
uh

2(ti − Λh)
+ wih

)
L∏
`=1

(
〈wi` ,wj`〉+

1

2
〈wi` , (tj` −Λ)−1u〉+

1

2
〈wj` , (ti` −Λ)−1u〉+

1

4
〈(tj` −Λ)−1u, (ti` −Λ)−1u〉

)r` ]
.

(6.111)

Assume that mini∈[2k] <(ti − maxh′ Λh′) > c > 0, and recall that ‖u‖ ≤ N c0 . Define R a tuple of sets of
length 2k + R, where, for 1 ≤ a ≤ 2k, Ra is a subset of {a}, and for a > 2k, Ra is a subset of the pair
of indices {i`, j`} in the corresponding term. As such, each tuple R represents a term in the expansion of
(6.111). If there exists an index in [2k] that appears an odd number of times among the sets in R, then the
contribution of the corresponding term to (6.111) is 0. Consider the tuples R where each index appears an
even number of times. Let B(R) be the collection of indices a ≤ 2k where Ra = {a}, and let b(R) = |B(R)|.
The indices B(R) must appear an odd number of times among the remaining sets (Rj)2k+R

j=2k+1. In each

possible way to pick out terms among (Rj)2k+R
j=2k+1 so that each index in B(R) appears at least once, let d(R)

denote the number of sets |Rj | = 1 among these terms. Among the remaining terms, each of the index in
B(R) not covered by the d(R) sets can be matched to terms among (Rj)2k+R

j=2k+1. Consider an arbitrary way
to pair up all remaining indices appearing in the terms into pairs; let f(R) ≤ R − d(R)− (b(R)− d(R))/2
be the number of such pairs. For each such term and fixed pairing, we can upper bound its contribution to
(6.111) by

O
(
|uh|2k−b(R)+d(R)Nf(R)/2(1 + ‖u‖2)R

)
≤ O

(
max

a≤min(k,L)
|uh|2k−2aN (R−a)/2(1 + ‖u‖)2R

)
,
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noting the constraints 0 ≤ d(R) ≤ b(R), f(R) ≤ R− d(R)− (b(R)− d(R))/2. Thus, we have

G = Ok,L

(
max

a≤min(k,L)
|uh|2k−2aN (R−a)/2(1 + ‖u‖)2R

)
.

Hence, for R =
∑
` r` ≥ 3L,

G = Ok,L

(
|uh|2k−2 min(k,L)N (R−min(k,L))/2(1 + ‖u‖)2R

)
.

Taking the inverse Laplace transform and integrating on ti = γ∗ + ixi, for γ∗ defined in Eq. (6.103),
noting that, similar to Lemma 6.7.3, we can restrict the integration to the range xi ∈ [−`N , `N ] for
`N = (logN)/

√
N , we obtain that∫ ∏2k

i=1 σ
i
h

∏L
`=1〈σi` ,σj`〉r` exp

(∑2k
i=1〈u,σi〉+ 〈σi,Λσi〉

)
µ⊗2k

0 (dσ)∫
exp

(∑2k
i=1〈u,σi〉+ 〈σi,Λσi〉

)
µ⊗2k

0 (dσ)

= Ok,L

(
|uh|2k−2 min(k,L)N (R−min(k,L))/2(1 + ‖u‖)2R

)
.

The next lemma states that, under a purely quadratic Hamiltonian, and for small field, the overlap
concentrates near zero.

Lemma 6.7.5 (Overlap concentration in quadratic models). Define

A2(t)c := {(σ1,σ2) ∈ SN × SN : |〈σ1,σ2〉N | ≥ t} .

Assuming that ‖u‖2 ≤ δN for δ sufficiently small, we have for some constant c > 0 that, with probability
1− e−cN , ∫

A2(t)c
exp(H≤2(σ1) +H≤2(σ2))µ⊗2

0 (dσ)∫
exp(H≤2(σ1) +H≤2(σ2))µ⊗2

0 (dσ)
≤ exp

{
− cN

(
t− ‖u‖N

)2
+

}
. (6.112)

Proof. Consider the Hamiltonian H(σ1,σ2) = H≤2(σ1) +H≤2(σ2) + 2θ〈σ1,σ2〉. Let Λi be the eigenvalues
of the quadratic component A of H. Using the Laplace transform as in Lemma 6.7.3,∫

exp
(
〈u,σ1 + σ2〉+ 〈A, (σ1)⊗2 + (σ2)⊗2〉

)
exp

(
2θ〈σ1,σ2〉

)
µ⊗2

0 (dσ)

=

(
Γ(N/2)

(2π)NN/2−1

)2 ∫ ∞
−∞

exp
(

2NG̃θ(γ1 + iz1, γ2 + iz2)
)
dz1dz2,

where

G̃θ(z1, z2) =
z1 + z2

2
− 1

4N

N∑
i=1

log((z1 − Λi)(z2 − Λi)− θ2) +
1

8N

N∑
i=1

u2
i (z1 + z2 − 2Λi + 2θ)

(z1 − Λi)(z2 − Λi)− θ2
.

We also denote

Gθ(z) = Gθ(z, z) = z − 1

4N

N∑
i=1

log((z − Λi)
2 − θ2) +

1

4N

N∑
i=1

u2
i (z − Λi + θ)

(z − Λi)2 − θ2
.

Let γ∗(θ) be a stationary point of Gθ on R so that γ∗(θ) > max Λi + θ (there exists a unique such point),
and γ∗ = γ∗(0).
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As in Lemma 6.7.3, noting that

exp
(
2<
(
log((γ∗(θ)− Λi + iz1)(γ∗(θ)− Λi + iz2)− θ2)− log((γ∗(θ)− Λi)

2 − θ2)
))

=

(
(γ∗(θ)− Λi)

2 − θ2 − z1z2

(γ∗(θ)− Λi)2 − θ2

)2

+

(
(γ∗(θ)− Λi)(z1 + z2)

(γ∗(θ)− Λi)2 − θ2

)2

=
((γ∗(θ)− Λi)

2 − θ2)2 + (z1z2)2 + 2θ2z1z2 + (z2
1 + z2

2)(γ∗(θ)− Λi)
2

((γ∗(θ)− Λi)2 − θ2)2

≥ 1 +
z2

1 + z2
2

(γ∗(θ)− Λi)2 − θ2
. (6.113)

Furthermore,

<
(

(γ∗(θ)− Λi + θ) + i(z1 + z2)/2

N((γ∗(θ)− Λi)2 − θ2 − z1z2 + i(γ∗(θ)− Λi)(z1 + z2))
− 1

N(γ∗(θ)− Λi − θ)

)
=
−(z1z2)2 − θ(γ∗(θ)− Λi + θ)(z1 + z2)2/2− ((γ∗(θ)− Λi)

2 − θ2)(z2
1 + z2

2)/2

N(γ∗(θ)− Λi − θ)(((γ∗(θ)− Λi)2 − θ2 − z1z2)2 + ((γ∗(θ)− Λi)(z1 + z2))2)

≤ 0. (6.114)

Given (6.113) and (6.114), we can proceed as in Lemma 6.7.3 to restrict the integral over z1 and z2 to the range

|z1|, |z2| < (logN)/
√
N , incurring an error e−c(logN)2 . Then by similarly expanding around (γ∗(θ), γ∗(θ)),

we obtain ∫
exp

(
〈u,σ1 + σ2〉+ 〈A, (σ1)⊗2 + (σ2)⊗2〉

)
exp

(
2θ〈σ1,σ2〉

)
µ⊗2

0 (dσ)

=

(
Γ(N/2)

(2π)NN/2−1

)2

e2NGθ(γ∗(θ))

{
2π

N det(∇2G̃θ(γ∗(θ), γ∗(θ)))1/2
+O(N−3/2+ε)

}
When ‖u‖2 ≤ δN , we have for G as in (6.102) that

Gθ(γ∗(θ))−G(γ∗) = O(θ2) +O(θ‖u‖2/N).

On the other hand, by Lemma 6.7.3,∫
exp(〈u,σ1 + σ2〉+ 〈A, (σ1)⊗2 + (σ2)⊗2〉)µ⊗2

0 (dσ)

= (1 +O(N−c))

(
Γ(N/2)

(2π)NN/2−1

)2
(√

2π

NG′′(γ∗)
+O(N−3/2+ε)

)2

.

In particular,∫
t≤|〈σ1,σ2〉N | exp(H≤2(σ1) +H≤2(σ2))µ⊗2

0 (dσ)∫
σ1,σ2 exp(H≤2(σ1) +H≤2(σ2))µ⊗2

0 (dσ)

≤ exp(−2Nθt)

∫
σ1,σ2 exp(〈u,σ1 + σ2〉+N〈A, (σ1)⊗2 + (σ2)⊗2〉) exp

(
2θ〈σ1,σ2〉

)
µ⊗2

0 (dσ)∫
σ1,σ2 exp(〈u,σ1 + σ2〉+N〈A, (σ1)⊗2 + (σ2)⊗2〉)µ⊗2

0 (dσ)

≤ exp
(
− 2Nθt+O(Nθ2) +O(θ‖u‖2)

)
.

Optimizing over θ, we obtain Eq. (6.112).

We will also need the following lemma, giving an accurate expansion of moments of overlaps in pertur-
bations of quadratic Hamiltonians.
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Lemma 6.7.6. Let A ∈ RN×N be a GOE matrix scaled by α < 1/2 with eigenvalues given by Λ. Let
∆ ∈ RN×N be an independent GOE matrix scaled by β > 0 and |ζ1|, |ζ2| ≤ C(logN)/

√
N . For i = 1, 2, let

Λ̃i = Λ + ζi∆. Assume that u ∈ RN is such that ‖u‖ ≤ N c0 . Let r ≥ 0 and L > 0. We have that the
following claim holds with probability at least 1 − exp(−cN): There exist Ci,j = Or,L(‖u‖2r + Nbr/2c) for
i, j ≤ L such that ∫

〈σ1,σ2〉r exp
(∑2

i=1〈u,σi〉+ 〈σi, Λ̃iσ
i〉
)
µ⊗2

0 (dσ)∫
exp

(∑2
i=1〈u,σi〉+ 〈σi,Λσi〉

)
µ⊗2

0 (dσ)

= C0,0 +

L∑
i,j=0,(i,j)6=(0,0)

Ci,jζ
i
1ζ
j
2 +OL(N−L/2 + e−N

c

).

Proof. Consider

E(z1, z2) := (

2∏
i=1

zi)
N/2−1

∫
〈σ1√z1,σ

2√z2〉r exp

(
2∑
i=1

〈u,σi〉
√
zi + 〈σi, Λ̃iσ

i〉zi

)
µ⊗2

0 (dσ).

Then the multivariate Laplace transform of E is

F (N(t1, t2)) =
Γ(N/2)2

(Nπ)N

∫
RN
〈y1,y2〉r exp

(
−

2∑
i=1

(
ti‖yi‖2 − 〈u,yi〉 − 〈Λ̃i, (y

i)⊗2〉
))

dy

=
Γ(N/2)2

NN
exp

{
−

2∑
i=1

(
1

2
log det(tiIN − Λ̃i) +

N∑
h′=1

1

4N
〈(tiIN − Λ̃i)

−1,uuT 〉

)}
·G(σ),

where, for Zi = (tiIN − Λ̃i)
−1, yi = 1

2Z
iu+wi and wi independently distributed according N

(
0, 1

2Z
i
)
,

G(t1, t2;σ1, σ2) := E
[
〈y1,y2〉r

]
= E

[(
〈w1,w2〉+

1

2
〈w1,Z2u〉+

1

2
〈w2,Z1u〉+

1

4
〈Z1u,Z2u〉

)r]
.

Let G0(t1, t2) = G(t1, t2; 0, 0). Note that G is a rational function of ti, and hence extends to complex values

of ti. We next consider the Taylor expansion in ζ1, ζ2 of G. Write wi = ( 1
2Z

i)1/2W̃
i

for W̃
i
∼ N (0, IN ).

Note that

‖∂iζ1Z
1‖op = Oi(β).

We can thus bound the derivatives of G(t1, t2; ζ1, ζ2) for |t1 − γ∗|, |t2 − γ∗| ≤ C(logN)/
√
N as

|∂iζ1∂
j
ζ2
G(t1, t2; ζ1, ζ2)| ≤ Or,i+j

(
‖u‖2r +Nr/2

)
(6.115)

for r even, and

|∂iζ1∂
j
ζ2
G(t1, t2; ζ1, ζ2)| ≤ Or,i+j

(
‖u‖2r + ‖u‖2N (r−1)/2

)
(6.116)

for r odd. We can thus write

G(t1, t2; ζ1, ζ2) = G0(t1, t2) +
∑

i,j≤L,(i,j) 6=(0,0)

Ci,jζ
i
1ζ
j
2 +O(max(ζ1, ζ2)L+1),

where |Ci,j | = Or,i+j
(
‖u‖2r +Nbr/2c

)
.

Let

F (ζ1, ζ2) :=

∫
〈σ1,σ2〉r exp

(∑2
i=1〈u,σi〉+ 〈σi, Λ̃iσ

i〉
)
µ⊗2

0 (dσ)∫
exp

(∑2
i=1〈u,σi〉+ 〈σi,Λσi〉

)
µ⊗2

0 (dσ)
. (6.117)
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Next, we take the inverse Laplace transform and integrate on ti = γ∗ + ixi, for γ∗ defined in Eq. (6.103).
We note that, for G(γ) = G(γ; Λ,u) and G̃i(γ) = G(γ; Λ̃i,u),

G̃′i(z) = G′(z) +
1

2N
Tr((z −Λ)−1(I − (z −Λ)(z − Λ̃i)

−1))

+
1

4N
〈u, (z −Λ)−1(I − (z −Λ)(z − Λ̃i)

−2(z −Λ))(z −Λ)−1u〉.

Moreover, (z−Λ)(z−Λ̃)−1 = (I−ζi∆(z−Λ)−1)−1, and (z−Λ)(z−Λ̃i)
−2(z−Λ) = (I−ζi∆(z−Λ)−1)−1(I−

(z − Λ)−1ζi∆)−1. Expanding in ζi∆, we can show that for |ζi| ≤ C(logN)/
√
N , |G̃′i(γ∗)| ≤ N−1+o(1).

Hence, by an argument similar to Lemma 6.7.3, we can restrict the integration on ti = γ∗ + ixi to the range
xi ∈ [−`N , `N ] for `N = (logN)/

√
N , and obtain that

F (ζ1, ζ2) = F (0, 0) +
∑

i,j≤L,(i,j)6=(0,0)

Ci,jζ
i
1ζ
j
2 +OL(N−L/2 + e−N

c

).

Estimates of restricted partition functions

In this section we estimate modified partition functions that are obtained by suitable restrictions of the
integral over σ, always under the assumption (6.101). Namely, for any Borel set U ⊆ (SN )⊗m,

Zm(U) :=

∫
U

e
∑m
i=1H(σi)µ⊗m0 (dσ) , (6.118)

with subscript omitted if m = 1. If U = SN , we write simply Z = Z(SN ). We also denote by Z≤2,m(U) the
same integral whereby H(σ) is replaced by H≤2(σ):

Zm(U) :=

∫
U

e
∑m
i=1H≤2(σi)µ⊗m0 (dσ) , (6.119)

We will occasionally omit the subscript m when the dimension of U is clear from the context.
Throughout this section, we follow the notations 〈x,y〉N = 〈x,y〉/N , so 〈x,x〉N = ‖x‖2N .
As for the restrictions, an important role is played by the typical set:

T (δ) =

{
σ ∈ SN :

∫
σ′:|〈σ′,σ〉N |>δ

eH(σ′)µ0(dσ′) < e−c1(δ)N min

(∫
eH(σ)µ0(dσ); eNξ(1)/2

)}
. (6.120)

We further define Am(δ) ⊆ (SN )m to be the set of m-uples of vectors which are nearly orthogonal. Namely:

Am(δ) :=
{

(σi)i≤m : σi ∈ SN , |〈σi,σj〉N | ≤ δ ∀i 6= j
}
. (6.121)

Finally, we consider the set of m-uples in T = T (δ) that are nearly orthogonal:

Am(T, δ) :=
{

(σi)i≤m : σi ∈ T, |〈σi,σj〉N | ≤ δ ∀i 6= j
}
. (6.122)

In particular Am(T, δ) = Tm ∩Am(δ).
Our first lemma establishes that, under the Gibbs measure, non-typical points are exponentially rare.

Lemma 6.7.7 (Most points are typical). For any δ > 0, there exists u(δ), c1(δ), c2(δ) > 0 such that the
following holds. Let H(σ) be defined as per Eq. (6.99) and suppose ‖u‖ ≤ u(δ)

√
N . Let T (δ) be defined as

per Eq. (6.120).
Then, with probability at least 1− exp(−c2(δ)N),

Z(T (δ)) ≥ (1− e−Nc2(δ)) · Z . (6.123)
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Furthermore, there is c3(δ) > 0 such that, with probability at least 1− exp(−c3(δ)N),

Z≤2(T (δ)c) ≤ e−c3(δ)NZ≤2. (6.124)

Finally

E

[∫
T (δ)c

eH≥2(σ) µ0(dσ)

]
≤ e−c1(δ)N EZ≥2. (6.125)

Proof. The second inequality in (6.101) is termed “strictly RS” in [HS23b], see Eq. (2.7) therein. By
Proposition 3.1 of that paper,

E
∫
T (δ)

eH≥2(σ) µ0(dσ) ≥ (1− e−c1(δ)N )eNξ(1)/2.

(While this proposition states a bound of (1 − o(1)) exp(Nξ(1)/2), its proof shows the 1 − o(1) is in fact
1− e−c1(δ)N .) As EZ≥2 = exp(Nξ(1)/2), for Z≥2 :=

∫
SN

expH≥2(σ) µ0(dσ), this implies Eq. (6.125).

By Markov’s inequality, with probability 1− e−c1(δ)N/5,∫
T (δ)c

eH≥2(σ) µ0(dσ) ≤ e−4c1(δ)N/5 EZ≥2.

By [Tal06a, Proposition 2.3], (6.101) implies that 1
N logZ≥2 →p ξ(1)/2. By standard concentration properties

of 1
N logZ≥2, with probability 1− e−c2(δ)N ,

Z≥2 ≥ e−c1(δ)N/5 EZ≥2.

On the intersection of these events,∫
T (δ)c

eH≥2(σ) µ0(dσ) ≤ e−3c1(δ)N/5Z≥2.

Finally, set u(δ) = c1(δ)/5, so that for all σ ∈ SN ,

|H(σ)−H≥2(σ)| = |〈u,σ〉| ≤ c1(δ)N/5.

Thus ∫
T (δ)c

eH(σ) µ0(dσ) ≤ e−c1(δ)N/5

∫
SN

eH(σ) µ0(dσ).

The conclusion (6.123) follows with c(δ) = min(c1(δ)/6, c2(δ)/2).
Finally, from Markov’s inequality, we have with probability 1− e−c3(δ)N that

Z≤2(T (δ)c) ≤ e−c3(δ)NeNξ≤2(1)/2.

Then (6.124) follows from standard concentration properties.

The next lemma states that we can anneal over terms of degree higher than 2 in the Hamiltonian. This
will be the most important technical result of the section.

Lemma 6.7.8. Let H(σ) be defined as per Eq. (6.99) and define T = T (δ) as in Eq. (6.120). Assume that
‖u‖ ≤ N c0 for c0 sufficiently small given ξ. Under assumption (6.101), for all L, k > 0 and ε > 0, there
exist C = C(L, k) > 0 such that the following holds with probability at least 1− exp(−N/C)

E≥3

{(
Z(T )− E≥3Z(T )

)2k} ≤ C N−L/2 (E≥3Z(T )
)2k

, (6.126)

and further

P
{∣∣Z − E≥3Z(T )

∣∣ > εE≥3Z(T )
}
≤ Cε−2LN−L/2 + e−N/C . (6.127)
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We also have, with probability at least 1− exp(−N/C)

E≥3Z(T ) = (1 +O(e−N/C))E≥3Z. (6.128)

Further, letting (vk)k≤N be the basis of eigenvectors of W 2, for each i ∈ [N ],

P
(∫

T

〈vi,σ〉 eH(σ)µ0(dσ) ≥ Nε‖u‖Ck(|〈vi,u〉|+ C N−1/2)E≥3

∫
eH(σ)µ0(dσ)

)
≤ C

(
N−2εk + e−N/C

)
.

(6.129)

Before proving this lemma, we state and prove a number of key estimates.
Our first lemma establishes that (in expectation) the partition function in A2k(δ) is dominated by the

subset A2k(δ, T ).

Lemma 6.7.9 (Orthogonal frames are mostly typical). Define T = T (δ) as in Eq. (6.120). We have for
δ > 0 sufficiently small and appropriate c, c′ > 0 that, if ‖u‖ ≤ c′

√
N ,

EZ2k

(
{(σi)i≤2k ∈ A2k(δ) : σ1 ∈ T c

})
≤ e−cNEZ2k

(
A2k(δ)

)
. (6.130)

As a consequence,

EZ2k

(
A2k(δ, T )

)
≥ (1− e−cN )EZ2k

(
A2k(δ)

)
.

Proof. We have

E
{
H≥2(ρ)

∣∣∣ 2k∑
i=1

H≥2(σi)
}

=
EH≥2(ρ)

∑2k
i=1H≥2(σi)

E(
∑2k
i=1H≥2(σi))2

2k∑
i=1

H≥2(σi)

=

∑2k
i=1 ξ(〈ρ,σi〉N )∑

i,j∈[2k] ξ(〈σi,σj〉N )

2k∑
i=1

H≥2(σi),

and for Ĥ(ρ) = H≥2(ρ)− E[H≥2(ρ)|
∑2k
i=1H≥2(σi)],

E
[
Ĥ(ρ1)Ĥ(ρ2)

]
= ξ(〈ρ1,ρ2〉N )−

(
∑2k
i=1 ξ(〈ρ1,σi〉N )(

∑2k
i=1 ξ(〈ρ2,σi〉N )∑

i,j∈[2k] ξ(〈σi,σj〉N )
.

For each |q1| ≥ δ, and q2, . . . , q2k ∈ [0, 1], consider the band Band∗({σi}) of vectors ρ with 〈ρ,σi〉 = qi for

all i ∈ [2k]. Write ρ = x +
√

1− q̃2τ where x ∈ span(σ1, . . . ,σ2k) and ‖τ‖2 = N , τ ⊥ span(σ1, . . . ,σ2k).

Define the process H(τ ) = Ĥ(ρ), which is a p-spin model with corresponding mixture ξ̃(t) = ξ̃(t; q, (σi)2k
i=1)

given by

ξ̃(t; q, (σi)2k
i=1) = ξ(q̃2 + (1− q̃2)t

)
−

(∑2k
i=1 ξ(qi)

)2∑
i,j∈[2k] ξ(〈σi,σj〉N )

.

We define the free energy

Φ(q; (σi)2k
i=1) :=

1

N
log

∫
Band∗({σi})

eH≥2(ρ)µ0(dρ) .

Following the proof of Lemma 3.3 of [HS23b], the replica-symmetric bound implies that the following holds
with high probability:

Φ(q; (σi)2k
i=1) ≤

∑2k
i=1 ξ(qi)∑

i,j∈[2k] ξ(〈σi,σj〉N )

2k∑
i=1

H≥2(σi) +
1

2
ξ(1)− 1

2
ξ(q̃) +

1

2
q̃ +

1

2
log(1− q̃) + oN (1). (6.131)
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By the generalized Bessel inequality, we have

2k∑
i=1

〈x,σi〉2N ≤ ‖x‖2N (2k)−1
∑

i,j∈[2k]

〈σi,σj〉2N = ‖x‖2N (2k)−1(2k + (2k)2δ2).

Hence,

q̃2 = ‖x‖2N ≥
1

1 + 2kδ2

2k∑
i=1

q2
i ,

and since ξ(0) = ξ′(0) = 0, this implies

2k∑
i=1

ξ(qi) ≤ ξ
(
(1 + 2kδ2)1/2q̃

)
.

We pick δ sufficiently small in c and k, and η small in δ. Given
∑2k
i=1H≥2(σi) = EN where E ≤∑

i,j∈[2k] ξ(〈σi,σj〉N ) + η, whenever q1 ≥ δ, we have by assumption (6.101), with high probability

Φ(q; (σi)2k
i=1) ≤ 1

2
ξ(1)− 10η.

Integrating over the (qi)i≤2k and using Gaussian concentration, we deduce that for E ≤
∑
i,j∈[2k] ξ(〈σi,σj〉N )+

η, we have

P

{∫
ρ:〈ρ,σ1〉N>δ

eH≥2(ρ)µ0(dρ) ≤ eN(ξ(1)/2−9η)

∣∣∣∣∣
2k∑
i=1

H≥2(σi) = EN

}
≥ 1− e−c(η)N .

Up until now we worked with the Hamiltonian H≥2(σ), which does not include the term linear in σ.

Recall that H(σ) = 〈u,σ〉+H≥2(σ) and ‖u‖ ≤ c′
√
N so |H(σ)−H≥2(σ)| ≤ |〈u,σ〉| ≤ c′N , assuming that

c′ < η, we have

P

{∫
ρ:〈ρ,σ1〉N>δ

eH(ρ)µ0(dρ) ≤ eN(ξ(1)/2−8η)

∣∣∣∣∣
2k∑
i=1

H≥2(σi) = EN

}
≥ 1− e−c(η)N .

Hence, under the same conditions

P

{
σ1 ∈ T c

∣∣∣∣∣
2k∑
i=1

H≥2(σi) = EN

}
≤ e−c(η)N .

Define the event

E({σi}) :=


2k∑
i=1

H≥2(σi) ≥ N

 ∑
i,j∈[2k]

ξ(〈σi,σj〉N ) + η

 .

Thus, since |H(σ)−H≥2(σ)| ≤ c′N , we can then conclude that

E

{∫
A2k(δ):σ1∈T c

e
∑2k
i=1H(σi)µ⊗2k

0 (dσ)

}
= E

{∫
A2k(δ)

1σ1∈T ce
∑2k
i=1H(σi)µ⊗2k

0 (dσ)

}

= E

{∫
A2k(δ)

P
{
σ1 ∈ T c

∣∣∣ 2k∑
i=1

H≥2(σi)
}
e
∑2k
i=1H(σi)µ⊗2k

0 (dσ)

}

≤ e−c(η)N+c′NE
∫
A2k(δ)

e
∑2k
i=1H≥2(σi)µ⊗2k

0 (dσ) + ec
′NE

∫
A2k(δ)

e
∑2k
i=1H≥2(σi)1E({σi})µ

⊗2k
0 (dσ)

≤ e−cNE
∫
A2k(δ)

e
∑2k
i=1H(σi)µ⊗2k

0 (dσ).
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Here we assume c′ < c(η)/4 and c = c(η)/4, and in the last step we used, for U({σi}) :=
∑
i,j∈[2k] ξ(〈σi,σj〉N ),

E
∫
A2k(δ)

e
∑2k
i=1H≥2(σi)1E({σi})µ

⊗2k
0 (dσ) ≤

∫
A2k(δ)

exp
{
N(1− s+ s2)U({σi})−Nsη

}
µ⊗2k

0 (dσ) ,

and chose δ, s suitably small.

The next lemma shows that integrals of S2k
N with the product Gibbs measure are very precisely approxi-

mated by integral over tuples that are very close to orthogonal.

Lemma 6.7.10 (Near-orthogonal tuples dominate). For δ > 0 sufficiently small and appropriate c, c0 > 0,

if ‖u‖ ≤ N c0/2, then with probability 1− e−cN over W (2), the following holds:

1. For quadratic Hamiltonians, the unrestricted partition function of 2k replicas is dominated by its re-
striction to A2k(N−1/2+c):

Z≤2,2k

(
A2k(N−1/2+c)

)
≥ (1− e−N

c

) ·
(
Z≤2

)2k
. (6.132)

2. The contribution of A2k(δ) \A2k(N−1/2+c) = {(σi)i≤2k : maxi 6=j |〈σi,σj〉N | ∈ [N−1/2+c, δ]} is small:

E≥3Z2k

(
A2k(δ) \A2k(N−1/2+c)

)
≤ e−N

c+Nkξ≥3(1)
(
Z≤2

)2k
. (6.133)

3. Annealing the restricted partition function over H≥3 is roughly equivalent to complete annealing:

E≥3Z2k

(
A2k(δ)

)
≥ e−4k(‖u‖+1)

√
NEZ2k

(
A2k(δ)

)
. (6.134)

Proof. Proof of 1. By Lemma 6.7.5, for some constants c1, C1 > 0 that, with probability 1 − e−cN over
W (2),

Z≤2,2k

(
A2k(N−1/2+c)

)
≤
∑
i6=j

∫
S2k
N

1|〈σi,σj〉N |>N−1/2+ce
∑2k
i=1H≤2(σi)µ⊗2k

0 (dσ)

≤ e−N
c

∫
S2k
N

e
∑2k
i=1H≤2(σi)µ⊗2k

0 (dσ),

yielding (6.132).
Proof of 2. By a direct calculation, for any set U ⊆ (SN )2k:

E≥3Z2k

(
U
)

= eNkξ≥3(1)

∫
U

e
∑2k
i=1H≤2(σi) exp

N ∑
i<j<2k

ξ≥3(〈σi,σj〉N )

µ⊗2k
0 (dσ) .

Applying Lemma 6.7.5, we have for t > 0 and εN = N−1/2+c that, with probability 1− e−cN over W (2),

1

(Z≤2)2k
e−Nkξ≥3(1)E≥3Z2k

(
A2k(t+ εN ) \A2k(t)

)
≤ (6.135)

1

(Z≤2)2k

∫
maxi6=j |〈σi,σj〉N |∈[t,t+εN ]

exp

 2k∑
i=1

H≤2(σi) +N
∑

i 6=j∈[2k]

ξ≥3(〈σi,σj〉N )

µ⊗2k
0 (dσ) ≤

≤ exp
{
−cN

(
t− ‖u‖2N

)2
+

+N(2k)2ξ≥3(t+ εN )
}
. (6.136)

Under the assumption ‖u‖2N ≤ N c0−1, c0 < c+ 1/2, summing over the range N−1/2+c < |t| ≤ δ, we obtain

the following with probability 1− e−cN over W (2),∫
maxi6=j |〈σi,σj〉N |∈[N−1/2+c,δ]

exp

 2k∑
i=1

H≤2(σi) +N
∑

i 6=j∈[2k]

ξ≥3(〈σi,σj〉N )

µ⊗2k
0 (dσ)

≤ exp(−N c)

∫
S2k
N

exp

(
2k∑
i=1

H≤2(σi)

)
µ⊗2k

0 (dσ).
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This gives (6.133).
Proof of 3. Note that

e−Nkξ≥3(1)E≥3Z2k

(
A2k(N−1/2+c)

)
=

=

∫
A2k(N−1/2+c)

exp

 2k∑
i=1

H≤2(σi) +N
∑

i6=j∈[2k]

ξ≥3(〈σi,σj〉N )

µ⊗2k
0 (dσ)

= (1 +O(N−1/2+3c)) · Z≤2,2k

(
A2k(N−1/2+c)

)
. (6.137)

Therefore, using Eq. (6.132), we get

E≥3Z2k

(
A2k(N−1/2+c)

)
= (1 +O(N−1/2+3c))eNkξ≥3(1)

(
Z≤2

)2k
. (6.138)

Also,

EZ≤2,2k

(
A2k(N−1/2+c)

)
≤ e2k‖u‖

√
N exp

(
kβ2

2N + (2k)2β2
2N

2c
)
. (6.139)

On the other hand, Lemma 6.7.3 readily implies that with probability at least 1− e−cN ,

(Z≤2)2k ≥ e−o(
√
N) exp(kβ2

2N). (6.140)

Combining Eqs. (6.139) and (6.139), we get

EZ≤2,2k

(
A2k(N−1/2+c)

)
≤ e2k(1+‖u‖)

√
N (Z≤2)2k . (6.141)

Finally, using Eq. (6.138) together with the last display, we get

E≥3Z2k

(
A2k(N−1/2+c)

)
≥ e−3k(‖u‖+1)

√
NEZ2k

(
A2k(N−1/2+c)

)
. (6.142)

Combining this with Eq. (6.133) yields the claim.

Lemma 6.7.11. For any m ≥ 2, there exists a constant c > 0 such that, for T = T (δ),

Zm
(
Am(T, δ)

)
≤ Z(T )m ≤ (1 + e−cN ) · Zm

(
Am(δ)

)
+ e−cN+Nmξ(1)/2 . (6.143)

Proof. The left hand inequality is obvious since Am(T, δ) ⊆ T⊗m. For the right inequality consider first the
case m = 2. Then we have

Z(T )2 ≤ Z2

(
A2(T, δ)

)
+

∫
T×T

1|〈σ1,σ2〉N |≥δe
H(σ1)+H(σ2)µ⊗2

0 (dσ) (6.144)

≤ Z2

(
A2(T, δ)

)
+

∫
T

eH(σ1)

[∫
T

1|〈σ1,σ2〉N |≥δe
H(σ2)µ0(dσ2)

]
µ0(dσ1) (6.145)

≤ Z2

(
A2(T, δ)

)
+

∫
T

eH(σ1)e−δN+Nξ(1)/2µ0(dσ1) (6.146)

≤ Z2

(
A2(T, δ)

)
+ e−Nδ+Nξ(1)/2Z(T ) (6.147)

≤ Z2

(
A2(T, δ)

)
+ e−Nδ+Nξ(1) + e−NδZ(T )2 . (6.148)

where in the last step we used the AM-GM inequality. Solving this inequality for Z(T )2, we get:

Z(T )2 ≤ (1 + e−cN )Z2

(
A2(T, δ)

)
+ 2e−δN+Nξ(1) . (6.149)

which proves the claim for m = 2.
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Consider now m ≥ 2. Note that∫
T (δ)m

e
∑m
i=1H(σi)µ⊗m0 (dσ)−

∫
Am(T (δ),δ)

e
∑m
i=1H(σi)µ⊗2m

0 (dσ)

≤
∑
i6=j

(∫
T (δ)

eH(σ)µ0(dσ)

)m−2 ∫
σi,σj∈T (δ):|〈σi,σj〉N |>δ

eH(σi)+H(σj)µ0(dσi)µ0(dσj)

whence

Z(T )m − Zm
(
Am(T, δ)

)
≤ m2Z2(T⊗2 \A2(T, δ)) · Z(T )m−2

≤ m2 · Z(T )m−1 · e−Nδ+Nξ(1)/2 ,

where in the last inequality we used Eq. (6.147). Using again the AM-GM inequality, we get

Z(T )m − Zm
(
Am(T, δ)

)
≤ m2e−NδZ(T )m +m2e−Nδ+Nmξ(1)/2 ,

which yields the claim.

Proof of Lemma 6.7.8

We next prove Lemma 6.7.8. In the proof, we let c denote small absolute constants that can change from line
to line. We will first prove the partition function estimate, Eq. (6.127) and then the magnetization estimate,
Eq. (6.129).
Estimating the partition function, Eq. (6.127). By Eq. (6.133) in Lemma 6.7.10, with probability

1− e−cN over W (2),

∫
maxi6=j |〈σi,σj〉N |∈[N−1/2+c,δ]

exp

 2k∑
i=1

H≤2(σi) +N
∑

i<j≤2k

ξ≥3(〈σi,σj〉N )

µ⊗2k
0 (dσ)

≤ exp(−N c)

∫
S2k
N

exp

(
2k∑
i=1

H≤2(σi)

)
µ⊗2k

0 (dσ). (6.150)

On A2k(N−1/2+c)) = {|〈σi,σj〉N | ≤ N−1/2+c} ∀i 6= j}, we can expand

exp

N∑
i<j

ξ≥3(〈σi,σj〉N )

 =

L−1∑
`=0

1

`!

(
N
∑
i<j

ξ≥3(〈σi,σj〉N )
)`

+O(N−L/2+3cL).

Thus, for T = T (δ), the following holds with probability at least 1− e−cN over W 2,

E≥3

{(
Z(T )− E≥3Z(T )

)2k}
(6.151)

(a)

≤
∑
r≤2k

(
2k

2k − r

)
(−1)r

(
E≥3Z(T )

)2k−r · E≥3Z
(
Ar(T, δ)

)
+ e−Nc

∑
r≤2k

(
2k

2k − r

)(
E≥3Z(T )

)2k−r · (E≥3Z
(
Ar(T, δ)

)
+ eNrξ(1)/2

)
(b)

≤
∑
r≤2k

(
2k

2k − r

)
(−1)r

(
E≥3Z(T )

)2k−r · E≥3Z
(
Ar(T, δ)

)
(6.152)

+ e−Nc max
r≤2k

eN(2k−r)ξ(1)/2 ·
(
E≥3Z

(
Ar(T, δ)

)
+ eNrξ(1)/2

)
, (6.153)

where (a) follows from Lemma 6.7.10, (b) holds because E≥3Z(T ) ≤ ec
′NEZ with the claimed probability

by Markov inequality.
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We define the error terms

Err1 := e−cN+Nkξ(1) + e−cN max
1≤r≤2k

(
E≥3Z(Ar(T, δ))

)2k/r

+ E≥3Z(A2k(δ) ∩ {σ1 ∈ T c}
)
, (6.154)

Err2 := N−L/2eNkξ≥3(1)Z≤2,2k(A2k(δ)) , (6.155)

so that the bound (6.153) implies

E≥3

{(
Z(T )− E≥3Z(T )

)2k} ≤ ∑
r≤2k

(
2k

2k − r

)
(−1)r

(
E≥3Z(T )

)2k−r · E≥3Z
(
Ar(T, δ)

)
+Ok(Err1) . (6.156)

Next note that(
E≥3Z(T )

)2k−r · E≥3Z
(
Ar(T, δ)

)
= eNkξ≥3(1)

(∫
T (δ)

eH≤2(σ)µ0(dσ)

)2k−r

·

·
∫
Ar(δ)

e
∑r
i=1H≤2(σi) exp

N∑
i<j

ξ≥3(〈σi,σj〉N )

µ⊗r0 (dσ) +Ok(Err1)

= eNkξ≥3(1)

∫
A2k(δ)

exp

(
2k−r∑
i′=1

H≤2((σ′)i
′
) +

r∑
i=1

H≤2(σi)

)
·

·


L−1∑
`=0

1

`!

N ∑
i<j≤r

ξ≥3(〈σi,σj〉N )

`
µ⊗r0 (dσ)µ

⊗(2k−r)
0 (dσ′) +Ok(Err1 + Err2),

where the last inequality holds with probability 1− e−cN over W (2) by Eq. (6.133).
Substituting in Eq. (6.156), we get

E≥3

{(
Z(T )− E≥3Z(T )

)2k}
≤ eNkξ≥3(1)

∫
A2k(δ)

e
∑2k
i=1H≤2(σi)

∑
`≤L

1

`!

∑
r≤2k

(−1)r
∑

S⊆[2k]:|S|=r

(
N
∑
i<j∈S

ξ≥3(〈σi,σj〉N )
)`
µ⊗2k

0 (dσ)

+Ok(Err1 + Err2), (6.157)

We can expand the `-th power in (6.157), thus getting a sum indexed by sets of pairs S = {(it, jt) : t ≤
`} ⊆

(
[2k]
2

)
. Denoting by n(S) the number of distinct elements of [2k] appearing in S, the coefficient of such

therm is its coefficient is, for n(S) < 2k,∑
`≤r≤2k

(−1)r
(

2k − n(S)

r − n(S)

)
= 0

for |{it, jt : t ≤ `}| < 2k. Hence, taking L < k, we have

E≥3

{(
Z(T )− E≥3Z(T )

)2k}
= Ok(Err1 + Err2) . (6.158)

We now estimate the error terms.
Error term Err2. Using Lemma 6.7.7, we have(

E≥3Z(T )
)2k

=
(
E≥3Z − E≥3Z(T c)

)2k

≥ (1− e−cN/8)
(
E≥3Z

)2k
≥ c eNkξ≥3(1)

(
Z≤2

)2k
≥ c eNkξ≥3(1)Z≤2

(
A2k(δ)

)
.
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From this estimate, we obtain with probability at least 1− exp(−cN/8) over W (2) that

Err2 ≤ C ·N−L/2 ·
(
E≥3Z(T )

)2k
. (6.159)

Error term Err1. Using Lemma 6.7.9 by Markov inequality, with probability 1− exp(−cN/2) over W (2),

E≥3Z
(
A2k(δ) ∩ {σ1 ∈ T c}

)
≤ e−cN/2EZ(A2k(δ)). (6.160)

Further using Eq. (6.134) in Lemma 6.7.10, and using the assumption on ‖u‖2, with probability 1 −
exp(−cN/4) over W (2),

E≥3Z
(
A2k(δ) ∩ {σ1 ∈ T c}

)
≤ e−cN/2E≥3Z(A2k(δ)).

Hence, with probability at least 1− exp(−cN/8) over W (2),

Err1 ≤ e−cN+Nkξ(1) + e−cN max
1≤r≤2k

(
E≥3Z(Ar(δ))

)2k/r

(6.161)

Further, with probability at least 1− exp(−cN/8) over W (2),

E≥3Z
(
Ar(δ)

)
= E≥3Z

(
Ar(N

−1/2+c)
)

+ E≥3Z
(
Ar(δ) \Ar(N−1/2+c)

)
≤ 2 eNrξ≥3(1)/2Z≤2

(
Ar(N

−1/2+c)
)

+ e−N
c+Nrξ≥3(1)/2(Z≤2)r , (6.162)

where in the last line we used Eq. (6.133), and the fact that

E≥3Z
(
Ar(N

−1/2+c)
)

=

∫
Ar(N−1/2+c)

e
∑r
i=1H≤2(σi) exp

N
2

∑
i,j≤r

ξ≥3(〈σi,σj〉N )

µ⊗r0 (dσ)

≤
(
1 +O(N−1/2+3c)

)
eNkξ≥3(1)Z≤2

(
Ar(N

−1/2+c)
)
.

Using Eq. (6.106) in Eq. (6.162), we get

E≥3Z
(
Ar(δ)

)
≤ NCeNrξ(1)/2 , (6.163)

whence Eq. (6.161) simplifies to

Err1 ≤ e−cN+Nrξ(1) . (6.164)

On the other hand, by Lemma 6.7.7 and Markov inequality, with probability 1− exp(−cN/4) over W (2),

E≥3

∫
T (δ)c

eH(σ)µ0(dσ) ≤ e−cN/4eNξ(1)/2.

Using Lemma 6.7.3, we obtain that, with probability at least 1− exp(−cN/8) over W (2),

E≥3Z =

∫
eNξ≥3(1)/2eH≤2(σ)µ0(dσ)

≥ eNξ(1)/2−cN/10 ,

whence Eq. (6.164) yields

Err1 ≤ e−cN/16
(
E≥3Z(T )

)2k
. (6.165)

We also note here the estimate

E≥3Z(T ) = E≥3Z − E≥3Z(T c) ≥ (1− e−cN/10)E≥3Z, (6.166)
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which holds with probability at least 1− exp(−cN/8) over W (2), as claimed in Eq. (6.128).
Combining the error estimates (6.165), (6.159) in the moment bound (6.158), we get, with probability at

least 1− exp(−Nc) with respect to W 2,

E≥3

{(
Z(T )− E≥3Z(T )

)2k} ≤ C N−L/2 (E≥3Z(T )
)2k

. (6.167)

Adjusting c, we have

P (|Z − E≥3Z(T (δ))| > εE≥3Z(T (δ))) ≤ ε−2LN−L/2 + e−cN .

Estimating the magnetization, Eq. (6.129). We next apply the same argument to the magnetization.
First, we note that

E≥3


(∫

T (δ)

σ1e
H(σ)µ0(dσ)

)2k
 = E≥3

∫
T (δ)2k

2k∏
i=1

σi1 e
∑2k
i=1H(σi) µ⊗2k

0 (dσ) (6.168)

= E≥3

∫
A2k(δ)

2k∏
i=1

σi1 e
∑2k
i=1H(σi)µ⊗2k(dσ) + Err3 , (6.169)

where

Err3 := E≥3

∫
T (δ)2k

2k∏
i=1

σi1 e
∑2k
i=1H(σi)µ⊗2k(dσ)− E≥3

∫
A2k(δ)

2k∏
i=1

σi1 e
∑2k
i=1H(σi)µ⊗2k(dσ). (6.170)

We have ∣∣∣∣∣
∫
T (δ)2k

2k∏
i=1

σi1e
∑2k
i=1H(σi)µ⊗2k

0 (dσ)−
∫
A2k(T (δ),δ)

2k∏
i=1

σi1e
∑2k
i=1H(σi)µ⊗2k

0 (dσ)

∣∣∣∣∣
=

∣∣∣∣∣
∫
T (δ)2k:maxi6=j |〈σi,σj〉N |>δ

2k∏
i=1

σi1e
∑2k
i=1H(σi)µ⊗2k

0 (dσ)

∣∣∣∣∣
(a)

≤ Nk(2k)2e−cN+Nξ(1)/2Z
(
T (δ)

)2k−1

(b)

≤ e−cN/(2k)+Nkξ(1) + e−cN/(2k)Z
(
T (δ)

)2k
(c)

≤ e−cN/(2k)+Nkξ(1) + e−cN/(2k)
(
E≥3Z

(
T (δ)

))2k
, (6.171)

where in (a) we used Lemma 6.7.7, in (b) the AM-GM inequality, and (c) holds with probability at least
1− exp(−cN) by Eq. (6.126).

Using Eq. (6.171) and Lemma 6.7.3 we obtain that, with probability at least 1− e−cN over W (2),

|Err3| ≤ e−cN
(
E≥3Z

(
T (δ)

))2k
. (6.172)

Turning to the main term in Eq. (6.169),

E≥3

∫
A2k(δ)

2k∏
i=1

σi1 e
∑2k
i=1H(σi)µ⊗2k(dσ)

= eNkξ≥3(1)

∫
A2k(δ)

2k∏
i=1

σi1 exp


2k∑
i=1

H≤2(σi) +
N

2

∑
i 6=j

ξ≥3(〈σi,σj〉N )

µ⊗2k
0 (dσ)
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By Eqs. (6.132) and (6.133) in Lemma 6.7.10, we can bound

E≥3

∫
A2k(δ)

2k∏
i=1

σi1 e
∑2k
i=1H(σi)µ⊗2k(dσ)

= eNkξ≥3(1)

∫
A2k(N−1/2+c)

2k∏
i=1

σi1 exp


2k∑
i=1

H≤2(σi) +
N

2

∑
i 6=j

ξ≥3(〈σi,σj〉N )

µ⊗2k
0 (dσ)

+O
(
Nke−N

c+Nkξ≥3(1)Z≤2,2k

(
A2k(δ)

))
.

To bound the first term, using Lemma 6.7.5,∫
A2k(δ)

2k∏
i=1

σi1 exp

{
2k∑
i=1

H≤2(σi)

}
µ⊗2k

0 (dσ)

=

∫
S2k
N

2k∏
i=1

σi1 exp

{
2k∑
i=1

H≤2(σi)

}
µ⊗2k

0 (dσ) +Ok

(
Nke−cδ

2N
(
Z≤2

)2k)
=

(∫
SN

σ1 exp {H≤2(σ)}µ0(dσ)

)2k

+Ok

(
Nke−cδ

2N
(
Z≤2)2k

)
.

By Lemma 6.7.3, we then obtain∫
A2k(δ)

2k∏
i=1

σi1 exp

{
2k∑
i=1

H≤2(σi)

}
µ⊗2k

0 (dσ) ≤ Ck
(
|u1|2k +Nke−cδ

2N
)

(Z≤2)
2k
. (6.173)

On the other hand, by taking the Taylor expansion of exp
{
N
2

∑
i6=j ξ≥3(〈σi,σj〉N )

}
up to terms of order

L = Ck for C > 2, we obtain that, for ξ≥3,≤`(s) =
∑

3≤p≤` β
2
ps
p,

1

(Z≤2)2k

∫
A2k(N−1/2+c)

2k∏
i=1

σi1

exp

N∑
i<j

ξ≥3(〈σi,σj〉N )

− 1

 e
∑2k
i=1H≤2(σi)µ⊗2k

0 (dσ)

= O(N−k) +
1

(Z≤2)2k

∑
`≤L

N `

`!

∫
A2k(N−1/2+c)

2k∏
i=1

σi1

∑
i<j

ξ≥3(〈σi,σj〉N )

`

e
∑2k
i=1H≤2(σi)µ⊗2k

0 (dσ)

= O(N−k) +
1

(Z≤2)2k

∑
`≤L

N `

`!

∫
A2k(N−1/2+c)

2k∏
i=1

σi1

∑
i<j

ξ≥3,≤4k(〈σi,σj〉N )

`

e
∑2k
i=1H≤2(σi)µ⊗2k

0 (dσ)

(a)
= O(N−k + e−N

c

) +
1

(Z≤2)2k

∑
`≤L

N `

`!

∫
S2k
N

2k∏
i=1

σi1

∑
i<j

ξ≥3,≤2k(〈σi,σj〉N )

`

e
∑2k
i=1H≤2(σi)µ⊗2k

0 (dσ)

(b)
= O(N−k + e−N

c

) + (1 + ‖u‖)O(k2)Ok

∑
`≤k

|u1|2k−2`N−` +
∑

k<`≤L

N−`/2−k/2

 (6.174)

= (1 + ‖u‖)O(k2)O(N−k + e−N
c

+ |u1|2k) , (6.175)

where in (a) we used again Lemma 6.7.10 and in (b) Lemma 6.7.4.
We thus have from Eqs. (6.172), (6.173), (6.175),

E≥3

{(∫
T (δ)

σ1e
H(σ)µ0(dσ)

)2k
}

≤ Ck(1 + ‖u‖)Ck
2
(
|u1|2k +N−k +Nke−N

c

+ e−cN
) (

E≥3Z
(
T (δ)

))2k
.

The desired claim (6.129) follows from Markov Inequality upon adjusting the constant c.
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Magnetization in the band: proof of Lemma 6.7.2

In the remaining of this section, we denote by µ the Gibbs measure associated to H(σ), i.e.

µ(dσ) ∝ exp(H(σ))µ0(dσ).

In the following we estimate the components of 〈σ〉 = (〈σ1〉, . . . , 〈σN 〉) in the basis of eigenvectors of the

quadratic part of the Hamiltonian W (2). For simplicity of notation, we consider the component 〈σ1〉 but we

emphasize that this does not necessarily correspond to the largest (or smallest) eigenvalue of W (2). Defining
σ−1 = (σ2, . . . , σN ), we have∫

σ1e
H(σ)µ0(dσ) =

1

Z

∫
σ1e

σ1u1+Λ1σ
2
1 Ê(σ1)dσ1 . (6.176)

where we defined

Ê(σ1) = CN (1− σ2
1/N)(N−3)/2

∫
exp

(σ1

N

N∑
i,j=2

g̃1ijσiσj

)
eHσ1 (σ−1)µ

0,
√
N−σ2

1

(dσ−1) ,

µ0,ρ denotes the uniform measure over the sphere of radius ρ,

CN :=
Γ(N − 1)

Γ((N − 1)/2)22N−2
√
N

=
1√
2π

+O(N−1) ,

and

Hσ1(σ−1) :=

N∑
i=2

(σiui + Λiσ
2
i ) +N−1

∑
i,j,k>1

g
(3)
ijkσiσjσk +

∑
p≥4

Hp(σ).

Here g̃1ij is the sum of g over permutations of (1, i, j). In particular g̃1ij = g̃1ji

(g̃1ij)1<i<j ∼iid N (0, 3β2
3/2) , (g̃1ii)1<i ∼iid N (0, 3β2

3) . (6.177)

We set Ê(σ1) = 0 for |σ1| >
√
N .

By Lemma 6.7.3 and Lemma 6.7.8, with probability 1− e−cN −N−C ,

Z = (1 +O(N−c))

√
2

G′′(γ∗)
· exp

{
N
[
ξ≥3(1)− 1

2
log(2e) +G(γ∗)

]}
,

where G(γ) and γ∗ where defined in Eqs. (6.102) and (6.103).
In estimating 〈σ1〉, we first anneal over g≥4 and g3− := (gijk : 1 < i < j < k). We have

E(σ1) := Eg3−,g≥4
[Ê(σ1)] = CN

(
1− σ2

1

N

)(N−3)/2
∫

exp

σ1

N

N∑
i,j=2

g̃1ijσiσj


exp

{
H≤2(σ−1) +Nξ≥4(1)/2 +Nβ2

3(1− σ2
1/N)3/2

}
µ

0,
√
N−σ2

1

(dσ−1).

The next lemma show that this expectation is an accurate approximation of Ê(σ1).

Lemma 6.7.12. We have for an appropriate c ∈ (0, 1/8) that, with probability 1−N−c,∫
σ1e

u1σ1+Λ1σ
2
1 Ê(σ1) dσ1 =

=

∫
σ1e

u1σ1+Λ1σ
2
1E(σ1)dσ1 +O

(
N−1/2+c(|u1|+N−1/2)

∫
eu1σ1+Λ1σ

2
1E(σ1)dσ1

)
.

Before proving Lemma 6.7.12, we use it to prove Lemma 6.7.1.
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Proof of Lemma 6.7.1. For U(σ1) := Nξ≥4(1)/2 +Nβ2
3(1− σ2

1/N)3/2, we have

E(σ1) = CN

(
1− σ2

1

N

)(N−3)/2
∫

exp

σ1

N

N∑
i,j=2

g̃1ijσiσj

 eH≤2(σ−1)+U(σ1) µ
0,
√
N−σ2

1

(dσ−1) .

Again by Lemma 6.7.3, for V = V (σ1) := Λ−1 + ∆, where Λ−1 is the diagonal matrix with entries

corresponding to the spectrum of W (2), with Λ1 replaced by 0, and ∆ := σ1N
−1G̃ with G̃ij = g̃1ij ,

E(σ1) = (1 +O(N−1))
1

(2e)(N−1)/2
√

2π
(1− σ2

1/N)−1

√
2

G′′σ1
(γ∗(σ1))

exp
(
U(σ1) +NGσ1(γ∗(σ1))

)
, (6.178)

where we defined

Gσ1
(γ) := (1− σ2

1/N)γ − 1

2N
log det(γIN−1 − V ) +

1

4N
〈u, (γIN−1 − V )−1u〉 , (6.179)

γ∗(σ1) = arg maxGσ1(γ) . (6.180)

By Lemma 6.7.12, we have∫
σ1 µ(dσ) =

∫
σ1e

u1σ1+Λ1σ
2
1E(σ1)dσ1∫

eu1σ1+Λ1σ2
1E(σ1)dσ1

+O
(
N−1/2+c(|u1|+N−1/2)

)
. (6.181)

We next estimate these integrals by approximating their argument for small σ1. Note that by Lemma 6.7.5
and Lemma 6.7.7, we can restrict these integrals to |σ1| ≤ C logN making a negligible error.

It is easy to see that, for σ1 = 0, we recover Gσ1
(γ) = G0(γ), where G0(γ) is the same function defined

in Eq. (6.102), with N replaced by N − 1. To leading order, we can expand

Gσ1(γ) =

= (1− σ2
1/N)γ − 1

2N
log det(γI − V ) +

1

4N
〈u, (γI − V )−1u〉

= (1− σ2
1/N)γ − 1

2N
log det(γI − V ) +

1

4N
〈u, (I + (γI −Λ−1)−1∆ +EN )(γI −Λ−1)−1u〉.

where ‖EN‖op = O(N−1) with probability 1− exp(−cN) over W (3).Therefore

Gσ1
(γ)−G0(γ) =− γσ2

1

N
+

1

2N
log(γ − Λ1)− 1

2N
log det

(
I − (γI −Λ−1)−1/2∆(γI −Λ−1)−1/2

)
+

1

4N
〈u, (γI −Λ−1)−1∆(γI −Λ−1)−1u〉+O(‖u‖2/N2) . (6.182)

on γ > maxi Λi + ε. Since the above difference (and its derivative with respect to λ) is of order σ1/
√
N

and G is strongly convex in a neighborhood of γ∗, it follows that γ∗(σ1) = γ∗ +O(σ2
1/N). We will therefore

restrict ourselves to |γ − γ∗| ≤ CN−1(logN)2.
We next expand the log-determinant term in the difference. Defining

D2 :=

N∑
i,j=1

(
N−1(γI −Λ−1)−1/2G̃(γI −Λ−1)−1/2

)2
ij
, (6.183)

we have

Tr
(

(γI −Λ−1)−1/2∆(γI −Λ−1)−1/2) =
σ1

N

∑
i 6=1

(γ − Λi)
−1g̃1ii +O(N−1), (6.184)

Tr
((
γI −Λ−1)−1/2∆(γI −Λ−1)−1/2

)2)
= D2σ

2
1 , (6.185)

Tr
((

(γI −Λ−1)−1/2∆(γI −Λ−1)−1/2
)k)

= O(N−1) for k ≥ 3. (6.186)
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Thus, with high probability,

1

2N
log det

(
I − (γI −Λ−1)−1/2∆(γI −Λ−1)−1/2

)
= − σ1

2N2

∑
i 6=1

(γ − Λi)
−1g̃1ii −

D2

4N
σ2

1 +O(N−2) .

For γ = γ∗(σ1) = γ∗ +O(σ2
1/N), we can compute

ED2 =
3β2

3

2N2

(∑
i 6=1

(γ∗ − Λi)
−1
)2

+O(N−1)

and

Var(D2) =
β4

3

N4
O
(

(
∑
i 6=1

(
γ∗ − Λi)

−2
)2)

= O(N−2).

Furthermore, recalling the stationarity condition G′(γ∗) = 0, which yields

1

2N

N∑
i=1

1

γ∗ − Λi
= 1 +

1

4N

N∑
i=1

u2
i

(γ∗ − Λi)2

which yields (for ‖u‖ ≤ N c0)
∑
i≥1(γ∗ − Λi)

−1 = 2N +O(N2c0), and therefore

ED2 = 6β2
3 +O(N−1) . (6.187)

Substituting the above estimates in Eq. (6.182) the following holds with probability at least 1−exp(−N c),
for |σ1| ≤ C logN ,

min
γ
Gσ1(γ)−G0(γ∗) = −γ∗σ

2
1

N
+

1

2N
log(γ∗ − Λ1) +

σ1

2N2

N∑
i=1

(γ∗ − Λi)
−1g̃1ii +

D2

4N
σ2

1 +O(N−2+3c0).

Letting aN := C logN , and using Eq. (6.178),∫
σ1e

σ1u1+Λ1σ
2
1E(σ1)dσ1

=
1

(2e)(N−1)/2
√

2π

√
2

G′′(γ∗)

∫
[−aN ,aN ]

(1− σ2
1/N)−1σ1

exp

{
NG0(γ∗) +

1

2
log(γ∗ − Λ1) + U(σ1) + σ1

(
u1 +

1

2N

∑
i

(γ − Λi)
−1g̃1ii

)

−
(
−Λ1 −

1

4
D2 + γ∗

)
σ2

1 +O(N−1+3c0)

}
dσ1 + δN

(a)
= (2e)−(N−1)/2

√
1

πG′′(γ∗)

∫
[−aN ,aN ]

σ1 exp

{
NG0(γ∗) +

1

2
log(γ∗ − Λ1)

+ U(σ1) + σ1

(
u1 +

1

2N

∑
i

(γ − Λi)
−1g̃1ii

)
−
(
−Λ1 −

3

2
β2

3 + γ∗

)
σ2

1 +O(N−1+3c0)

}
dσ1 + δN

= (1 +O(N−1))(2e)−(N−1)/2

√
1

πG′′(γ∗)

∫
[−aN ,aN ]

σ1 exp

{
NG0(γ∗) +

1

2
log(γ∗ − Λ1)

+
N

2
(ξ≥4(1) + β2

3)/2 + σ1

(
u1 +

1

2N

∑
i

(γ − Λi)
−1g̃1ii

)
− (−Λ1 + γ∗)σ

2
1 +O(N−1+3c0)

}
dσ1 + δN ,

where in (a) we used Eq. (6.187), and

|δN | ≤ N−1

∫
eσ1u1+Λ1σ

2
1E(σ1)dσ1 . (6.188)
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Therefore, we obtain∫
σ1 exp(σ1u1 + Λ1σ

2
1)E(σ1)dσ1∫

exp(σ1u1 + Λ1σ2
1)E(σ1)dσ1

=
u1 +N−1

∑
i(γ∗ − Λi)

−1g̃1ii

2(γ∗ − Λ1)
+O(N−1). (6.189)

which completes the proof using Eq. (6.181).

Finally, we prove Lemma 6.7.12. The main idea is that the error in annealing can be controlled by
accurate estimates of certain quantities involving overlap over the quadratic model on σ−1, which follows
from Laplace transform and expansion of the dependence on σ1.

Proof of Lemma 6.7.12. Define

W (σ1,σ2) :=
1

N
E
{(
H3(σ1

−1) +H≥4(σ1)
)(
H3(σ2

−1) +H≥4(σ2)
)}

= β2
3〈σ1

−1,σ
2
−1〉3N + ξ≥4

(
〈σ1
−1,σ

2
−1〉N + σ1

1σ
2
1/N

)
,

where, with an abuse of notation, H3(σa−1) := N−1
∑N
i,j,k=2 σ

a
i σ

a
j σ

a
k (and a similar notation will be used for

H≤2(σa−1) below). Note that W (σ1,σ1) = ξ≥4(1) + β2
3(1− (σ1

1)2/N)3. For a Borel set U ⊆ S2
N , define

Q(U) :=

∫
U

σ1
1σ

2
1 e

u1(σ1
1+σ2

1)+Λ1((σ1
1)2+(σ2

1)2)·

· exp

N−1
(
σ1

1

N∑
i,j=2

g̃1ijσ
1
i σ

1
j + σ2

1

N∑
i,j=2

g̃1ijσ
2
i σ

2
j

)
+H≤2(σ1

−1) +H≤2(σ2
−1)


eN [W (σ1,σ1)+W (σ2,σ2)]/2

{
exp[NW (σ1,σ2)]− 1

}
µ⊗2

0 (dσ) .

Expanding the square and taking expectation, we obtain

Eg≥4,g3−

{∫
T (δ)

σ1

(
eH(σ) − Eg≥4,g3−e

H(σ)
)
µ0(dσ)

}2
 = Q

(
T (δ)× T (δ)

)
.

Further, writing T = T (δ), and A2 = A2(N−1/2+c), we obtain that, with probability at least 1− exp(−N c),∣∣Q(A2)−Q(T × T )
∣∣ = N ·Q

(
A2 \ T × T

)
+N ·Q

(
T × T \A2

)
(a)

≤ N · Z≤2,2

(
A2 \ T × T

)
eNξ≥3(1) +N · Z≤2,2

(
T × T \A2

)
eNξ≥3(1)

(b)

≤ e−cN (Z≤2)2eNξ≥3(1) + e−N
c

(Z≤2)2eNξ≥3(1)

where in (a) we used the fact that |σ1
1σ

2
1 | ≤ N , and in (b) the first term was bounded by using Z≤2,2((T ×

T )c) ≤ 2Z≤2(T c)Z≤2 and applying Lemma 6.7.7, see Eq. (6.124), and the second by Z≤2,2(T × T \ A2) ≤
Z≤2,2(Ac2) and using Lemma 6.7.10, Eq. (6.132). Hence we conclude that

Eg≥4,g3−

{∫
T (δ)

σ1

(
eH(σ) − Eg≥4,g3−e

H(σ)
)
µ0(dσ)

}2
 (6.190)

= Q(A2(N−1/2+c)) +O
(
e−N

c+Nξ≥1(1)(Z≤2)2
)
. (6.191)

By Taylor expansion, always using the shorthand A2 = A2(N−1/2+c),

Q(A2) =

∫
A2

σ1
1σ

2
1 exp

{ 2∑
i=1

((
u1σ

i
1 + Λ1(σi1)2

)
+H≤2(σi−1) +NW (σi,σi)

)}
exp

{σ1
1

N

N∑
i,j=2

g̃1ijσ
1
i σ

1
j +

σ2
1

N

N∑
i,j=2

g̃1ijσ
2
i σ

2
j

}
·
{ L∑
`=1

1

`!
(NW (σ1,σ2))` +O(N−L/2+c)

}
µ⊗2

0 (dσ) .
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We estimate each term

T`(a, b) :=

∫
A2

σ1
1σ

2
1 exp

{ 2∑
i=1

((
u1σ

i
1 + Λ1(σi1)2

)
+H≤2(σi−1) +NW (σi,σi)

)}
(6.192)

exp
{σ1

1

N

∑
1<i<j

g̃1ijσ
1
i σ

1
j +

σ2
1

N

N∑
i,j=2

g̃1ijσ
2
i σ

2
j

}
·N `〈σ1

−1,σ
2
−1〉aN (σ1

1σ
2
1/N)b µ⊗2

0 (dσ) .

We can restrict ourselves to terms with a ≥ 3` and b = 0, or a + b ≥ 3` + 1, since these are the terms that
can arise in Q(A2). Let

T̂`(a, b) :=

∫
S2
N

σ1
1σ

2
1 exp

{ 2∑
i=1

((
u1σ

i
1 + Λ1(σi1)2

)
+H≤2(σi−1) +NW (σi,σi)

)}
exp

{σ1
1

N

N∑
i,j=2

g̃1ijσ
1
i σ

1
j +

σ2
1

N

N∑
i,j=2

g̃1ijσ
2
i σ

2
j

}
·N `〈σ1

−1,σ
2
−1〉aN (σ1

1σ
2
1/N)b µ⊗2

0 (dσ) .

By Lemma 6.7.10, Eq. (6.132), we have

|T`(a, b)− T̂`(a, b)| ≤ e−N
c

.

Applying Lemma 6.7.6, we have, for appropriate Ci,j = O(‖u‖2a +Nba/2c),

|T̂`(a, b)| ≤ N `−b−a
∫
S2
N

(σ1
1σ

2
1)b+1 exp

{ 2∑
i=1

((
u1σ

i
1 + Λ1(σi1)2

)
+H≤2(σi−1) +NW (σi,σi)

)}
C0,0 +

L∑
i,j=0,(i,j) 6=(0,0)

Ci,jN
−(i+j)/2(σ1

1)i(σ2
1)j +OL(N−L/2)

 µ⊗2
0 (dσ).

Note that when b+ 1 + i or b+ 1 + j is odd,∫
S2
N

(σ1
1σ

2
1)b+1 exp

{∑2
i=1

((
u1σ

i
1 + Λ1(σi1)2

)
+H≤2(σi−1) +W (σi,σi)

)}
Ci,j(σ

1
1)i(σ2

1)j µ⊗2
0 (dσ)∫

S2
N

exp
{∑2

i=1

((
u1σi1 + Λ1(σi1)2

)
+H≤2(σi−1) +W (σi,σi)

)}
µ⊗2

0 (dσ)

= Ob+i+j

(
|u1|(1 + |u1|)2(b+1)+i+j(‖u‖2a +Nba/2c)

)
.

When both of them are odd,∫
S2
N

(σ1
1σ

2
1)b+1 exp

{∑2
i=1

((
u1σ

i
1 + Λ1(σi1)2

)
+H≤2(σi−1) +W (σi,σi)

)}
Ci,j(σ

1
1)i(σ2

1)j µ⊗2
0 (dσ)∫

S2
N

exp
{∑2

i=1

((
u1σi1 + Λ1(σi1)2

)
+H≤2(σi−1) +W (σi,σi)

)}
µ⊗2

0 (dσ)

= Ob+i+j

(
|u1|2(1 + |u1|)2(b+1)+i+j(‖u‖2a +Nba/2c)

)
.

Otherwise, when b+ 1 + i and b+ 1 + j are both even,∣∣∣∫S2
N

(σ1
1σ

2
1)b+1 exp

{∑2
i=1

((
u1σ

i
1 + Λ1(σi1)2

)
+H≤2(σi−1) +W (σi,σi)

)}
Ci,j(σ

1
1)i(σ2

1)j µ⊗2
0 (dσ)

∣∣∣∫
S2
N

exp
{∑2

i=1

((
u1σi1 + Λ1(σi1)2

)
+H≤2(σi−1) +W (σi,σi)

)}
µ⊗2

0 (dσ)

≤ Ob+i+j
(

(1 + |u1|)2(b+1)+i+j(‖u‖2a +Nba/2c)
)
.
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Therefore, under the assumption ‖u‖ ≤ N c0 , for ` ≤ L,

|T̂`(a, b)|∫
S2
N

exp
{∑2

i=1

((
u1σi1 + Λ1(σi1)2

)
+H≤2(σi−1) +W (σi,σi)

)}
µ⊗2

0 (dσ)

≤ (Nba/2c + ‖u‖2a) ·
[
OL

|u1|2
∑
i,j≤L

N `−b−a−(i+j)/2

+
∑
i,j≤L

i,j=b+1 mod 2

OL

(
N `−b−a−(i+j)/2

)

+
∑
i,j≤L

i 6=j mod 2

OL

(
|u1|N `−b−a−(i+j)/2

)]

= OL(N−2 +N−3/2|u1|+N−1|u1|2) = OL(N−1|u1|2 +N−2),

where in the last step we used the fact that ` ≥ 1, and a ≥ 3` when b = 0, or a+ b ≥ 3`+ 1, otherwise.
Take L = 4, and combining the terms in Eq. (6.192), we obtain

Q(A2(N−1/2+c)) ≤ O
(

(N−2 +N−1|u1|)(Z≤2)2eNξ≥3(1)
)
,

and therefore, using Eq. (6.191)

Eg≥4,g3−

{∫
T (δ)

σ1

(
eH(σ) − Eg≥4,g3−e

H(σ)
)
µ0(dσ)

}2
 = O

(
(N−2 +N−1|u1|2)(Z≤2)2eNξ≥3(1)

)
.

Thus, with probability at least 1−N−c, we have∣∣∣∣∣
∫
T (δ)

σ1

(
eH(σ) − Eg≥4,g3−e

H(σ)
)
µ0(dσ)

∣∣∣∣∣ ≤ Z≤2N
c(N−1 +N−1/2|u1|).

This yields the desired claim upon using Lemma 6.7.7.

We note that (6.129) in Lemma 6.7.8 immediately gives the following high probability bound on the
magnetization.

Lemma 6.7.13. For any ε, C > 0, there exists c0 > 0 such that, for ‖u‖ ≤ N c0 , with probability at least
1−N−C , we have ∥∥∥∥∫ σµ(dσ)

∥∥∥∥2

≤ Nε , (6.193)

for N sufficiently large.

Proof. We work, as before, in the basis of eigenvectors of the quadratic part W 2 of the Hamiltonian. By
(6.129), with k = 4C/ε, with probability at least 1−N−2C ,∫

T

σie
H(σ)µ0(dσ) ≤ Nε/4‖u‖Ck(|ui|+ CN−1/2)E≥3

∫
eH(σ)µ0(dσ).

By (6.127) with L = 4C and the union bound over i ∈ [N ], we then have, with probability at least
1− ε−8CN−C , for all i ∈ [N ],

1

Z

∫
σie

H(σ)µ0(dσ) ≤ Nε/2‖u‖Ck(|ui|+ CN−1/2).

Assuming that c0 is chosen so that c0L < ε/4, we then obtain (6.193).

Lemma 6.7.2 now follows.
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Proof of Lemma 6.7.2. Let m̂ = m+ ∆(m). From Lemma 6.7.1 we have, with probability at least 1−N−c

‖〈σ〉 − m̂‖2 ≤ O
(
N−c +N−c‖u‖2

)
.

Therefore, using Lemma 6.7.13 and the trivial bound ‖〈σ〉‖ ≤
√
N , we can pick ε > 0 sufficiently small and

k sufficiently large such that, upon adjusting the constant c,

E[‖〈σ〉 − m̂‖α] = O(N−cα +N−cα‖u‖α) +N−C +O(Nεα ·N−c)
= O(N−c/2).

6.7.2 Integrating over bands

Using the results in the previous section, we will complete the proof of Proposition 6.4.6. We will assume
the setup of Proposition 6.4.6. We sample x ∼ µunif , y = tx+Bt, and H̃( · ) ∼ µnull (the Gaussian process

with covariance E H̃(σ1)H̃(σ2) = Nξ(〈σ1,σ2〉)) with x,B, H̃ independent. We define the tilted disorder

H(σ) = H̃(σ) + 〈y,σ〉+Nξ(〈x,σ〉N ), so that (x, H,y) ∼ P are distributed according to the planted model,
cf. Eq. (6.3.2). (For simplicity of notation, we drop the dependence on t in the notation of H,y in this
section compared to the notation in Section 6.4.) In this section, we will estimate the mean of the Gibbs
measure given by H.

Recall that

FTAP(m) = Nξ(〈x,m〉N ) + H̃(m) + 〈y,m〉+
N

2
θ(‖m‖2N ) +

N

2
log(1− ‖m‖2N ),

where θ(s) = ξ(1)− ξ(s)− (1− s)ξ′(s).
Let m ∈ RN and q = ‖m‖2N . The following lemma follows from standard calculations.

Lemma 6.7.14. The distribution of H̃(σ) given ∇FTAP(m) = 0 is a Gaussian process with

N−1E[H̃(σ) | ∇FTAP(m) = 0,y,x]

=
ξ′(〈m,σ〉N )〈z,σ〉N

ξ′(q)
− ξ′′(q)〈m, z〉N

ξ′(q)ζ(q)
ξ′(〈m,σ〉N )〈m,σ〉N , (6.194)

with ζ(q) = ξ′(q) + qξ′′(q) and z = −y − ξ′(〈x,m〉N )x+ (1− q)ξ′′(q)m+ m
1−q , and covariance

N−1Cov[H̃(σ1), H̃(σ2) | ∇FTAP(m) = 0,y,x]

= ξ(〈σ1,σ2〉N )− ξ′(〈m,σ1〉N )ξ′(〈m,σ2〉N )

ξ′(q)
〈σ1,σ2〉N

+
ξ′′(q)ξ′(〈m,σ1〉N )ξ′(〈m,σ2〉N )〈m,σ1〉N 〈m,σ2〉N

ξ′(q)ζ(q)
. (6.195)

Let σ⊥ = proj{x,m}⊥(σ) be the projection of σ on {x,m}⊥, and similarly define y⊥, z⊥. Define the
band

DN (a, b) :=
{
σ ∈ SN : 〈σ,m〉N = aq and 〈σ,x〉N = b

}
, (6.196)

and let r(a, b) = ‖σ − σ⊥‖2N for σ ∈ DN (a, b).
Throughout the rest of the section, we will condition on the event ∇FTAP(m) = 0, and on y − y⊥ and

x. Conditional on ∇FTAP(m) = 0,y − y⊥,x, we can write

N−1H(σ) = ξ(b) +
ξ′(aq)〈z,σ〉N

ξ′(q)
− ξ
′′(q)ξ′(aq)aq〈m, z〉N

ξ′(q)ζ(q)
+N−1Ĥ(σ⊥) + 〈y⊥,σ⊥〉N + 〈y−y⊥,σ−σ⊥〉N ,

where Ĥ is a centered Gaussian process with covariance

N−1Cov(Ĥ(σ⊥,1), Ĥ(σ⊥,2))

= ξ
(
r(a, b) + 〈σ⊥,1,σ⊥,2〉N

)
− ξ′(aq)2

ξ′(q)
〈σ⊥,1,σ⊥,2〉N −

ξ′(aq)2r(a, b)

ξ′(q)
+
ξ′(aq)2ξ′′(q)(aq)2

ζ(q)ξ′(q)
.
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Let σ̃ = σ⊥/‖σ⊥‖N . We can then write∫
DN (a,b)

eH(σ)µa,b0 (dσ)

= exp

(
N

[
ξ(b) +

ξ′(aq)〈z + y,σ〉N
ξ′(q)

− ξ′′(q)ξ′(aq)aq〈m, z〉N
ξ′(q)ζ(q)

+

(
1− ξ′(aq)

ξ′(q)

)
〈y − y⊥,σ − σ⊥〉N

])
∫
SN−2

exp

(
N

(
1− ξ′(aq)

ξ′(q)

)
(1− r(a, b))1/2〈y⊥, σ̃〉N + H̃(σ̃) +

N − 3

2
log(1− r(a, b))

)
µ0(dσ̃)

= exp

(
NΓN (y,m; a, b) +

N − 3

2
log(1− r(a, b))

)∫
SN−2

eN
1/2ga,b+H(σ̃)µ0(dσ̃), (6.197)

where µa,b0 is the measure induced on DN (a, b) by µ0, we defined ΓN via

ΓN (y,m; a, b) := ξ(b) +
ξ′(aq)〈z + y,σ〉N

ξ′(q)
− ξ′′(q)ξ′(aq)aq〈m, z〉N

ξ′(q)ζ(q)
+

(
1− ξ′(aq)

ξ′(q)

)
〈y − y⊥,σ − σ⊥〉N ,

(6.198)

and H is a Hamiltonian on σ̃ with mixture ξ̃(q) =
∑
k≥1 ξ̃k given by

ξ̃1 = (1− r(a, b))

(
ξ′(r(a, b))− ξ′(aq)2

ξ′(q)
+

(
1− ξ′(aq)

ξ′(q)

)2

t

)
=: γ̃2

1 , (6.199)

ξ̃2 =
1

2
ξ′′(r(a, b))(1− r(a, b))2 =: γ̃2

2 , (6.200)

ξ̃p =
1

p!
ξ(p)(r(a, b))(1− r(a, b))p, p ≥ 3 . (6.201)

Finally, ga,b is a Gaussian independent of H with standard deviation γ̃0 given by

γ̃2
0 := ξ(r(a, b))− ξ′(aq)2r(a, b)

ξ′(q)
+
ξ′(aq)2ξ′′(q)(aq)2

ζ(q)ξ′(q)
. (6.202)

Note that

ξ̃≥2(s) =
∑
p≥2

1

p!
ξ(p)(r(a, b))(1− r(a, b))psp

= ξ(r(a, b) + (1− r(a, b))s)− ξ(r(a, b))− ξ′(r(a, b))(1− r(a, b))s

and therefore

ξ̃′′≥2(s) = (1− r(a, b))2ξ′′(r(a, b) + (1− r(a, b))s)
(6.5)
<

(1− r(a, b))2

(1− (r(a, b) + (1− r(a, b))s))2
=

1

(1− s)2
. (6.203)

Integrating twice shows ξ̃≥2 satisfies condition (6.101), and thus the results in Subsection 6.7.1 apply to ξ̃≥2.
Similarly, note that

ξ̃≥3(1) = ξ(1)− ξ(r(a, b))− ξ′(r(a, b))(1− r(a, b))− 1

2
ξ′′(r(a, b))(1− r(a, b))2. (6.204)

Following Subsection 6.7.1, we write the quadratic component of H as 〈A(2), σ̃⊗2〉 for A(2) = A(2)(a, b) a
GOE matrix scaled by γ̃2/

√
2. Recall the definition of G(γ) = G(γ;A,u) in Eq. (6.102). We take u to

be the external field u = γ̃1g, and A = A(2). Note that u and A(2) depend on the parameters a, b. Let
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γa,b = arg minz>z∗ G(z;A(2),u), z∗ := λmax(A(2)). From Lemma 6.7.8 Eqs. (6.127) and (6.128) and Lemma
6.7.3, when

γ̃2
1 = (1− r(a, b))

(
ξ′(r(a, b))− ξ′(aq)2

ξ′(q)
+

(
1− ξ′(aq)

ξ′(q)

)2

t

)
≤ N c0−1,

we have (with probability at least 1−N−c, conditional on ∇FTAP(m) = 0,y − y⊥,x) that∫
DN (a,b)

eH(σ)µa,b0 (dσ)

= (1 +O(N−c))(2e)−(N−2)/2

√
2

NG′′(γa,b;A
(2),u)

exp

(
N

[
N−1/2ga,b + ΓN (y,m; a, b) +

N − 3

2N
log(1− r(a, b)) + min

z>z∗
G(z;A(2),u)

+
1

2

(
ξ(1)− ξ(r(a, b))− ξ′(r(a, b))(1− r(a, b))− 1

2
ξ′′(r(a, b))(1− r(a, b))2

)])
, (6.205)

where we have simplified using Eq. (6.204). By independence of u, W̃ (2), and the fact that W̃ (2) is a GOE
matrix scaled by γ̃2/

√
2, the following holds with probability at least 1− exp(−N c) provided z > γ̃2

√
2 + δ

for some constant δ > 0
G(z;A(2),u) = Ga,b(z) +O(1/N), (6.206)

where

Ga,b(z) := z − 1

2

(
ψ(z
√

2/γ̃2) + log(γ̃2/
√

2)
)

+
1

4

(
γ̃2

1 + (1− r(a, b))
(

1− ξ′(aq)

ξ′(q)

)2

t

)
φ(z
√

2/γ̃2), (6.207)

and, for x > 2,

φ(x) =
1

2
(x−

√
x2 − 4), ψ(x) =

1

2
((x−

√
x2 − 4)/2)2 − log((x−

√
x2 − 4)/2).

Note that φ(x) =
∫

(x − u)−1µsc(du) and ψ(x) =
∫

log(x − u)µsc(du) where µsc is the semicircular law.
Moreover, ψ′(x) = φ(x).

Thus,∫
DN (a,b)

eH(σ)µa,b0 (dσ) =

√
2

NG′′(γa,b;A
(2),u)

exp

(
NE(a, b) +N1/2ga,b +O(1)

)
, (6.208)

where we define

E(a, b) := −N − 2

2N
ln(2e) +

N − 3

2N
log(1− r(a, b)) + min

z>γ̃2
√

2
Ga,b(z) + ΓN (y,m; a, b)

+
1

2

(
ξ(1)− ξ(r(a, b))− ξ′(r(a, b))(1− r(a, b))− 1

2
ξ′′(r(a, b))(1− r(a, b))2

)
. (6.209)

Let b∗ = 〈x,m〉N . Note that r(1, b∗) = q. Furthermore, we have

r(a, b) = a2q +
(b− a〈x,m〉N )2

1− 〈x,m〉2N/q
. (6.210)

We will next verify several properties of E(a, b), starting with the observation that (a, b) = (1, b∗) is a
stationary point of E.

Lemma 6.7.15. We have ∇E(a, b)|(a,b)=(1,b∗) = 0. (Here ∇ denotes gradient with respect to (a, b).)
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Proof. We first compute ∇minz Ga,b(z). Let z∗(a, b) = arg minz Ga,b(z) and z∗ = arg minz G1,b∗(z) so

∂zGa,b(z)|z∗(a,b) = 0⇔ 1− 1√
2γ̃2

φ(z
√

2/γ̃2) = 0. (6.211)

For α ∈ {a, b},
∂αz∗(a, b) = (∂2

zGa,b(z))
−1|(a,b,z∗(a,b))∂α∂zGa,b(z)|(a,b,z∗(a,b)). (6.212)

A quick calculation shows that z∗ = 1/2 + γ̃2
2 when (a, b) = (1, b∗), and for α ∈ {a, b},

∂α min
z
Ga,b(z)|(a,b) = ∂αGa,b(z∗(a, b))|(a,b).

Also note that

∇

(
γ̃2

1 + (1− r(a, b))
(

1− ξ′(aq)

ξ′(q)

)2

t

)∣∣∣∣∣
(1,b∗)

= 0;

(
γ̃2

1 + (1− r(a, b))
(

1− ξ′(aq)

ξ′(q)

)2

t

)∣∣∣∣∣
(1,b∗)

= 0.

(6.213)
From the definition of G and the stationary condition (6.211), we obtain that

∇min
z
Ga,b(z)|(1,b∗) =

1

2

(
−γ̃−1

2 +
√

2γ̃−2
2 z∗φ(z∗

√
2/γ̃2)

)
∇γ̃2 = γ̃2∇γ̃2 =

1

2
∇(γ̃2

2). (6.214)

Furthermore,

∇γ̃2
2 = −ξ′′(r(a, b))(1− r(a, b))∇r(a, b) +

1

2
ξ′′′(r(a, b))(1− r(a, b))2∇r(a, b).

We have

∇
(

1

2
log(1− r(a, b)) +

1

2
(ξ(1)− ξ(r(a, b))− ξ′(r(a, b))(1− r(a, b))− 1

2
ξ′′(r(a, b))(1− r(a, b))2)

)
=

−1

2(1− r(a, b))
∇r(a, b)− 1

4
ξ′′′(r(a, b))(1− r(a, b))2∇r(a, b), (6.215)

and furthermore ∂ar(a, b)|(1,b∗) = 2q, ∂br(a, b)|(1,b∗) = 0 and r(1, b∗) = q.
Recall

〈z + y,σ〉N = −ξ′(〈x,m〉N )b+ aq

(
(1− q)ξ′′(q) +

1

1− q

)
.

Moreover,

〈y − y⊥,σ − σ⊥〉N = a〈y,m〉N +
b− a〈x,m〉N
1− 〈x,m〉2N/q

(〈y,x〉N − 〈x,m〉N 〈y,m〉N/q) .

Hence,

ξ′(aq)〈y + z,σ〉N
ξ′(q)

− ξ′′(q)ξ′(aq)aq〈m, z〉N
ξ′(q)ζ(q)

+

(
1− ξ′(aq)

ξ′(q)

)
〈y − y⊥,σ − σ⊥〉N

=
ξ′(aq)(−ξ′(〈x,m〉N )b+ aq((1− q)ξ′′(q) + 1

1−q ))

ξ′(q)
− ξ′′(q)ξ′(aq)aq〈m, z〉N

ξ′(q)ζ(q)

+

(
1− ξ′(aq)

ξ′(q)

)(
a〈y,m〉N +

b− a〈x,m〉N
1− 〈x,m〉2N/q

(〈y,x〉N − 〈x,m〉N 〈y,m〉N/q)
)

=
ξ′(aq)(−ξ′(〈x,m〉N )b+ aq((1− q)ξ′′(q) + 1

1−q ))

ξ′(q)

+

(
1− ξ′(aq)

ξ′(q)

)
b− a〈x,m〉N
1− 〈x,m〉2N/q

(〈y,x〉N − 〈x,m〉N 〈y,m〉N/q)

+
ξ′′(q)ξ′(aq)aq

(
ξ′(〈x,m〉N )〈x,m〉N − qξ′′(q)(1− q)− q

1−q

)
ξ′(q)ζ(q)

+ 〈y,m〉N
(
ξ′′(q)ξ′(aq)aq

ξ′(q)ζ(q)
+ a

(
1− ξ′(aq)

ξ′(q)

))
.
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Note that

∂a

((
1− ξ′(aq)

ξ′(q)

)
b− a〈x,m〉N
1− 〈x,m〉2N/q

)∣∣∣∣
(1,b∗)

= ∂b

((
1− ξ′(aq)

ξ′(q)

)
b− a〈x,m〉N
1− 〈x,m〉2N/q

)∣∣∣∣
(1,b∗)

= 0,

and ∂a(ξ′(aq)aq)|(1,q) = qζ(q) so

∂a

(
ξ′′(q)ξ′(aq)aq

ξ′(q)ζ(q)
+ a

(
1− ξ′(aq)

ξ′(q)

))
|(1,b∗) = ∂b

(
ξ′′(q)ξ′(aq)aq

ξ′(q)ζ(q)
+ a

(
1− ξ′(aq)

ξ′(q)

))
|(1,b∗) = 0.

Thus, we can compute

∂a

(
ξ′(aq)〈y + z,σ〉N

ξ′(q)
− ξ′′(q)ξ′(aq)aq〈m, z〉N

ξ′(q)ζ(q)
+

(
1− ξ′(aq)

ξ′(q)

)
〈y − y⊥,σ − σ⊥〉N

)
|(1,b∗)

= q(1− q)ξ′′(q) +
q

1− q
. (6.216)

Similarly,

∂b

(
ξ′(aq)〈y + z,σ〉N

ξ′(q)
− ξ′′(q)ξ′(aq)aq〈m, z〉N

ξ′(q)ζ(q)
+

(
1− ξ′(aq)

ξ′(q)

)
〈y − y⊥,σ − σ⊥〉N

)
|(1,b∗)

= −ξ′(〈x,m〉N ). (6.217)

Combining (6.214), (6.215), (6.216), (6.217), we obtain the desired claim that∇E(a, b)|(a,b)=(1,b∗) = 0.

Lemma 6.7.16. We have

E

[∫
DN (a,b)

eH(σ)µa,b0 (dσ)
∣∣∣∇FTAP(m) = 0,x,y − y⊥, ga,b

]
= exp

{
NÊ(a, b)− log(2e) +

√
Nga,b

}
, (6.218)

where

Ê(a, b) :=
1

N
ln(2e) +

N − 3

2N
log(1− r(a, b)) +

(
1

2
γ̃2

2 +
1

2
γ̃2

1

)
+ ΓN (y,m; a, b)

+
1

2

(
ξ(1)− ξ(r(a, b))− ξ′(r(a, b))(1− r(a, b))− 1

2
ξ′′(r(a, b))(1− r(a, b))2

)
. (6.219)

Furthermore, E(a, b) is uniformly upper bounded by Ê(a, b), E(1, b∗) = Ê(1, b∗), and ∇E(1, b∗) = ∇Ê(1, b∗) =
0.

Proof. Eq (6.218) follows from a direct calculation. For the last claim, let γ̃2 = γ̃2(a, b) and γ̃1 = γ̃1(a, b).
Given a quadratic Hamiltonian H≤2(σ) = γ̃2〈σ,Aσ〉/

√
2 + γ̃1〈g,σ〉 where A is a GOE matrix and g ∼

N (0, IN ),

E
[∫

eH≤2(σ)µ0(dσ)

]
= eNγ̃

2
2/2+Nγ̃2

1/2.

On the other hand, by Lemma 6.7.3, we have, for γ̃1 sufficiently small, with probability at least 1− e−cN ,∫
eH≤2(σ)µ0(dσ) ≥ exp

{
(1− o(1))N

(
min

z>γ̃2
√

2
Ga,b(z)−

1

2
log(2e)

)}
.

Since this holds for all N , Markov inequality implies

min
z>γ̃2

√
2
Ga,b(z)−

1

2
log(2e) ≤ 1

2
γ̃2

2 +
1

2
γ̃2

1 .

The last claim follows immediately upon this observation.
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When 〈x,m〉N = q, 〈y,m〉N = t, 〈y,x〉N = t, ‖y‖2 = t + t2, under the constraint ξ′(q) + t = q
1−q , we

can simplify Ê(a, b) as

Ẽ(a, b) :=
1

N
ln(2e) +

N − 3

2N
log(1− r(a, b)) +

1

2
γ̃2

1 + ξ(b)− bξ′(aq) +
ξ′(aq)aq

(1− q)ξ′(q)
+ at

(
1− ξ′(aq)

ξ′(q)

)
+

1

2
(ξ(1)− ξ(r(a, b))− ξ′(r(a, b))(1− r(a, b))) . (6.220)

Indeed, under these values and constraints,

ΓN (y,m; a, b) = ξ(b) +
ξ′(aq)〈y + z,σ〉

ξ′(q)
− ξ′′(q)ξ′(aq)aq〈m, z〉

ξ′(q)θ(q)
+

(
1− ξ′(aq)

ξ′(q)

)
〈y − y⊥,σ − σ⊥〉

= ξ(b)−
ξ′′(q)ξ′(aq)aq(−t− ξ′(q)q + q

1−q + q(1− q)ξ′′(q))
ξ′(q)θ(q)

+
ξ′(aq)(−ξ′(q)b+ aq((1− q)ξ′′(q) + 1

1−q ))

ξ′(q)
+ t

(
1− ξ′(aq)

ξ′(q)

)
= ξ(b)− bξ′(aq) +

ξ′(aq)aq

(1− q)ξ′(q)
+ at

(
1− ξ′(aq)

ξ′(q)

)
.

Furthermore, in this case, b∗ = q.

Lemma 6.7.17. For ε > 0 sufficiently small, there is η > 0 such that for all (a, b) satisfying |aq−q|+|b−q| ≤
ε, we have ∇2Ẽ(a, b) � −ηI2.

Proof. We have

∂2
b Ẽ(a, b)|(1,q) = 2ξ′′(q)−

(
1

2(1− r(a, b))
+

1

2
ξ′′(r(a, b))(1− r(a, b))

)
∂2
b (r(a, b))|(1,q)

= − 1

(1− q)2
+ ξ′′(q), (6.221)

and

∂b∂aẼ(a, b)|(1,q) = −
(

1

2(1− r(a, b))
+

1

2
ξ′′(r(a, b))(1− r(a, b))

)
∂a,b(r(a, b))|(1,q)

= −qξ′′(q) +
q

(1− q)2
. (6.222)

Finally, we compute

∂2
aẼ(a, b)|(1,q)
= −q3ξ′′′(q) + q(2ξ′′(q) + qξ′′′(q)) + (1− q)(q2ξ′′′(q) + qξ′′(q)− q2ξ′′(q)2/ξ′(q) + q2vξ′′(q)2/ξ′(q)2)

− q(2q + 1)

(1− q)2
− 2q2(1− q)ξ′′′(q) + q(2q − 1)ξ′′(q)

= −q(2q + 1)

(1− q)2
+ q(q + 2)ξ′′(q) + (1− q)(−q2ξ′′(q)2/ξ′(q) + q2vξ′′(q)2/ξ′(q)2). (6.223)

Using the constraints v = t− t2(1−q)
q , and that t = q

1−q − ξ
′(q), we can simplify

∂2
aẼ(a, b)|(1,q) = −q(2q + 1)

(1− q)2
+ q(q + 2)ξ′′(q)− q(1− q)2ξ′′(q)2. (6.224)

Consider a change of variable ã = aq and let E(ã, b) = Ẽ(ã/q, b). Combining (6.221), (6.222), (6.224),
under the condition ξ′′(q) < 1

(1−q)2 , that E(ã, b) is strictly concave at (ã, b) = (q, q) is equivalent to

1

q

(
(1− q)2ξ′′(q)2 − (q + 2)ξ′′(q) +

(2q + 1)

(1− q)2

)
>

(
1

(1− q)2
− ξ′′(q)

)
⇔ 1

q

(
(1− q)ξ′′(q)− 1

1− q

)2

+
1

(1− q)2
> 0.
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Notice that, for (a, b) in a neighborhood of (1, b∗), the Hessian of Ê(a, b) is a continuous rational function
of q, ξ(b), ξ(q), ξ′(q), ξ′′(q), ξ′′′(q), ξ′(〈x,m〉N ), and 〈x,y〉N , 〈x,m〉N , 〈y,m〉N , ‖y‖2N . Hence, we have the
following implication of the previous lemma.

Corollary 6.7.18. There exist ε, η > 0 such that, for |〈x,m〉N −q| ≤ ε, |〈y,m〉N − t| ≤ ε, |〈y,x〉N − t| ≤ ε,
and |‖y‖2N − t| ≤ ε, all (a, b) such that |aq − a∗q| + |b − b∗| ≤ ε, we have ∇2Ê(a, b) � −ηI2. (Here
(a∗, b∗) = (1, q).)

We will next prove several simple preliminary estimates before giving the proof of Proposition 6.4.6.
Recall that on DN (a, b), we have defined the Hamiltonian H(σ̃), which is a spin glass with mixture given

by Eqs. (6.199) to (6.201). Let A(p)(a, b) = ∇pH(0) and u(a, b) = ∇H(0).
By Lemma 6.7.15, Lemma 6.7.16, and Corollary 6.7.18 and the preceding remark, there is a unique

local maxima (a∗, b∗) = (1, b∗) of E(a, b) and Ê(a, b) with |qa∗ − q| + |b∗ − q| ≤ ε, and Ê(a, b) is strongly
concave at (a∗, b∗). In particular, there is η > 0 such that, for sufficiently small ε and (a, b) such that
|qa− qa∗|+ |b− b∗| ≤ ε, we have

E(a, b) ≤ E(a∗, b∗)− η(|qa− qa∗|2 + |b− b∗|2). (6.225)

For each a, b letm(a, b) be the unique point in V := span(m,x) with ‖m(a, b)‖2N = qa and 〈m(a, b),x〉N = b.
The following lemma follows from standard control on suprema of Gaussian processes (see, e.g. [MS23,

Lemma A.3]).

Lemma 6.7.19. For ε > 0 sufficiently small there exist c = c(ε), C = C(ε) > 0 depending uniquely on ε
such that the following holds with probability at least 1 − e−cN conditional on ∇FTAP(m) = 0. For (a, b)
such that |qa− qa∗|+ |b− b∗| ≤ ε, we have

∇H(m(a, b)) = ∇H(m) +∇2H(m)(m(a, b)−m) + Err,

where ‖Err‖ ≤ CN−1/2‖m(a, b)−m‖2. Furthermore, proj⊥V (∇H(m)) = 0, and for v ∈ V , ‖∇2H(m)v‖2 ≤
C‖v‖2. (Here V = span(m,x).)

As a corollary of Lemma 6.7.19, we obtain the following control on the effective fields u(a, b) = (1 −
r(a, b))1/2proj⊥V (∇H(m)).

Lemma 6.7.20. For ε, δ > 0 sufficiently small, the following holds with probability at least 1− e−cN . There
exists u1,u2 ∈ RN−3 with ‖u1‖, ‖u2‖ = O(N1/2) such that, for any (a, b) with |qa− qa∗|+ |b− b∗| ≤ ε, we
have ‖u(a, b)− (qa− qa∗)u1 − (b− b∗)u2‖ ≤ CN1/2(|qa− qa∗|2 + |b− b∗|2).

Furthermore, for γ > δ + Eλmax(A(2)(a∗, b∗)) and i, j ∈ {1, 2}, there is c = c(δ) > 0 such that, with

probability 1 − e−Nc , 〈ui, (γI −A(2)(a∗, b∗))
−1uj〉, concentrates in a window of size O(N1/2+c) around its

expectation.

Proof. The first part follows from Lemma 6.7.19, using proj⊥V (∇H(m)) = 0.
The second part holds by concentration of Lipschitz functions of Gaussian random variables. Indeed

note that ui depend linearly on A(2)(a∗, b∗) as well as on independent Gaussian random variables. Under

the high probability event Eλmax(A(2)(a∗, b∗)) + δ/2 ≤ λmax(A(2)(a∗, b∗)) ≤ C, the quantity 〈ui, (γI −
A(2)(a∗, b∗))

−1uj〉 is indeed Lipschitz in these Gaussians as well as on A(2)(a∗, b∗).

Let

R :=
{

(a, b) : q|a− a∗|+ |b− b∗| ≤ N−1/2+c
}
. (6.226)

Recall the random shifts ga,b in Eq. (6.197). We have the following control on ga,b, again from standard
control on Gaussian processes.

Lemma 6.7.21. We have that ga,b, for (a, b) ∈ R, forms a Gaussian process with E[(ga,b − ga′,b′)
2] =

O(‖m(a, b)−m(a′, b′)‖2N ). Furthermore, with probability at least 1− e−cN , we have, for all (a, b) ∈ R that

|ga,b − ga∗,b∗ | ≤ C(|q(a− a∗)|+ |b− b∗|).
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Proof. The first claim follows from a standard calculation, and the second claim follows Sudakov-Fernique
inequality, comparing with the linear process 〈g,m(a, b)−m(a∗, b∗)〉/

√
N for g a standard normal vector.

Lemma 6.7.22. The scaled GOE matrices A(2)(a, b) for (a, b) ∈ R form a Gaussian process with metric

E
{∥∥A(2)(a, b)−A(2)(a′, b′)

∥∥2

F

}
≤ CN(|qa− qa′|2 + |b− b′|2) .

Furthermore, for any η > 0 there exist constants c, C > 0 such that, with probability at least 1− e−cN ,

‖A(2)(a, b)−A(2)(a′, b′)‖2F ≤ CN(|qa− qa′|2 + |b− b′|2)1+η , ∀(a, b), (a′, b′) ∈ R , (6.227)

‖A(2)(a, b)−A(2)(a′, b′)‖2op ≤ C(|qa− qa∗|2 + |b− b∗|2)1+η , ∀(a, b), (a′, b′) ∈ R . (6.228)

and

sup
(a,b)∈R

‖A(2)(a, b)−A(2)(a∗, b∗)‖2F ≤ CN2c , (6.229)

sup
(a,b)∈R

‖A(2)(a, b)−A(2)(a∗, b∗)‖2op ≤ CN−1+2c . (6.230)

Proof. The bound on the canonical distance of A(2) follows from a straightforward calculation.
The bounds (6.227) and (6.229) follow from chaining on R, together with the standard bound on chi-

squared random variables

P
(
‖A(2)(a, b)−A(2)(a′, b′)‖2F > κE‖A(2)(a, b)−A(2)(a′, b′)‖2F

)
≤ 2e−cN

2[(κ−1)∧(κ−1)2],

for κ > 1.
The bound (6.228) and (6.230) follow from a similar chaining argument. Indeed, A(2)(a, b)−A(2)(a′, b′)

is a matrix with independent entries with variance bounded by C(|qa − qa∗|2 + |b − b∗|2)/N , whence by
standard estimates on the norm of Gaussian random matrices, the following holds for all κ > κ0

P
(
‖A(2)(a, b)−A(2)(a′, b′)‖2op > κN−1E‖A(2)(a, b)−A(2)(a′, b′)‖2F

)
≤ 2e−cNκ.

Recall G(γ;A,u) in (6.102) and Ga,b(γ) in (6.207). The next lemma gives control over G and Ga,b for
(a, b) ∈ R.

Lemma 6.7.23. Given a compact interval I ⊆ [M,∞), M := ε + Eλmax(A(2)(a∗, b∗)), the following holds

with probability at least 1− e−Nδ for appropriate C0, c, δ > 0 depending on ε > 0:

1. We have

sup
γ∈I,(a,b)∈R

∣∣∣N(G(γ;A(2)(a, b),u(a, b))−Ga,b(γ))−N(G(γ;A(2)(a∗, b∗),u(a∗, b∗))−Ga∗,b∗(γ))
∣∣∣

= O(N−1/2+c). (6.231)

2. We have

sup
(a,b),(a′,b′)∈R:(a,b)+(a′,b′)=2(a∗,b∗)

γ∈I

∣∣∣NG(γ;A(2)(a, b),u(a, b))−NG(γ;A(2)(a′, b′),u(a′, b′))
∣∣∣

= O(N−1/2+c). (6.232)

3. The event in Lemma 6.7.3 holds uniformly in (a, b) ∈ R. Namely,

Z≤2(a, b) =

∫
e〈σ,A

(2)(a,b)σ〉+〈u(a,b),σ〉µa,b0 (dσ)

= (1 + Erra,b(N))(2e)−(N−2)/2

√
2

G′′(γa,b;A
(2)(a, b),u(a, b))

eNG(γa,b;A
(2)(a,b),u(a,b)) , (6.233)

where sup(a,b)∈R |Erra,b(N)| ≤ C0, N
−c.
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Proof. We can represent A(2)(a, b) = A(2)(a∗, b∗)+∆(a, b) where each entry of ∆(a, b) forms an independent
Gaussian process with metric E[(∆i,j(a, b)−∆i,j(a

′, b′))2]1/2 ≤ CN−1/2(q|a−a′|+|b−b′|), and ∆(a∗, b∗) = 0.

Letting Q∗(γ) = γI −A(2)(a∗, b∗), we can expand

G(γ;A(2)(a, b),u(a, b)) =

= γ − 1

2N
log det(γI −A(2)(a, b)) +

1

4N
〈u(a, b), (γI −A(2)(a, b))−1u(a, b)〉

= G(γ;A(2)(a∗, b∗),u(a∗, b∗))−
1

2N
log det

(
I −Q∗(γ)−1/2∆(a, b)Q∗(γ)−1/2

)
(6.234)

+
1

4N
〈u(a, b), (Q∗(γ)−∆(a, b))−1u(a, b)〉 − 1

4N
〈u(a, b),Q∗(γ)−1u(a, b)〉.

Next, for k ≥ 2, let

Xk(a, b) = Tr

((
Q∗(γ)−1/2∆(a, b)Q∗(γ)−1/2

)k)
. (6.235)

We have

|Xk(a, b)−Xk(a′, b′)| ≤ CkN−(k−1)(1/2−c)+1/2‖A(2)(a, b)−A(2)(a′, b′)‖F,

under the event in Lemma 6.7.22. Recall that this also guarantees

sup
(a,b)∈R

{
‖∆(a, b)‖op ∨ ‖Q∗(γ)−1/2∆(a, b)Q∗(γ)−1/2‖op

}
≤ CN−1/2+c , (6.236)

Hence, under the event in Lemma 6.7.22, we have |Xk(a, b) − Xk(a′, b′)| ≤ N−(k−1)(1/2−c)−L+1 whenever
q|a− a′|+ |b− b′| < N−L.

Let P∆ and E∆ denote probability and expectation with respect to ∆(a, b) only, i.e. conditional on

A(2)(a∗, b∗). Also let
M(a, b) = Q∗(γ)−1/2∆(a, b)Q∗(γ)−1/2

be the matrix appearing in Xk(a, b). On the A(2)(a∗, b∗)-measurable, probability 1 − e−cN event that

Q∗(γ)−1/2 is bounded in operator norm, M(a, b) is (conditional on A(2)(a∗, b∗), in a suitable basis) a
random matrix with independent centered gaussian entries, with variances not equal but bounded uniformly
by N−2+2c. It is well known, cf. [AGZ10, Chapter 2] that tracial moments of M(a, b) amount to certain
(weighted) cycle counts, and from this a routine calculation gives

E∆Xk(a, b) =

{
0 k odd,

Ok(N1−k(1/2−c)) k even,
Var∆[Xk(a, b)] = Ok(N−k(1−2c)).

(The last estimate amounts to computing cycle counts for E[Tr(M(a, b)k)2] and E[Tr(M(a, b)k)]2, cf. [AGZ10,
Proof of Lemma 2.1.7].) For any fixed (a, b) ∈ R, Gaussian hypercontractivity gives

P∆

{
|Xk(a, b)− E∆Xk(a, b)| ≥ t

√
Var∆(Xk(a, b))

}
≤ exp(−tck),

because Xk(a, b) is a degree k-polynomial in the entries of M(a, b). By a union bound over a N−L-net of R

(of size N2L), with probability 1− e−Nckδ over ∆(a, b) the following holds.
For k even, uniformly in (a, b) ∈ R

Tr

((
Q∗(γ)−1/2∆(a, b)Q∗(γ)−1/2

)k)
− ETr

((
Q∗(γ)−1/2∆(a, b)Q∗(γ)−1/2

)k)
= Ok(Nδ−k(1/2−c)),

and for k odd,

sup
(a,b)∈R

Tr

((
Q∗(γ)−1/2∆(a, b)Q∗(γ)−1/2

)k)
= Ok(Nδ−k(1/2−c)).
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Recall that | log(1− x) + x+ x2/2| ≤ |x|3 for all |x| ≤ 1/4. Therefore, uniformly in (a, b) ∈ R, for all δ, c
small enough

log det
(
I −Q∗(γ)−1/2∆(a, b)Q∗(γ)−1/2

)
= −

2∑
k=1

1

k
Tr

((
Q∗(γ)−1/2∆(a, b)Q∗(γ)−1/2

)k)
+O(N−1+c)

= −ETr
((
Q∗(γ)−1/2∆(a, b)Q∗(γ)−1/2

)2
)

+O(N−1/2+c+δ). (6.237)

We next turn to the term 〈u(a, b), (Q∗(γ)−∆(a, b))−1u(a, b)〉 in Eq. (6.234). From Lemma 6.7.20, there
are u1,u2 with ‖u1‖, ‖u2‖ = O(N1/2) such that letting u0(a, b) := q(a − a∗)u1 + (b − b∗)u2, we have
‖u(a, b) − u0(a, b)‖ ≤ CN−1/2+2c and ‖u0(a, b)‖ ≤ CN c for any (a, b) ∈ R Therefore, with probability

1− e−Nδ ,

〈u0(a, b), (Q∗(γ)−∆(a, b))−1u0(a, b)〉
= 〈u0(a, b),Q∗(γ)−1u0(a, b)〉+ 〈u0(a, b),Q∗(γ)−1∆(a, b)Q∗(γ)−1u0(a, b)〉+O(N−1+3c)

= 〈u0(a, b),Q∗(γ)−1u0(a, b)〉+O(N−1+3c+δ).

where the first estimate follows from Eq. (6.236), and the second from independence of ∆(a, b) and u1,u2,
together with the fact that the entries of ∆(a, b) have variance bounded by N−2+2c. Therefore, we obtain

that, with probability 1− e−Nδ ,

〈u(a, b), (Q∗(γ)−∆(a, b))−1u(a, b)〉
= 〈q(a− a∗)u1 + (b− b∗)u2,Q∗(γ)−1(q(a− a∗)u1 + (b− b∗)u2)〉+O(N−1+4c+δ). (6.238)

By similarly taking a union bound over a net of R of radius N−L and using the continuity in Lemma 6.7.22,
we can guarantee Eq. (6.238) uniformly in (a, b) ∈ R.

Combining the last conclusion in Lemma 6.7.20, Eqs. (6.237) and (6.238) and a union bound over γ, over

any compact interval of γ, upon changing δ, with probability at least 1− e−Nδ , that

sup
γ,(a,b)∈R

∣∣∣N(G(γ;A(2)(a, b),u(a, b))−Ga,b(γ)−G(γ;A(2)(a∗, b∗),u(a∗, b∗)) +Ga∗,b∗(γ))
∣∣∣

≤ O(N−1/2+c).

Thus, we have, with probability at least 1− e−Nδ , uniformly in (a, b) ∈ R and γ, that Eq. (6.231) holds.
Given (a, b), (a′, b′) ∈ R such that (a, b) + (a′, b′) = 2(a∗, b∗), we have that

ETr
((
Q∗(γ)−1/2∆(a, b)Q∗(γ)−1/2

)2
)

= ETr
((
Q∗(γ)−1/2∆(a′, b′)Q∗(γ)−1/2

)2
)
.

Combining with Eqs. (6.237) and (6.238), we then obtain Eq. (6.232).
Finally, we recall that for each (a, b) ∈ R, the event in Lemma 6.7.3 holds with probability at least

1 − e−cN . On the other hand, for appropriate C > C ′ > 1, using Lemma 6.7.20 and Lemma 6.7.22, with
probability 1− e−cN , uniformly over (a, b), (a′, b′) ∈ R with |q(a− a′)|+ |b− b′| ≤ N−C , we have Z≤2(a, b) =

(1 + O(N−C
′
))Z≤2(a′, b′). Similar continuity estimates hold for the right hand side of Eq. (6.233). Taking

a net of radius N−C of R and apply the union bound, we obtain Eq. (6.233) uniformly in (a, b) ∈ R.

Proof of Proposition 6.4.6. Consider appropriate constants c > c′ > 0. Define

DN (ε) :=
{
σ ∈ SN : N−1/2+c ≤ |〈σ,m〉N − a∗q|+ |〈σ,x〉N − b∗| ≤ ε

}
, (6.239)

D̂N (ε) :=
{

(a, b) ∈ R2 : N−1/2+c ≤ |aq − a∗q|+ |b− b∗| ≤ ε
}
, (6.240)
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Using Markov’s Inequality and that the annealing upper bound Ê(a, b) is strongly concave for (a, b) ∈ D̂N (ε)
(see Lemma 6.7.16 and Corollary 6.7.18), we obtain that with probability 1− exp(−N c′), for all sufficiently
small ε > 0, there is η > 0 such that∫

DN (ε)

eH(σ)µ0(dσ) =

∫
D̂N (ε)

{∫
eH(σ)µa,b0 (dσ)

}
dadb

≤ e−η(|qa−qa∗|2+|b−b∗|2)+NÊ(a∗,b∗)+
√
Nga,b

= e−η(|qa−qa∗|2+|b−b∗|2)+NE(a∗,b∗)+
√
Ngab . (6.241)

Denote by 〈 · 〉a,b the average with respect to the Gibbs measure restricted to band DN (a, b), namely with

respect to µa,b(dσ) ∝ exp{NH(σ)}µa,b0 (dσ). Note that u(a∗, b∗) = 0, and for |qa−qa∗|+|b−b∗| ≤ N−1/2+c,

we have ‖u(a, b)‖ = O(N c′).

Recall γa,b = arg minz>λmax(A(2)(a,b))G(z;A(2)(a, b),u(a, b)). Let

∆(a, b) :=
1

2
(γa,b −A(2)(a, b))−1u(a, b)

+
1

2
(γa,b −A(2)(a, b))−1〈A(3)(a, b), (γa,b −A(2)(a, b))−1〉.

We have ∆(a∗, b∗) = ∆(m) +O(N−c), where ∆(m) is defined as per Eq. (6.23).
Let

Z(a, b) :=

∫
eH(σ)µa,b0 (σ),

and

Z :=

∫
Band∗(2ι)

exp(HN,t(σ)) µ0(dσ).

Recall the definitions

R = {(a, b) ∈ R2 : |qa− qa∗|+ |b− b∗| ≤ N−1/2+c} ,
R+ = {(a, b) ∈ R2 : |qa− qa∗|+ |b− b∗| ≤ N−1/2} .

Using Eq. (6.241), we have that, with probability at least 1− exp(−N c′),

m̃2ι(m) =

∫
Band∗(2ι)

σ exp(HN,t(σ)) µ0(dσ)∫
Band∗(2ι)

exp(HN,t(σ)) µ0(dσ)

= O(e−ηN
2c

) +

∫
R

Z(a, b)

Z
〈σ〉a,bd(a, b).

Let

ZT (a, b) =

∫
1{σ ∈ T (a, b)}eH(σ)µa,b0 (dσ), ZT =

∫
Band∗(2ι)

1{σ ∈ T (a, b)}eH(σ)µ0(dσ),

where T (a, b) ⊆ DN (a, b) is the typical set (6.120) defined for the effective model on DN (a, b). Recall from
Lemma 6.7.7 that for each (a, b) ∈ R, with probability 1− e−cN ,

ZT (a, b) ≥ (1− e−cN )Z(a, b), E≥3ZT (a, b) ≥ (1− e−cN )E≥3Z(a, b). (6.242)

By a union bound over a e−cN/10-net of R and standard continuity properties ofH, with probability 1−e−cN/2
this holds simultaneously for all (a, b) ∈ R. By integrating, on this event we also have

ZT ≥ (1− e−cN )Z, E≥3ZT ≥ (1− e−cN )E≥3Z. (6.243)
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Note that, by Eq. (6.126) in Lemma 6.7.8, for k > L ≥ 1, the following holds with probability at least
1− e−cN ,

E≥3

[
(ZT (a, b)− E≥3ZT (a, b))2k

]
≤ CLN−L (E≥3ZT (a, b))

2k
, (6.244)

and therefore

E≥3

[
ZT (a, b)2k

]
≤ (1 + CLN

−L) (E≥3ZT (a, b))
2k
. (6.245)

Again by standard continuity estimates and the union bound over a net of R of radius e−c
′N , the above

estimates hold uniformly in (a, b) ∈ R with probability at least 1−e−cn/2. By Eq. (6.243), the same estimates
hold for Z in place of ZT uniformly in (a, b) ∈ R with probability at least 1− e−c′N .

By Eqs. (6.231), (6.233) of Lemma 6.7.23, together with Eqs. (6.197) and Lemma 6.7.21 (which implies

that e
√
N(ga,b−ga′,b′ ) = O(1) for all (a, b), (a′, b′) ∈ R+), with probability at least 1 − e−Nδ , uniformly in

(a, b) ∈ R+,

E≥3Z(a, b) ≥ Ω (E≥3Z(a∗, b∗)) . (6.246)

From strict concavity of E(a, b) at (a∗, b∗) (see (6.225)), and the simple estimate

sup
a,b

(
N1/2(|q(a− a∗)|+ |b− b∗|)− ηN(|q(a− a∗)|2 + |b− b∗|2)

)
= Oη(1)− ηN(|q(a− a∗)|2 + |b− b∗|2), (6.247)

we obtain that, uniformly in (a, b) ∈ R,

E≥3Z(a, b) ≤ O
(
E≥3Z(a∗, b∗) · e−ηN(|qa−qa∗|2+|b−b∗|2)/2

)
. (6.248)

Further, by Lemma 6.7.8, we also have

P
{∣∣ZT − E≥3ZT

∣∣ > 1

2
E≥3ZT

}
≤ CN−L/2. (6.249)

Since R+ has volume Θ(N−1), on the event in (6.246) we have

E≥3Z ≥
∫
R+

E≥3Z(a, b) d(a, b) = Ω(N−1E≥3Z(a∗, b∗)).

Furthermore, when (6.248) holds we have

E≥3Z =

∫
R

E≥3Z(a, b) d(a, b) ≤ O(N−1E≥3Z(a∗, b∗))),

where the N−1 comes from integrating the exponential in (6.248). Thus, with probability at least 1− e−Nδ ,

E≥3Z = Θ(N−1E≥3Z(a∗, b∗)). (6.250)

Let E denote the event that estimates (6.242), (6.244), (6.245), (6.246), (6.248), (6.249), (6.250) all hold.
By the above, we have P(E) ≥ 1− CN−L/2. Further, for Ẑ(a, b) = eNE(a,b) and Ẑ =

∫
R
Ẑ(a, b)d(a, b),

∫
R

E

[
1E

(
Z(a, b)

Z

)2k
]
d(a, b) = O

∫
R

E

1E

(
Ẑ(a, b)

Ẑ

)2k
 d(a, b)

 (6.251)

Under the event E , from Eqs. (6.246), (6.248), we thus obtain

∫
R

E

[
1E

(
Z(a, b)

Z

)2
]1/2

d(a, b) = O(1), (6.252)
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By Jensen and Cauchy-Schwarz inequality,

E

[
1E

∥∥∥∥∫
R

Z(a, b)

Z
(〈σ〉a,b −∆(a, b)−m(a, b))d(a, b)

∥∥∥∥2+δ
]

≤
∫
R

E
[
1E
Z(a, b)

Z
‖(〈σ〉a,b −∆(a, b)−m(a, b))‖2+δ

]
d(a, b)

≤
∫
R

E

[
1E

(
Z(a, b)

Z

)2
]1/2

E
[
‖(〈σ〉a,b −∆(a, b)−m(a, b))‖2(2+δ)

]1/2
d(a, b).

By Lemma 6.7.2, we have

E
[
‖〈σ〉a,b −∆(a, b)−m(a, b)‖2(2+δ)

]
≤ N−c. (6.253)

Combining with Eq. (6.252), we obtain that

E

[
1E

∥∥∥∥∫
R

Z(a, b)

Z
(〈σ〉a,b −∆(a, b)−m(a, b))d(a, b)

∥∥∥∥2+δ
]
≤ O(N−c). (6.254)

On the other hand, by Lemma 6.7.20, with probability 1 − e−cN , there are u1,u2 with ‖u1‖, ‖u2‖ =
O(N1/2) such that, for |qa− qa∗|+ |b− b∗| ≤ N−1/2+c,

‖u(a, b)− (q(a− a∗)u1 + (b− b∗)u2)‖ = O(N−1/2+2c). (6.255)

Using this, letting Z = E≥3Z(a∗, b∗) and defining a := a− a∗, b := b− b∗, we have∫
R

Z(a, b)

Z
u(a, b)d(a, b)

=

∫
R

Z(a, b)− Z
Z

(qau1 + bu2)d(a, b) +

∫
R

Z

Z
(qau1 + bu2)d(a, b) +O(N−1/2+2c)

=

∫
R

Z(a, b)− Z
Z

(qau1 + bu2)d(a, b) +O(N−1/2+2c)

=

∫
R

Z(a, b)− E≥3Z(a, b)

Z
(qau1 + bu2)d(a, b)

+

∫
R

E≥3Z(a, b)− E≥3Z(a∗, b∗)

Z
(qau1 + bu2)d(a, b) +O(N−1/2+2c).

Furthermore, by Hölder’s inequality on the measure 1{(a,b)∈R}d(a,b)
Vol(R) ,

E

[
1E

∥∥∥∥∫
R

Z(a, b)− E≥3Z(a, b)

Z
(q(a− a∗)u1 + (b− b∗)u2)d(a, b)

∥∥∥∥2+δ
]

≤
∫
R

E

[(
1E

∣∣∣∣Z(a, b)− E≥3Z(a, b)

Z

∣∣∣∣ ‖q(a− a∗)u1 + (b− b∗)u2‖Vol(R)

)2+δ
]
d(a, b)

Vol(R)

By (6.248) and (6.250), Z = Ω(N−1Z≥3(a, b)). Moreover, we have the estimates |q(a−a∗)|, |b−b∗| ≤ N−1/2+c

by definition of R, Vol(R) ≤ N−1+2c, and ‖u1‖, ‖u2‖ ≤
√
N . Combining these estimates, the last display is

bounded by

O(N3c(2+δ))

∫
R

E

[
1E

∣∣∣∣Z(a, b)− E≥3Z(a, b)

Z≥3(a, b)

∣∣∣∣2+δ
]
d(a, b)

Vol(R)
(6.256)
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Finally, since E contains the event that (6.242), (6.244) holds for (a, b), for any (a, b) ∈ R we have the
estimate

E

[
1E

∣∣∣∣Z(a, b)− E≥3Z(a, b)

Z≥3(a, b)

∣∣∣∣2+δ
]

≤ E

[
1((6.242), (6.244) holds for (a, b))E≥3

∣∣∣∣Z(a, b)− E≥3Z(a, b)

Z≥3(a, b)

∣∣∣∣2+δ
]

≤ E
[
1((6.242), (6.244) holds for (a, b))

(E≥3|ZT (a, b)− E≥3ZT (a, b)|2k)(2+δ)/2k

|Z≥3(a, b)|2+δ

]
+ e−cN ,

and by (6.244) this is bounded by N−1/2. Then, for c small enough, (6.256) is bounded by O(N−c).
By Eqs. (6.233) and (6.232) of Lemma 6.7.23,∥∥∥∥∫

R

E≥3Z(a, b)− E≥3Z(a∗, b∗)

Z
(qau1 + bu2)d(a, b)

∥∥∥∥ = O(N−c).

Similarly, we have

E

[∥∥∥∥∫
R

Z(a, b)

Z
m(a, b)d(a, b)−

∫
R

E≥3Z(a, b)

Z
m(a, b)d(a, b)

∥∥∥∥2+δ
]

= O(N−c),

Again by Eqs. (6.233) and (6.232) of Lemma 6.7.23, noting that m(a, b)+m(a′, b′) = 2m if (a, b)+(a′, b′) =
2(a∗, b∗),

E

[∥∥∥∥∫
R

E≥3Z(a, b)

Z
m(a, b)d(a, b)−m

∥∥∥∥2+δ
]

= O(N−c),

Thus, we obtain

E
[
‖m̃2ι(m)−m−∆(m)‖2+δ

]
≤ O(N1+δ/2e−ηN

c

) +O(N−c) +O(N1+δ/2 ·N−L) = O(N−c). (6.257)

Proposition 6.4.6 then follows.

6.8 Lognormal fluctuations of partition function

Proof of Lemma 6.3.2. Recall that HN,2 denotes the degree-2 part of HN , which is of the form

HN,2(σ) =
ξ′′(0)1/2

2
〈Gσ,σ〉,

for G ∼ GOE(N). Let

ZN,2 =

∫
SN

expHN,2(σ) dµ0(σ).

It follows from [BL16, Theorem 1.2] (with w2 = 2,W4 = 3) that, with σ2 = − 1
2 log(1 − ξ′′(0)) and W ∼

N (− 1
2σ

2, σ2),
ZN,2
EZN,2

=
ZN,2

exp(Nξ′′(0)/2)

d→ exp(W ). (6.258)

Recall that the results in Section 6.7.1 only assume (6.31) rather than (6.5), and thus apply in the present
proof. Let δ > 0 be small and T = T (δ) as in (6.120), and recall the restricted partition function

ZN (T ) =

∫
T

expHN (σ) dµ0(σ).
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By (6.125), in Lemma 6.7.7, we have

E[ZN − ZN (T )] ≤ e−cN E[ZN ].

By Markov’s inequality, applied respectively to the randomness of HN and HN,2, with probability 1− e−cN ,

(ZN − ZN (T )) ∨ E≥3[ZN − ZN (T )] ≤ e−cN E[ZN ].

By (6.158) (for k = 2), we also have, with probability 1− o(1),

E≥3

[
(ZN (T )− E≥3[ZN (T )])

2
]

= o(1)E[ZN ]2.

Thus with probability 1− o(1),

|ZN (T )− E≥3ZN (T )| ≤ o(1)E[ZN ].

On the intersection of these events,∣∣∣∣ ZNEZN
− E≥3 ZN

EZN

∣∣∣∣ ≤ |ZN − ZN (T )|
EZN

+
|ZN (T )− E≥3 ZN (T )|

EZN
+
|E≥3 ZN − E≥3 ZN (T )|

EZN
= o(1).

Since
E≥3 ZN
EZN

=
ZN,2
EZN,2

,

the result follows from (6.258).

6.9 Completing the proof of Theorem 6.2.1

The following two propositions are the final ingredients in the proof of Theorem 6.2.1. Let δ, L be as in
Algorithm 2 and T ′ = δL.

Proposition 6.9.1. Let (HN ,yT ′) be sampled from the marginal of the planted distribution P (as defined
in Eq. (6.33)). Let yL be generated as in Algorithm 2, run on input HN . Then,

EHNTV
(
L(yT ′ |HN ),L(yL|HN )

)
= oN (1).

Proposition 6.9.2. Let (HN ,σ,yT ′) be sampled from the marginal of the planted distribution P. Let ρMALA

be the (random) output of MALA run on ν̃projHN ,yT ′
(recall Eq. (6.20)) and σ̂ = σyT ′ (ρ

MALA) (recall Eq. (6.16)).
Then,

EHN ,yT ′TV (L(σ|HN ,yT ′),L(σ̂|HN ,yT ′)) = oN (1).

Proof of Theorem 6.2.1. Let K : HN × RN → RN be the random map that, given input (HN ,y), generates
ρMALA by running MALA on νHN ,y and outputs σ̂ = σy(ρMALA). Let (HN ,σ,yT ′) be sampled from the
marginal of P. Let Palg,HN denote the law of the output of yL generated by Algorithm 2 on input HN . Then,

EHN∼PTV(µHN , µ
alg) = EHN∼PTV

(
EyT ′∼P(·|HN )L(σ|HN ,yT ′),EyL∼Palg,HN

L(K(HN ,y
L))
)

≤ EHN∼PTV
(
EyT ′∼P(·|HN )L(σ|HN ,yT ′),EyT ′∼P(·|HN )L(K(HN ,yT ′))

)
+ EHN∼PTV

(
EyT ′∼P(·|HN )L(K(HN ,yT ′)),EyL∼Palg,HN

L(K(HN ,y
L))
)

≤ E(HN ,yT ′ )∼PTV (L(σ|HN ,yT ′),L(K(HN ,yT ′)))

+ EHN∼PTV
(
L(yT ′ |HN ),L(yL|HN )

)
.

The last inequality is by data processing. By Propositions 6.9.1 and 6.9.2, the final bound is oN (1). Thus,
with probability 1 − oN (1) over HN ∼ P, TV(µHN , µ

alg) = oN (1). By Corollary 6.3.5, the same is true for
HN ∼ Q.
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6.9.1 TV-closeness of Euler discretization: Proof of Proposition 6.9.1

We prove Proposition 6.9.1 by an application of Girsanov’s theorem, an approach introduced [CCL+23] in a
related context. For all 0 ≤ ` ≤ L− 1, define

m̂(y, `δ) = malg(HN ,y, `δ)

to be the output of Algorithm 1 with these inputs. Then, define the process (ŷt)t∈[0,T ] by ŷ0 = 0 and, for
t ∈ [`δ, (`+ 1)δ),

dŷt = m̂(ŷ`δ, `δ) dt+ dBt. (6.259)

On each interval [`δ, (` + 1)δ), the drift in (6.259) is constant, so this SDE can be integrated directly:
conditional on HN , ŷ`δ,

ŷ(`+1)δ = ŷ`δ + δmalg(HN , ŷ`δ, `δ) +B(`+1)δ −B`δ.

Note that B(`+1)δ − B`δ =d

√
δw` for w` ∼ N (0, IN ), so this is precisely the Euler discretization in

Algorithm 2. It follows that
L(ŷT |HN ) = L(yL|HN ). (6.260)

Lemma 6.9.3. Given HN , let (yt)t∈[0,T ] be sampled from (6.3) and (ŷt)t∈[0,T ] be sampled from (6.259).
Then,

EHN∼PKL(L(yT |HN ),L(ŷT |HN )) ≤ 1

2

L−1∑
`=0

∫ (`+1)δ

`δ

EP‖m̂(y`δ, `δ)−m(yt, t)‖
2
dt.

Proof. Fix any realization of HN . For 0 ≤ ` ≤ L− 1 and t ∈ [`δ, (`+ 1)δ), define the process

bt = m̂(y`δ, `δ)−m(yt, t).

Let

Et = exp

(∫ t

0

〈bs, dBs〉 −
1

2

∫ t

0

‖bs‖2 ds

)
.

Let Q be the probability measure (conditional on HN ) under which (Bt)t∈[0,T ] is a Brownian motion and

let P be the probability measure with dP
dQ = ET . By Girsanov’s theorem [LG16, Theorem 5.22],

βt = Bt −
∫ t

0

bs ds

is a Brownian motion under P . (Since ‖m̂(y`δ, `δ)‖, ‖m(yt, t)‖ ≤
√
N , bt is a.s. bounded, and thus the

conditions of Girsanov’s theorem are satisfied.) The SDE (6.3) rearranges as

dyt = (m(yt, t) + bt) dt+ dβt = m̂(y`δ, `δ) dt+ dβt, t ∈ [`δ, (`+ 1)δ).

Thus, under P , the law of (yt)t∈[0,T ] is that of (ŷt)t∈[0,T ]. By data processing,

KL(L(yT |HN ),L(ŷT |HN )) ≤ KL(Q,P ) = EQ log
dQ

dP
=

1

2

∫ T

0

EQ‖bt‖2 dt.

The result follows by taking expectation over HN .

Lemma 6.9.4. For all 0 ≤ ` ≤ L− 1, t ∈ [`δ, (`+ 1)δ), we have EP‖m̂(y`δ, `δ)−m(yt, t)‖
2

= oN (1).

Proof. We first estimate

EP‖m̂(y`δ, `δ)−m(yt, t)‖
2 ≤ 2EP‖m̂(y`δ, `δ)−m(y`δ, `δ)‖

2
+ 2EP‖m(y`δ, `δ)−m(yt, t)‖

2
.
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The first term on the right-hand side is oN (1) by Theorem 6.4.1, so it suffices to bound the second term.
Recall that for (HN ,x, (yt)t∈[0,T ]) ∼ P, conditional on (HN ,yt) the posterior law on x is µt(σ) ∝ eHN,t(σ),
for HN,t(σ) as in (6.38). Furthermore, for s = t− `δ, g ∼ N (0, IN ),

HN,t(σ) = HN,`δ(σ) + 〈sx+
√
sg,σ〉.

Let ∆t,`δ(σ) = HN,t(σ)−HN,`δ(σ). With probability 1− e−cN , ‖g‖ ≤ 2
√
N . Let E denote this event. On

E ,
sup
σ∈SN

‖∆t,`δ(σ)‖ ≤ δ
√
N‖x‖+

√
δN‖g‖ ≤ 3

√
δN = 3/N. (6.261)

So,

m(y`δ, `δ)−m(yt, t) =

∫
SN
σeHN,`δ(σ)∫

SN
eHN,`δ(σ)

−
∫
SN
σeHN,t(σ)∫

SN
eHN,t(σ)

=

∫∫
σ1(eHN,`δ(σ

1)+HN,t(σ
2) − eHN,`δ(σ2)+HN,t(σ

1)) µ⊗2
0 (dσ)∫∫

eHN,`δ(σ
1)+HN,t(σ2) µ⊗2

0 (dσ)

=

∫∫
σ1(e∆t,`δ(σ

1) − e∆t,`δ(σ
2))eHN,`δ(σ

1)+HN,`δ(σ
2) µ⊗2

0 (dσ)∫∫
e∆t,`δ(σ2)eHN,`δ(σ

1)+HN,`δ(σ2) µ⊗2
0 (dσ)

.

By (6.261), ∥∥σ1
∥∥|e∆t,`δ(σ

1) − e∆t,`δ(σ
2)| = O(N−1/2)

for all σ1,σ2 ∈ SN , and thus ‖m(y`δ, `δ)−m(yt, t)‖ = O(N−1/2). So,

EP‖m(y`δ, `δ)−m(yt, t)‖
2 ≤ EP1{E}‖m(y`δ, `δ)−m(yt, t)‖

2
+ EP1{Ec}‖m(y`δ, `δ)−m(yt, t)‖

2

≤ O(N−1/2) + e−cN · 4N = oN (1).

Proof of Proposition 6.9.1. By (6.260) and Lemmas 6.9.3 and 6.9.4,

EHN∼PKL(L(yT |HN ),L(yL|HN )) = oN (1).

The result follows from Pinsker’s inequality and Jensen’s inequality:

EHN∼PKL(L(yT |HN ),L(yL|HN )) ≥ 2EHN∼P
[
TV(L(yT |HN ),L(yL|HN ))2

]
≥ 2

[
EHN∼PTV(L(yT |HN ),L(yL|HN ))

]2
.

6.9.2 Log-concavity of late measures

In this subsection, we prove Proposition 6.9.2. Let e1, . . . , eN be the standard basis. By a change of
coordinates, we may assume without loss of generality that ŷ = y/‖y‖N = eN

√
N and U = (e1, . . . , eN−1).

Lemma 6.9.5. For any y 6= 0, the push-forward of µHN ,y( · |〈σ,y〉 > 0) under the stereographic projection

T y is νprojHN ,y
, defined in (6.18).

Proof. Note that (denoting by DF the Jacobian of map F ):

Dσy(ρ)> =
[IN−1,0]√
1 + ‖ρ‖2N

− ρσy(ρ)>/N

1 + ‖ρ‖2N
.
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Since [IN−1,0]σy(ρ) = ρ√
1+‖ρ‖2N

, we have

Dσy(ρ)>Dσy(ρ) =
IN−1

1 + ‖ρ‖2N
− ρρ>/N

(1 + ‖ρ‖2N )2
=

IN−1

1 + ‖ρ‖2N

(
IN−1 −

ρρ>/N

1 + ‖ρ‖2N

)
.

The stereographic projection thus incurs a change of density factor of

det(Dσy(ρ)>Dσy(ρ))1/2 = (1 + ‖ρ‖2N )−N/2.

This precisely accounts for the term −N2 log(1 + ‖ρ‖2N ) in (6.17).

Lemma 6.9.6. For sufficiently large T , with probability 1 − oN (1) over (HN ,yT ) as in Proposition 6.9.2,

νprojHN ,yT
(‖ρ‖2N ≤ ε0) = 1− oN (1) and µHN ,yT (〈σ,yT 〉N ≤ 0) = oN (1).

Proof. Let (HN ,x,yT ) be a sample from P, and let q∗ = q∗(T ) be as in Fact 6.4.2. Note that q∗ > 1− 1
T , as

ξ′T
(
1− 1/T

)
≥ T + ξ′T

(
1− 1/T

)
≥ T > T − 1 =

1− 1/T

1/T
.

By Proposition 6.5.12, with probability 1− oN (1),

µHN ,yT (〈σ,x〉N ≥ 1− 1/T ) = 1− oN (1).

With probability 1− oN (1), we have ‖y‖N =
√
T (T + 1) + oN (1), so

〈x, ŷ〉 =
〈x,y〉
‖y‖N

=

√
1− 1

T + 1
+ oN (1).

On this event, {σ ∈ SN : 〈σ,x〉N ≥ 1 − 1/T} ⊆ {σ ∈ SN : 〈σ, ŷ〉N ≥ 1 − 2/T}. So, with probability
1− oN (1),

µHN ,yT (〈σ, ŷ〉N ≥ 1− 2/T ) = 1− oN (1).

(This of course implies µHN ,yT (〈σ,yT 〉N ≤ 0) = oN (1).) For sufficiently large T , the stereographic projection

T y maps {σ ∈ SN : 〈σ, ŷ〉N ≥ 1 − 2/T} into {ρ ∈ RN−1 : ‖ρ‖2N ≤ ε0}. The conclusion follows from
Lemma 6.9.5.

Corollary 6.9.7. Recall definition (6.20) of νprojHN ,yT
, ν̃projHN ,yT

. For sufficiently large T , with probability

1− oN (1) over (HN ,yT ), TV(νprojHN ,yT
, ν̃projHN ,yT

) = oN (1).

Proof. Since ϕ(x) = 0 for x ∈ [0, ε0], and ϕ(x) ≥ 0 for x > ε0, we have∫
‖ρ‖2N≤ε0

exp H̃proj
N,yT

(ρ) dρ =

∫
‖ρ‖2N≤ε0

expHproj
N,yT

(ρ) dρ,∫
‖ρ‖2N>ε0

exp H̃proj
N,yT

(ρ) dρ ≤
∫
‖ρ‖2N>ε0

expHproj
N,yT

(ρ) dρ.

Combined with Lemma 6.9.6, it follows that with probability 1− oN (1),

ν̃projHN ,yT
(‖ρ‖2N ≤ ε0) ≥ νprojHN ,yT

(‖ρ‖2N ≤ ε0) ≥ 1− oN (1).

Since ν̃projHN ,yT
and νprojHN ,yT

are furthermore proportional on {‖ρ‖2N ≤ ε0}, the conclusion follows.

Proposition 6.9.8. For sufficiently large T , there exist Cmin, Cmax > 0 (depending on T ) such that with
probability 1− oN (1), for all ρ ∈ RN−1,

−CmaxIN−1 � ∇2H̃proj
N,yT

(ρ) � −CminIN−1.
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Proof. Let y = yT ŷ = y/‖y‖N , and assume without loss of generality ŷ =
√
N eN . Let U> = [IN−1,0] ∈

R(N−1)×N be the projection onto the orthogonal complement of ŷ .
A direct calculation shows

∇2H̃proj
N,y(ρ) =

〈∇HN,y(σy(ρ)),σy(ρ)〉
N(1 + ‖ρ‖2N )

(
−IN−1 +

3ρρ>

N(1 + ‖ρ‖2N )

)

+
〈∇2HN,y(σy(ρ)),σy(ρ)⊗2〉

N(1 + ‖ρ‖2N )2
· ρρ

>

N
+
U>∇2HN,y(σy(ρ))U

1 + ‖ρ‖2N

− ρσy(ρ)>∇2HN,y(σy(ρ))U +U>∇2HN,y(σy(ρ))σy(ρ)ρ>

N(1 + ‖ρ‖2N )

− ρ∇HN,y(σy(ρ))>U +U>∇HN,y(σy(ρ))ρ>

N(1 + ‖ρ‖2N )3/2

−

(
Tϕ′(‖ρ‖2N ) +

1

1 + ‖ρ‖2N

)
IN−1 −

(
Tϕ′′(‖ρ‖2N )− 1

(1 + ‖ρ‖2N )2

)
2ρρ>

N
.

By Proposition 6.3.6, there exists C > 0 (independent of T ) such that with probability 1− oN (1),

sup
σ∈SN

‖∇HN (σ)‖N , sup
σ∈SN

∥∥∇2HN (σ)
∥∥
op
≤ C.

We will show that on this event,

∇2H̃proj
N,y(ρ) =

‖y‖N
(1 + ‖ρ‖2N )3/2

(
−IN−1 +

3ρρ>

N(1 + ‖ρ‖2N )

)
− Tϕ′(‖ρ‖2N )IN−1

− Tϕ′′(‖ρ‖2N ) · 2ρρ>

N
+O(1), (6.262)

where O(1) denotes a matrix of operator norm O(1), independent of T . Note that

〈∇HN,y(σy(ρ)),σy(ρ)〉
N(1 + ‖ρ‖2N )

=
〈∇HN (σy(ρ)) + y,σy(ρ)〉

N(1 + ‖ρ‖2N )
=
〈∇HN (σy(ρ)),σy(ρ)〉

N(1 + ‖ρ‖2N )
+

‖y‖N
(1 + ‖ρ‖2N )3/2

.

The first term on the right-hand side is bounded independently of T , as

|〈∇HN (σy(ρ)),σy(ρ)〉|
N

≤ ‖∇HN (σy(ρ))‖N‖σy(ρ)‖N .

Similarly, all other terms in the expansion of ∇2H̃proj
N,y(ρ) above, aside from Tϕ′(‖ρ‖2N )IN−1 and Tϕ′′(‖ρ‖2N )·

2ρρ>

N , are bounded independently of T , due to the following inequalities:∥∥∇2HN,y(σy(ρ))
∥∥
op

=
∥∥∇2HN (σy(ρ))

∥∥
op

= O(1),∥∥∥U>∇HN,y(σy(ρ))ρ>
∥∥∥
op

N
≤
∥∥∥U>∇HN,y(σy(ρ))

∥∥∥
N
‖ρ‖N

=
∥∥∥U>∇HN (σy(ρ))

∥∥∥
N
‖ρ‖N ≤ O(1)‖ρ‖N ,

and
∥∥ρρ>∥∥

op
/N = ‖ρ‖2N ,

∥∥ρσy(ρ)>
∥∥
op
/N = ‖ρ‖N . (Note that each of these terms, each copy of ‖ρ‖2N

in the resulting bound is compensated by at least one copy of 1 + ‖ρ‖2N in the denominator.) This proves
(6.262).

With probability 1− oN (1), we have ‖y‖N =
√
T (T + 1) + oN (1). On this event, (6.262) yields

∇2H̃proj
N,y(ρ) = T (−M(ρ) + oT (1)),
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where oT (1) denotes a matrix with operator norm vanishing with T and

M(ρ) =
IN−1

(1 + ‖ρ‖2N )3/2
− 3ρρ>

N(1 + ‖ρ‖2N )5/2
+ ϕ′(‖ρ‖2N )IN−1 + ϕ′′(‖ρ‖2N ) · 2ρρ>

N
.

From this it is clear that −CmaxIN−1 � ∇2H̃proj
N,yT

(ρ) for suitable Cmax. For the other direction, note that

M(ρ) has eigenvalue 1
(1+‖ρ‖2N )3/2

+ ϕ′(‖ρ‖2N ) in all directions orthogonal to ρ, and

1− 2‖ρ‖2N
(1 + ‖ρ‖2N )5/2

+ ϕ′(‖ρ‖2N ) + 2‖ρ‖2Nϕ
′′(‖ρ‖2N )

in the direction of ρ. By (6.19), M(ρ) � ε0IN−1, and thus ∇2H̃proj
N,yT

(ρ) � −CminIN−1 for Cmin =

Tε0/2.

Finally, we verify that ϕ satisfying (6.19) exists.

Fact 6.9.9. For suitable C > 0, the function

ϕ(x) = C1{x > ε0}
(
x− ε2

0

x
− 2ε0 log

x

ε0

)
is nonnegative, twice continuously differentiable, and satisfies (6.19).

Proof. Note that for x > ε0,

ϕ′(x) = C
(

1− ε0

x

)2

, ϕ′′(x) =
2Cε

x2

(
1− ε0

x

)
.

Thus limx↓ε0 ϕ
′′(x) = 0, so ϕ is twice continuously differentiable. Note that ϕ′ ≥ 0, so integrating shows

ϕ ≥ 0. Let

C0 = min
x≥0

1− 2x

(1 + x)5/2

and set C so that C0 +ϕ′(2ε0) ≥ ε0. Note ϕ′′ ≥ 0, and thus ϕ′ is increasing; thus (6.19) holds for all x ≥ 2ε0.
For all x ∈ [0, 2ε0], we verify that

1

(1 + x)3/2
≥ 1− 2x

(1 + x)5/2
≥ 1− 4ε0

(1 + 2ε0)5/2
≥ ε0,

so (6.19) holds.

Proof of Proposition 6.9.2. By Proposition 6.9.8, ν̃projHN ,yT
is O(1)-smooth and strongly log-concave. By

[CLA+21, Theorem 3], MALA run for time χlog-conc = poly(N) outputs ρMALA ∼ νMALA, where TV(νMALA, ν̃projHN ,yT
) ≤

1/N . Combined with Corollary 6.9.7, we find that (with probability 1− oN (1)), TV(νprojHN ,yT
, νMALA) = oN (1).

Lemma 6.9.5 completes the proof.

6.10 Failure of stochastic localization in complementary regime

In this section, we prove Theorem 6.2.3. Similarly to Subsection 6.3.2, we may analyze the process (6.27)
by passing to a planted model. For any T > 0, let P̌, Q̌ ∈ P(SN ×HN × C([0, T ],RN × · · · × (RN )⊗J)) be
the laws of (σ, HN , (~yt)t∈[0,T ]), generated as follows.

• Under Q̌,
HN ∼ µnull, σ ∼ µHN , yjt = τj(t)σ

⊗j +Bj
τj(t)

, ∀j = 1, . . . , J,

for (B1
t , . . . ,B

J
t )t≥0 independent of (HN ,σ). Equivalently, HN ∼ µnull, (~yt)t≥0 is given by the

SDE (6.27), and for any odd j such that limt→∞ τj(t) = ∞, σ is the unique solution to σ⊗j =

limt→∞ y
j
t/τj(t).
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• Under P̌,
(HN ,σ) ∼ µpl, yjt = τj(t)σ

⊗j +Bj
τj(t)

, ∀j = 1, . . . , J,

for (B1
t , . . . ,B

J
t )t≥0 independent of (HN ,σ). Equivalently, we can generate first HN , then (~yt)t≥0 by

(6.27), and finally σ as above. Furthermore, the law of (HN ,σ) ∼ µpl can be described by either (6.34)
or (6.35).

Analogously to Proposition 6.3.4, we have

dP̌
dQ̌

(σ, HN , (~yt)t∈[0,T ]) =
Z(HN )

EZ(HN )
,

and this ratio is tight by Lemma 6.3.2. Thus P̌ and Q̌ are mutually contiguous.
Therefore, it suffices to analyze the AMP iteration (6.30) under P̌. Similarly to (6.38), we find that

conditional on ~yt, the posterior law of σ under P̌ is

µ̌t(dσ) =
1

Z
exp ȞN,t(σ)µ0(dσ),

where

ȞN,t(σ) = Nξ(〈x,σ〉N ) + H̃N (σ) +

J∑
j=1

1

N j−1
〈yjt ,σ⊗j〉

d
= Nξ̌t(〈x,σ〉N ) + H̃N,t(σ),

for H̃N,t a spin glass with mixture

ξ̌t(q) = ξ(q) +

J∑
j=1

τj(t)
2qj .

Let qAMP = qAMP(t) be the smallest solution to ξ̌′t(q) = q
1−q . Note that a solution exists because ξ̌′t(0) ≥ 0 and

limq↑1
q

1−q = +∞.

Proposition 6.10.1. We have

lim
k→∞

p-lim
N→∞

〈x, m̌k〉N = lim
k→∞

p-lim
N→∞

〈m̌k, m̌k〉N = qAMP.

Consequently, for all 1 ≤ j ≤ J ,

lim
k→∞

lim
N→∞

E
1

N j

∥∥x⊗j − (m̌k)⊗j
∥∥2

2
= 1− qjAMP.

Proof. Since q 7→ ξ̌′t(q)

1+ξ̌′t(q)
is increasing, the sequence (q̌k)k≥0 defined in (6.29) is increasing. Furthermore, if

q̌k ≤ qAMP, then

q̌k+1 =
ξ̌′t(q̌k)

1 + ξ̌′t(q̌k)
≤ ξ̌′t(qAMP)

1 + ξ̌′t(qAMP)
= qAMP,

and therefore by induction (q̌k)k≥0 is bounded above by qAMP. As the limit of (q̌k)k≥0 must be a fixed point

of q 7→ ξ̌′t(q)

1+ξ̌′t(q)
, we have limk→∞ q̌k = qAMP. By state evolution, similarly to the proof of Proposition 6.4.3,

the first conclusion follows. Since

1

N j

∥∥x⊗j − (m̌k)⊗j
∥∥2

2
= 〈x,x〉jN − 2〈x, m̌k〉jN + 〈m̌k, m̌k〉jN ,

the second conclusion follows from the first.

Let
Qbayes = Qbayes(t) = arg max

q∈[0,1)

{
ξ̌t(q) + q + log(1− q)

}
⊆ [0, 1) (6.263)

be the set of all maximizers of this quantity, and let

qbayes = qbayes(t) = inf Qbayes(t).
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Lemma 6.10.2. For any t, the equation ξ̌′t(q) = q
1−q has finitely many solutions q ∈ [0, 1). Moreover,

Qbayes(t) is a finite set for all t. If T1 ⊆ [0,+∞) is the set of t1 such that |Qbayes(t1)| > 1, then for each
t1 ∈ T1, there exists δ > 0 such that (t1 − δ, t1 + δ) ∩ T1 = {t1}.

Proof. Let ft(q) = (1−q)ξ̌′t(q)−q, so any solution to ξ̌′t(q) = q
1−q is a zero of ft. Note that ft is not identically

zero: if it were, then ξ̌′t(q) = q
1−q , contradicting that the coefficients γ2

p of ξ satisfy
∑
p≥2 2pγ2

p < ∞. Since
ft is complex analytic in the unit disc, its zero set has no limit point, and in particular it has finitely many
zeros in [0, 1). This shows that there are finitely many solutions to ξ̌′t(q) = q

1−q .

Note that d
dq (ξ̌t(q) + q + log(1 − q)) = ξ̌′t(q) −

q
1−q . Any interior maximizer of (6.263) must therefore

satisfy the stationarity condition ξ̌′t(q) = q
1−q . Since ξ̌′t(0) ≥ 0, 0 can be a maximizer only if it also solves

this equation. Thus Qbayes(t) is finite.
Consider an arbitrary t1 ∈ T1 and let Q = Qbayes(t1). For each q̃ ∈ Q, let Iq̃ = [q̃ − ε, q̃ + ε], where

ε > 0 is small enough that these intervals do not overlap. By continuity, for sufficiently small δ and all
t ∈ (t1 − δ, t1 + δ), all maximizers of ξ̌t(q) + q + log(1− q) lie in

⋃
q̃∈Q Iq̃. Let

m(t, q̃) = max
q∈Iq̃

{
ξ̌t(q) + q + log(1− q)

}
, q(t, q̃) = arg max

q∈Iq̃

{
ξ̌t(q) + q + log(1− q)

}
.

Note that q(t1, q̃) = q̃ for each q̃ ∈ Q. Since the maximum of ξ̌t1(q) + q + log(1 − q) is attained over Iq̃
uniquely at q̃, by continuity limt→t1 q(t, q̃) = q̃.

For q̃ ∈ Q, t ∈ (t1, t1 + δ), we have

m(t, q̃)−m(t1, q̃)

t− t1
≥ ξ̌t(q(t1, q̃))− ξ̌t1(q(t1, q̃))

t− t1
=

J∑
j=1

τ ′j(t1)q(t1, q̃)
j +O(t− t1),

m(t, q̃)−m(t1, q̃)

t− t1
≤ ξ̌t(q(t, q̃))− ξ̌t1(q(t, q̃))

t− t1
=

J∑
j=1

τ ′j(t1)q(t, q̃)j +O(t− t1).

Taking the limit t ↓ t1 yields

lim
t↓t1

m(t, q̃)−m(t1, q̃)

t− t1
=

J∑
j=1

τ ′j(t1)q̃j .

A similar argument shows the left-derivative is also equal to this. Therefore

∂

∂t
m(t, q̃)

∣∣
t=t1

=

J∑
j=1

τ ′j(t1)q̃j .

This quantity is distinct for different q̃ ∈ Q. Therefore, for all t ∈ (t1 − δ, t1 + δ) \ {t1}, |Qbayes(t)| = 1.

Proposition 6.10.3. Suppose t 6∈ T1 satisfies qbayes(t) > 0. Let ξ̌t(q) =
∑
p≥1 β

2
pq
p (where we suppress

the dependence of the βp on t). For any p such that βp > 0, we have (recall the definition of mp(~yt, t) in
Eq. (6.28)):

lim
N→∞

E
1

Np

∥∥x⊗p −mp(~yt, t)
∥∥2

2
= 1− qpbayes.

We first prove a preparatory lemma. In what follows, we let β̃p′ = βp′ be fixed for all p′ 6= p and treat β̃p

as a variable. Define ξ̃(q) =
∑
p′≥1 β̃

2
p′q

p′ ; we sometimes emphasize the dependence on β̃p by writing ξ̃β̃p(q).
Let P denote the Parisi functional for spherical spin glasses, see e.g. [Tal06a, Equation (1.12)]. (In the proof
below we will only need the replica-symmetric case of this functional, which is given in Proposition 6.5.14.)
Further, for q ∈ (−1, 1), let

ξ̃q(s) = ξ̃(q2 + (1− q2)s)− ξ̃(q2),

and define

P (β̃p) = sup
q∈[0,1)

{
ξ̃(q) + P(ξ̃q) +

1

2
log(1− q2)

}
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Lemma 6.10.4. Assume the setting of Proposition 6.10.3. For all β̃p in a neighborhood of βp,

P (β̃p) =
1

2
sup
q∈[0,1)

{
ξ̃(1) + ξ̃(q) + q + log(1− q)

}
. (6.264)

Furthermore, P is differentiable at βp, with

P ′(βp) = βp(1 + qpbayes). (6.265)

Proof. By Proposition 6.5.14 with u = q
1+q , for all q ∈ [0, 1),

P(ξ̃q) ≤
1

2

{
ξ̃q(1)− ξ̃q(u) +

u

1− u
+ log(1− u)

}
=

1

2

{
ξ̃(1)− ξ̃(q) + q − log(1 + q)

}
, (6.266)

and thus

P (β̃p) ≤
1

2
sup
q∈[0,1)

{
ξ̃(1) + ξ̃(q) + q + log(1− q)

}
.

Since limq↑1 log(1−q) = −∞, the supremum is attained. Let q(β̃p) denote the maximizer. Arguing identically

to the proof of Proposition 6.5.15, (6.266) is an equality at q = q(β̃p). This proves (6.264).

Note that q(βp) = qbayes by definition. Since t 6∈ T1, the maximum in (6.264) at β̃p = βp is attained

uniquely at qbayes. By continuity, limβ̃p→βp q(β̃p) = qbayes as well. Note that for any β̃p > βp,

P (β̃p)− P (βp)

β̃p − βp
≥ ξ̃β̃p(1) + ξ̃β̃p(q(βp))− ξ̃βp(1)− ξ̃βp(q(βp))

β̃p − βp
= 2βp(1 + q(βp)

p) +O(β̃p − βp),

P (β̃p)− P (βp)

β̃p − βp
≤ ξ̃β̃p(1) + ξ̃β̃p(q(β̃p))− ξ̃βp(1)− ξ̃βp(q(β̃p))

β̃p − βp
= 2βp(1 + q(β̃p)

p) +O(β̃p − βp).

Taking the limit β̃p ↓ βp yields

lim
β̃p↓βp

P (β̃p)− P (βp)

β̃p − βp
= 2βp(1 + qpbayes).

A similar argument shows the left derivative also equals this, proving (6.265).

Proof of Proposition 6.10.3. Let H̃N be a spin glass Hamiltonian with mixture ξ̃, and let

FN (β̃p) =
1

N
E log

∫
SN

exp
{
Nξ̃(〈x,σ〉N ) + H̃N (σ)

}
dµ0(σ).

Since the restriction of H̃N to the band 〈x,σ〉N = q is a spin glass with mixture ξ̃q, the Parisi formula
[Tal06a, Theorem 1.1] implies

lim
N→∞

FN (β̃p) = sup
q∈(−1,1)

{
ξ̃(q) + P(ξ̃q) +

1

2
log(1− q2)

}
.

This equals P (β̃p) because the supremum over (−1, 0] is clearly at most the supremum over [0, 1). By

Hölder’s inequality, FN (β̃p) is convex in β̃p. So, for any δ > 0,

FN (βp)− FN (βp − δ)
δ

≤ F ′N (βp) ≤
FN (βp + δ)− FN (βp)

δ
.

Differentiability of P (by Lemma 6.10.4) then implies

lim
N→∞

F ′N (βp) = P ′(βp) = βp(1 + qpbayes). (6.267)
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Let 〈·〉 denote average w.r.t. the Gibbs measure corresponding to Hamiltonian ȞN,t, which coincides in law

with Nξ̃(〈x,σ〉N ) + H̃N (σ) for β̃p = βp. Note that mp(~yt, t) = 〈σ⊗p〉. We calculate that

F ′N (βp) = 2βpE〈〈x,σ〉pN 〉+ βp (1− E〈〈σ,σ〉pN 〉)

= βp

(
1 + 2E

〈x⊗p,mp(~yt, t)〉
Np

− E
〈mp(~yt, t),mp(~yt, t)〉

Np

)
.

Comparing with (6.267) shows

lim
N→∞

{
2E
〈x⊗p,mp(~yt, t)〉

Np
− E
〈mp(~yt, t),mp(~yt, t)〉

Np

}
= qpbayes.

Since

E
1

Np

∥∥x⊗p −mp(~yt, t)
∥∥2

2
= 1− 2E

〈x⊗p,mp(~yt, t)〉
Np

+ E
〈mp(~yt, t),mp(~yt, t)〉

Np
,

the result follows.

Lemma 6.10.5. If there exists q ∈ [0, 1) such that ξ′′(q) > 1
(1−q)2 , then there exists t ≥ 0 such that

ξ̌′t(q) = q
1−q has more than one solution.

Proof. Let gt(q) = ξ̌′t(q) −
q

1−q , so solutions to ξ̌′t(q) = q
1−q are zeros of gt. Suppose for contradiction that

for all t ≥ 0, gt has unique zero qAMP(t). Then, for all t, gt > 0 on [0, qAMP(t)) (this is vacuous if qAMP(t) = 0)
and gt < 0 on (qAMP(t), 1). Note that for each q, gt(q) is continuous and increasing in t, and thus qAMP(t) is
also continuous and increasing.

Recall that ‖τ(t)‖1 = t for all t. For each q ∈ (0, 1),

gt(q) ≥
J∑
j=1

jτj(t)q
j−1 − q

1− q
≥ ‖τ(t)‖1qJ−1 − q

1− q
= tqJ−1 − q

1− q
. (6.268)

It follows that gt(q) > 0 for sufficiently large t. Thus limt→+∞ gAMP(t) = 1, so qAMP(t) ranges over all of [0, 1)
as t ranges over [0,+∞).

Since ξ′′(q) > 1
(1−q)2 for some q ∈ [0, 1), the function g0 is not monotonically decreasing. Let 0 ≤ q1 <

q2 < 1 be such that g0(q1) < g0(q2). Note that

gt(q1)− g0(q1) =

J∑
j=1

jτj(t)q
j−1
1 ≤

J∑
j=1

jτj(t)q
j−1
2 = gt(q2)− g0(q2).

Thus gt(q1) < gt(q2). Set t such that q1 = qAMP(t), so that gt(q1) = 0. This implies that gt(q2) > 0, and
therefore gt has another zero in [q2, 1).

Lemma 6.10.6. If there exists t ≥ 0 such that ξ̌′t(q) = q
1−q has more than one solution, then there exists a

nontrivial interval I = [t−, t+] ⊆ [0,+∞) such that for all t′ ∈ I, qAMP(t
′) 6= qbayes(t

′).

Proof. Let gt be defined as in the proof of Lemma 6.10.5 and q1 = qAMP(t), so that q1 is the smallest zero
of gt. Let q2 > q1 be the next smallest zero of gt. Note that by Lemma 6.10.2, either gt(q) > 0 for all
q ∈ (q1, q2) or gt(q) < 0 for all q ∈ (q1, q2).

Suppose the former case holds. We will show the conclusion holds with I = [t, t− δ] for small δ. We first
show that we must have t > 0, so this is a valid interval. Suppose for contradiction that t = 0; then q1 = 0.
So, g0(q) = ξ′(q)− q

1−q is positive on (0, q2). This implies that for q ∈ (0, q2],

ξ(q) + q + log(1− q) =

∫ q

0

g0(s) ds > 0,

contradicting (6.31). Note that(
ξ̌t(q2) + q2 + log(1− q2)

)
−
(
ξ̌t(q1) + q1 + log(1− q1)

)
=

∫ q2

q1

gt(q) dq > 0.
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We claim that qAMP(t
′) is continuous on t′ ∈ I, for small enough δ. If q1 = 0, this is clear because qAMP(t) is

increasing. Otherwise, since gt(0) ≥ 0 and q1 is the smallest zero of gt, we have gt(q) > 0 for q ∈ [0, q1).
Since the gt(q) are continuous and increasing in t, the claim follows. It follows that for sufficiently small δ,
for all t′ ∈ I and q′1 = qAMP(t

′),(
ξ̌t′(q2) + q2 + log(1− q2)

)
−
(
ξ̌t′(q

′
1) + q′1 + log(1− q′1)

)
> 0.

Thus qAMP(t
′) 6= qbayes(t

′) for all t′ ∈ I.
Finally, we consider the case that gt(q) < 0 for all q ∈ (q1, q2). Then, gt > 0 on [0, q1) (vacuously if

q1 = 0) and gt < 0 on (q1, q2). Let t′′ be the smallest time such that infq∈[q1,q2] gt′′(q) ≥ 0; this is finite
by the discussion surrounding (6.268). Since gt(q) is increasing in t, we have gt′′ ≥ 0 for q ∈ [0, q2], with
equality attained at some q ∈ [q1, q2]. By definition, qAMP(t

′′) is the smallest such q. As ft′′(q2) > gt(q2) = 0,
we have qAMP(t

′′) < q2. The result now follows from the first case.

Proof of Theorem 6.2.3. By the last two lemmas, there exists a nontrivial interval I = [t−, t+] ⊆ [0,+∞)
such that qAMP(t) 6= qbayes(t) for all t ∈ I. Since qbayes(t) is a maximizer of (6.263), it satisfies the stationarity
condition ξ̌′t(q) = q

1−q , and therefore qAMP(t) < qbayes(t). It also follows that qbayes(t) > 0.

Let U(t) be the number of nonzero coefficients of ξ̌t of degree at most J . This is an increasing function
with at most J discontinuities; let T0 be the set of these discontinuities.

We will show the theorem holds with I = I \ (T0 ∪ T1). (Recall the definition of T1 in Lemma 6.10.2.)
This is a positive measure set by Lemma 6.10.2. Consider any t ∈ I. Since t 6∈ T0, there exists 1 ≤ j ≤ J
such that the qj coefficient of ξ̌t is positive and τ ′j(t) > 0. By Propositions 6.10.1 and 6.10.3,

lim
k→∞

lim
N→∞

E
1

N j

∥∥x⊗j − (m̌k)⊗j
∥∥2

2
= 1− qAMP(t)

j ,

lim
N→∞

E
1

N j
‖x⊗j −mj(~yt, t)‖2 ≤ 1− qbayes(t)j .

Since qAMP(t) < qbayes(t), the conclusion follows.
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Chapter 7

Weak Poincaré inequalities, simulated
annealing, and sampling from
spherical spin glasses

Abstract – There has been a recent surge of powerful tools to show rapid mixing of Markov chains, via
functional inequalities such as Poincaré inequalities. In many situations, Markov chains fail to mix rapidly
from a worst-case initialization, yet are expected to approximately sample from a random initialization.
For example, this occurs if the target distribution has metastable states, small clusters accounting for a
vanishing fraction of the mass that are essentially disconnected from the bulk of the measure. Under
such conditions, a Poincaré inequality cannot hold, necessitating new tools to prove sampling guarantees.

We develop a framework to analyze simulated annealing, based on establishing so-called weak Poincaré
inequalities. These inequalities imply mixing from a suitably warm start, and simulated annealing pro-
vides a way to chain such warm starts together into a sampling algorithm. We further identify a local-to-
global principle to prove weak Poincaré inequalities, mirroring the spectral independence and localization
schemes frameworks for analyzing mixing times of Markov chains.

As our main application, we prove that simulated annealing samples from the Gibbs measure of a spherical
spin glass for inverse temperatures up to a natural threshold, matching recent algorithms based on
algorithmic stochastic localization. This provides the first Markov chain sampling guarantee that holds
beyond the uniqueness threshold for spherical spin glasses, where mixing from a worst-case initialization
is provably slow due to the presence of metastable states. As an ingredient in our proof, we prove bounds
on the operator norm of the covariance matrix of spherical spin glasses in the full replica-symmetric
regime.

Additionally, we resolve a question related to sampling using data-based initializations.

7.1 Introduction

A common task of interest in computer science, probability, and physics is to efficiently sample from Gibbs
distributions. For a Hamiltonian energy function H : Ω→ R over state space Ω ⊆ RN , the associated Gibbs
distribution µH is defined by dµH(x) ∝ exp(H(x))dx.

The class of Markov chain Monte Carlo (MCMC) algorithms is arguably the most widely used tool for
sampling from Gibbs distributions. In this paradigm, one sets up a Markov chain PH whose stationary
distribution is µH , and outputs the final state of a poly(N)-time random walk according to PH . Common
choices include the Glauber dynamics, for discrete state spaces such as Ω = {±1}N , and the Langevin
diffusion, for continuous state spaces such as Ω = RN or

√
N · SN−1.

To prove that such an algorithm indeed correctly samples from µH , one bounds the mixing time of
the Markov chain. A common route to prove a bound on the mixing time is to establish functional in-
equalities, such as Poincaré inequalities. There are now powerful frameworks for proving such functional
inequalities, such as spectral independence [ALO21] and localization schemes [CE22]. The development of
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these frameworks has led to a flurry of activity in analyzing mixing times of Markov chains, including
the resolution of several long-standing open problems in the algorithmic theory of counting and sampling
[ALOV24, ALO21, AJK+22, EKZ22, CE22].

The implications of these inequalities are quite strong. In particular, they imply that for any initial
distribution ν, for an appropriate divergence function, a single step of the Markov chain shrinks the distance
to the stationary distribution by a significant multiplicative factor:

Divergence(PHν‖µH) ≤
(

1− 1

poly(N)

)
Divergence(ν‖µH) .

The presence of such a functional inequality typically implies that a Markov chain mixes rapidly from a
worst-case initialization.

Sampling from random initializations. Many natural Markov chains are expected to produce approx-
imate samples from the Gibbs measure when started at a random initialization, but fail to mix rapidly from
a worst-case initialization. Often, this is because the Gibbs measure contains pathological clusters (termed
metastable states in the physics literature) that are essentially disconnected from most of the measure, and
account for a vanishing fraction of the total mass. A Markov chain initialized in such a cluster will remain
trapped inside it and fail to mix, and therefore methods that show mixing from worst-case initializations
cannot give effective guarantees in such settings.

However, one may still hope to show that from a random initialization, the Markov chain samples from
the non-pathological part of the Gibbs measure, which is statistically indistinguishable from the true Gibbs
measure. In our work, we prove that under suitable conditions, the simulated annealing algorithm samples
from a distribution close to the Gibbs measure.

Simulated annealing. In the simulated annealing algorithm, one defines a “schedule” of inverse tempera-
tures, i.e. for i = 0, . . . , T , let βi := i/T . The algorithm initializes at a sample from the uniform distribution
µβ0H . Then, for i = 1, . . . , T , the i-th stage of the algorithm runs the Markov chain PβiH corresponding to
µβiH for poly(N) time, initialized at the output of the previous stage.

The underlying idea of this algorithm is that, for T sufficiently large, the Gibbs distribution µβi−1H is
a “warm start” for µβiH , i.e. an initialization with suitably bounded likelihood ratio with µβiH . So, if one
could show that each of the Markov chains PβiH (approximately) mixes rapidly from a warm start, one may
inductively argue that the output of the i-th stage of the algorithm is an approximate sample from µβiH . In
other words, simulated annealing chains a sequence of warm starts together into a sampling algorithm.

This algorithmic idea is widely used empirically, and has also been employed to obtain algorithms for
approximating the volumes of convex bodies [DFK91, DF91, LS90, KLS97], approximating the number of
perfect matchings in a bipartite graph [JSV04], and sampling from the random field Ising model at sufficiently
high temperatures [AEGP23], among others. However, we lack a general theory for why simulated annealing
achieves provable guarantees beyond the settings of sampling from log-concave distributions and convex
bodies. Indeed, in contrast to the general recipes available to prove mixing from worst-case initialization,
proofs of rapid mixing from warm starts often employ ad-hoc arguments.

One of the main contributions of this work is a framework for proving mixing from warm starts, which
combined with the above discussion provides general sufficient conditions under which simulated annealing
samples from the Gibbs measure. We achieve this by generalizing the frameworks of spectral independence
and localization schemes, previously employed to prove mixing from worst-case initialization, to show mixing
from warm starts (see Section 7.6 for details). As we discuss just below, our framework gives sampling
guarantees for simulated annealing in regimes where mixing from worst-case initializations is provably false.

Main application: spherical spin glasses. In a spherical mixed p-spin glass, H :
√
N · SN−1 → R is a

random Hamiltonian parameterized by coefficients β, γ2, . . . , γp∗ ≥ 0 where:

H(σ) = β
∑
p≥2

γp
N (p−1)/2

∑
i1,...,ip

gi1,...,ipσi1 · · ·σip , (7.1)
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for i.i.d. gi1,...,ip ∼ N (0, 1). The Gibbs distribution µH is very well-studied in probability, statistical physics,
and average-case algorithm design, as it simultaneously exhibits rich behavior and is amenable to analytic
tools. Notably, this model undergoes numerous sharp phase transitions as one increases β. For small β, the
model satisfies a Poincaré inequality [GJ19]. Beyond a uniqueness transition βuniq, small isolated clusters
in µH known as metastable states start to appear [BJ24]. In particular, the natural Markov chain Langevin
diffusion initialized from such states mixes slowly, thereby precluding a Poincaré inequality. However, these
states account for a vanishing fraction of the measure under µH , and the Langevin diffusion with a random
initialization is expected to still mix rapidly over a 1 − oN (1) fraction of µH , thereby producing a sample
with vanishing total variation distance from µH .

The threshold for efficient algorithmic sampling is believed to occur at the shattering transition βsh—
beyond this transition, the Gibbs measure shatters into an exponential number of poorly-connected clusters
with exponentially small mass, and mixing is provably slow [CHS93, AMS25, GJK23]. It is expected that
all efficient algorithms fail to sample from the Gibbs measure above βsh, and recently [AMS25] gave rigorous
evidence for this picture by showing that all stable algorithms fail.

We use our framework to prove that annealed Langevin diffusion, where one begins by running Langevin
diffusion for β0 = 0, and slowly increases the inverse temperature to the target β, samples from the spherical
mixed p-spin glass. This leads to the first rigorous guarantee in this problem for a Markov chain beyond the
uniqueness threshold.

Theorem 7.1.1 (Informal). For any choice of γ2, . . . , γp∗ , there is a threshold βSL ≤ βsh such that for any

β < βSL, with probability at least 1− e−Ω(N1/5) over the randomness of H, annealed Langevin diffusion run

for poly(N) time samples from a distribution whose total variation distance to µH is at most e−Ω(N1/5).

The thresholds βSL and βsh are formally defined as the supremal β such that the inequalities (SL) and
(Non-shattering) below hold. The recent work [HMP24] produces a different sampling algorithm based on
algorithmic stochastic localization, which succeeds to the same threshold βSL; see below for further discussion.
This threshold is a fundamental barrier for stochastic localization based approaches, and we explain its
physical significance in Remark 7.7.4.

Remark 7.1.2. In many models, we have βuniq < βSL < βsh, and βSL is close to βsh. For example, for the
pure p-spin models (where γp = 1 and all the other γi are equal to 0), βuniq � (log p)−1/2, while βSL, βsh � 1
and βSL/βsh is bounded from below by the universal constant

√
e/2. See [HMP24, Remark 1.1, Eq. 1.8].

7.1.1 Weak Poincaré inequalities and localization schemes

The starting point of our work is a relaxation of Poincaré inequalities, known as weak Poincaré inequalities,
which can be leveraged to prove mixing from warm starts. To simplify the discussion, we restrict here to
the setting of discrete Markov chains. Our main application is to a continuous Markov chain, namely the
Langevin diffusion for a spherical spin glass, and we outline the differences in Remark 7.1.7 below.

Let PH be a time-reversible Markov chain with stationary distribution µH . For any functions f, g : Ω→ R,
define the Dirichlet form as E(f, g) := Ex∼µH Ey∼PHx(f(x) − f(y))(g(x) − g(y)). We say PH satisfies a
C-Poincaré inequality if for any function f : Ω→ R:

E(f, f) ≥ C · Var[f ] ,

for C ≥ 1/poly(N). A Poincaré inequality has a classic implication for rapid mixing. In particular, for νt as
the distribution obtained by running PH for continuous time t starting at a distribution ν0, we have:

χ2(νt‖µH) ≤ exp(−Ct) · χ2(ν0‖µH) .

We say PH satisfies a (C, ε)-weak Poincaré inequality if for any function f : Ω→ R:

E(f, f) ≥ C · Var[f ]− ε · ‖f − E f‖2∞
One can derive the following mixing guarantee from a weak Poincaré inequality; see, e.g., [RW01, Theorem
2.1].

χ2(νt‖µH) ≤ exp(−Ct) · χ2(ν0‖µH) + ε ·
∥∥∥∥ dν0

dµH
− 1

∥∥∥∥2

∞
. (7.2)
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In particular, if ν0 is a warm start for µH in the sense that
∥∥∥ dν0
dµH
− 1
∥∥∥
∞

is suitably small, this implies that

the Markov chain’s output distribution νt approximates µH .
Since the target measure in one stage of simulated annealing is a warm start for that of the next stage, such

a guarantee allows one to inductively argue that simulated annealing succeeds at sampling. We summarize
this implication below.

Theorem 7.1.3 (Informal, see Theorem 7.4.12). If PβH satisfies a weak Poincaré inequality with suitable
parameters for every β ∈ [0, 1], then simulated annealing succeeds at sampling from µH .

Localization schemes for weak Poincaré inequalities. We restrict to the following simple setting:
µH is a distribution on {±1}N . Let PH be the Glauber dynamics Markov chain where in a single step from
x, we pick a uniformly random coordinate i ∼ [N ], and toggle xi with probability:

µH(x⊕i)

µH(x) + µH(x⊕i)
.

A special case of the localization schemes framework is the spectral independence framework of Anari, Liu,
and Oveis Gharan [ALO21].

Theorem 7.1.4 ([AL20, ALO21]). The following local-to-global principle reduces proving a Poincaré in-
equality to establishing bounds on the spectrum of influence matrices. Suppose for every S ⊆ [N ], and
every pinning xS of coordinates in S, the spectral norm of its influence matrix ΨS,xS is at most α, then
the Glauber dynamics chain satisfies a n−O(α)-Poincaré inequality. Here, the influence matrix ΨS,xS is an
(n− |S|)× (n− |S|) matrix indexed by vertices v /∈ S, where

ΨS,xS [a, b] := Pr[xa = +1|xb = +1]− Pr[xa = −1|xb = +1] .

While the above theorem has been influential and useful in proving mixing time bounds for a variety
of Markov chains relevant to sampling combinatorial structures, the “for every” requirement in the above
theorem is quite punishing in average-case settings. For example, in the presence of metastable states, PH
does not satisfy a Poincaré inequality, but may nevertheless satisfy a weak Poincaré inequality. In such
cases, there are choices of S and xS for which ΨS,xS has large spectral norm, and the above statement has
no implications for the mixing time of PH .

We give a general local-to-global principle to prove weak Poincaré inequalities. A one-line summary of
this local-to-global principle is:

Bounded influence over all pinnings implies a Poincaré inequality.

An analogous summary of the local-to-global principle in the present paper is:

Bounded influence over typical pinnings implies a weak Poincaré inequality.

To give a more concrete instantiation of our message, our result implies a “softer” version of Theorem 7.1.4,
tolerant to some “bad” pinnings, which we state below.

Theorem 7.1.5 (Special case of Lemma 7.6.8). Let i1, . . . , iN be a random permutation of [N ], let St :=
{i1, . . . , it}, and let x ∼ µH . Suppose with probability 1 − ε over the randomness of x and the permutation
i1, . . . , iN , we have that for every t ∈ [N ], the influence matrix ΨSt,xSt

has spectral norm bounded by α.

Then, PH satisfies a (n−O(α), O(ε))-weak Poincaré inequality.

Remark 7.1.6. The reader should think of the spectral norm of ΨSt,xSt
as quantifying how much variance

of the distribution µH |xSt is “explained” by revealing xit+1 .

Remark 7.1.7. Theorem 7.1.5 holds at a more general level, for a large family of localization schemes; see
[CE22] for examples of localization schemes and further discussion. The localization scheme at play in the
above local-to-global principle is process of revealing coordinates of a Gibbs sample x in random order.

In our main application of sampling from a spherical spin glass using simulated annealing of Langevin
diffusion, we consider a different localization scheme, stochastic localization, where the revealed information
at time t is yt = tx+Bt where (Bt)t≥0 is a standard Brownian motion. Analyzing this localization scheme
requires studying exponential tilts rather than pinnings of µH . The analogous local-to-global principle in
this setting is:
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Bounded covariance over typical exponential tilts implies a weak Poincaré inequality.

We defer a technical discussion to Section 7.2, and refer to Lemma 7.6.8 for a formal statement.

7.1.2 Sampling from spherical spin glasses

We now state our main results for sampling from spherical spin glasses. We will encode the coefficients
γ2, . . . , γp∗ in (7.1) into the mixture function ξ(q) =

∑p∗
p=2 γ

2
pq
p. Note that the parameter β in (7.1) can

of course be absorbed into the γp, so we can state thresholds directly in terms of the function ξ. Physics
heuristics [CHS93] suggest that Glauber dynamics and Langevin diffusion, with random initialization, sample
from µH with vanishing total variation error under the following condition. Note that this and the below
conditions take the form of an upper bound on ξ or its derivatives, and therefore demarcate a region of
sufficiently high temperature.

ξ′(q) <
q

1− q
for all q ∈ (0, 1). (Non-shattering)

Recent work by one of the authors, Montanari, and Pham [HMP24] gives an algorithm based on simulating
Eldan’s stochastic localization process [Eld13, Eld20b] (see below), which samples from µH with vanishing
total variation error under the following condition.

ξ′′(q) <
1

(1− q)2
for all q ∈ [0, 1). (SL)

Note that this condition implies (Non-shattering), which can be seen by integrating the inequality. [HMP24]
also shows a matching hardness result, that for any strictly replica symmetric model (see (Strict RS) below)
not satisfying (SL), a generalized family of stochastic localization algorithms fails to sample from µH .

Our main result is that simulated annealing samples from µH in the same regime.

Theorem 7.1.8 (See Theorem 7.7.2). Under (SL), with probability at least 1− e−Ω(N1/5) over the random-
ness of H, annealed Langevin dynamics produces a sample whose total variation distance to µH is at most

e−Ω(N1/5).

As alluded to in the above discussion, the main input to our framework is a high-probability covariance
bound on the random exponential tilts of the Gibbs measure encountered along the stochastic localization
process. Combined with our weak Poincaré inequality framework, this implies that simulated annealing
samples from the Gibbs measure. On the way to proving these covariance bounds, we establish a high-
probability covariance bound on all spherical spin glasses in the (strictly) replica symmetric phase, a high-
temperature phase where the model enjoys a certain notion of correlation decay.

ξ′′(0) < 1 and ξ(q) + q + log(1− q) < 0 for all q ∈ (0, 1). (Strict RS)

Theorem 7.1.9 (Informal, see Theorem 7.7.32). Under (Strict RS), with probability 1− e−Ω(N1/5) over the
randomness of H, ‖Cov(µH)‖op = O(1).

This is the first covariance bound to cover the entire replica symmetric phase with higher order interac-
tions, and we believe it is interesting in its own right. This result is sharp: in the complement of the replica
symmetric regime, arguing as in [AG24, Proposition 4.2] shows that E ‖Cov(µH)‖op is diverging, of order

Ω(
√
N).

The relation between (SL) and (Strict RS) is as follows. First, (Strict RS) follows from (SL) by integrating
twice. Second, (SL) is equivalent to the condition that random exponential tilts of µH of any magnitude are
typically replica symmetric. This is needed for the algorithmic stochastic localization approach of [HMP24],
and arises in the current work (where stochastic localization appears as an analysis tool, rather than as an
algorithm) for a similar reason, see Remark 7.7.4.

The connection from Theorem 7.1.9 to high-probability covariance bounds on the tilted measures en-
countered along the localization process relies on a reduction developed in [HMP24]. This reduction implies
that typically, the vast majority of the mass of these tilted measures live near a certain codimension-2 band
passing through a TAP fixed point, which behaves like a spin glass in two fewer dimensions. The proof of
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Theorem 7.1.9 also builds on tools developed in [HMP24], and by one of the authors and Sellke in [HS23b],
which together provide high-precision control of partition functions in the replica symmetric regime.

On the other hand, our approach also leads to several improvements over earlier results. First, we obtain

a sampler with total variation error e−Ω(N1/5) with probability 1−e−Ω(N1/5), whereas [HMP24] obtains total
variation error N−ε with probability 1−N−ε, for small constant ε. Our total variation error is close to the
best possible, as beyond the uniqueness threshold, at least a e−O(N) fraction of µH is typically trapped in
metastable states [BJ24], which are hard to reach. Moreover, there is no longer a need to encode a mean
estimator for the stochastic localization process (see below) directly in the algorithm; running a natural
Markov chain is sufficient.

More conceptually, our work gives the first analysis of a Markov chain for this problem that “sees” the
benignness of a random initialization and overcomes the uniqueness threshold.

7.1.3 Weak Poincaré inequalities beyond annealing

The discussion thus far has been focused on proving mixing time bounds for Markov chains initialized at
warm starts. In fact, our framework extends beyond this and can be used to prove rapid mixing of a Markov
chain initialized at a distribution that “sees” the different components of the target distribution. For instance,
consider the simple scenario where the target distribution π is a mixture of two disconnected component
distributions, each of which satisfies a (true) Poincaré inequality. The disconnectedness means that the full
distribution π does not satisfy a true Poincaré inequality. However, if we initialize at a distribution that
splits its mass equally between the two components, we would expect a Markov chain to rapidly mix to the
target distribution.

How does one convert this belief to a (generalizable) proof? The key is that while the distribution may
not satisfy a Poincaré inequality for all functions, a variant of such an inequality does hold for functions
encountered along the trajectory of the Markov chain. More concretely, we may prove the following theorem.

Theorem 7.1.10 (Informal, see Theorem 7.4.6). Consider the trajectory (νt)t≥0 of a Markov chain with
stationary distribution π, initialized at a distribution ν0. Suppose that for all s ≤ T ,

E
(
dνs
dπ

,
dνs
dπ

)
≥ ρPI

(
Varπ

[
dνs
dπ

]
− δ
)
.

Then,
χ2(νT ‖π) ≤ e−2ρPITχ2(ν0‖π) + δ.

We remark that our earlier equation (7.2) is a near-immediate consequence of the above. Returning to
the above example with two disconnected components, if νs placed exactly half its mass on each of the two
components, the error δ can be taken to be 0.

For our first application in Section 7.5, we use this picture of how the initialization can capture “symme-
tries” in the distribution.

Sampling from mixtures of log-concave distributions with advice. An example of a distribution
where we can take advantage of “symmetries” is the following. Suppose we have a distribution π which is a
mixture of K distributions

π =

K∑
i=1

piπi,

each of which is well-connected (e.g., satisfies a Poincaré inequality). We do not expect a Markov chain to
rapidly mix to π from a worst-case initialization. Does the scenario change if we initialize more cleverly?
To be concrete, suppose we are given m samples x1, . . . , xm from π, and initialize our Markov chain at the
empirical distribution

∑m
i=1 δxi . If the component measures (πi) are “far apart” and do not interact with

each other, we would expect the Markov chain to rapidly mix from this initialization if the fraction of points
in each cluster is (approximately) equal to the correct fraction pi. On the other hand, if the component
measures were very close together, we would expect their mixture to also satisfy a Poincaré inequality.

However, it is unclear how to translate this intuition to a proof. In previous work [KV24], sampling
guarantees are provided for this algorithm, but the running time has a doubly exponential dependence
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on the number of components K. Our second illustration of weak Poincaré inequalities provides high-
probability sampling guarantees for this problem, by running Langevin diffusion for time that is polynomial
in all parameters involved. We refer the reader to Section 7.5 for the details of the theorem statement and
its (self-contained) proof.

This problem is studied extensively in an independent work of Koehler, Lee, and Vuong [KLV24]. Mo-
tivated by the success of score matching methods in modern machine learning, they prove that Langevin
dynamics and Glauber dynamics converge to the stationary distribution when initialized from the above
empirical distribution under similar conditions to our setting, even if the Markov chain updates come from
a slightly perturbed distribution (i.e. if they were learned by a score matching algorithm). They also use
their techniques to give an efficient algorithm for learning approximately low-rank Ising models.

7.1.4 Related work

Markov chain mixing and localization schemes. The first use of the local-to-global phenomenon in
mixing was in the work of [ALOV24] on establishing rapid mixing of the “basis exchange” walk on bases
of a matroid, which used the local-to-global theorem for simplicial complexes from [KO20]. Their approach
was later formalized into the framework of spectral independence [ALO21], which was widely successful in
resolving numerous problems in algorithmic sampling and counting; see [Liu23] for a comprehensive literature
survey.

In the world of sampling from continuous distributions, most recent progress on the KLS conjecture
on the Poincaré constant of isotropic log-concave distributions (see [LV24] and the recent survey [KL24])
has employed Eldan’s stochastic localization [Eld13]. Later, stochastic localization was used in the work
of Eldan, Koehler, and Zeitouni [EKZ22] to analyze the Poincaré constant for Glauber dynamics on Ising
models. The seemingly unrelated techniques of spectral independence and stochastic localization approaches
to analyzing mixing times were unified under the framework of localization schemes [CE22], which, as an
application, also simplified the proof of [EKZ22].

Weak Poincaré inequalities. The study of weak Poincaré inequalities was initiated in the work of Aida
[Aid98] and Mathieu [Mat06] in the context of proving other functional inequalities. The work of Röckner
and Wang [RW01] observed the connection between a Markov chain satisfying a weak Poincaré inequality,
and rapid mixing from “sufficiently warm starts”. We refer the reader to the monograph of Wang [Wan06,
Chapter 4] for a comprehensive treatment of weak Poincaré inequalities and their implications to mixing and
concentration.

Weak Poincaré inequalities are also related to the notion of s-conductance, a weakened version of conduc-
tance introduced in [LS93] which has been used frequently in the literature on sampling from convex bodies
(see [Che23b, Section 7.4.2] for a textbook treatment). This connection is explained in [GMT06]. We also
refer the reader to [CGG07], which defines a notion of weak log-Sobolev inequality and uses it to derive a
rapid mixing result.

The work [AEGP23] gives a sampling algorithm for the ferromagnetic random-field Ising model on a finite
domain D ⊆ Zd, which follows an approach of chaining warm starts similar to the present work, inspired by
convex body sampling literature [LS93]. [AEGP23] shows that in a certain parameter regime, the Glauber
dynamics for this model satisfy a weak Poincaré inequality. They then construct an increasing sequence of
sub-domains D0 ⊂ D1 ⊂ · · · ⊂ DT = D and show that a sample from the model on Di can be converted
to a warm start for the model on Di+1. Since the weak Poincaré inequality implies mixing from a warm
start, this yields a sampling algorithm based on running the Glauber dynamics on this increasing sequence
of models.

The work [AJK+21b] introduces a related notion of restricted modified log-Sobolev inequality, which
implies entropy contraction (without an additive error, in contrast to a weak Poincaré inequality) for all
warm starts. This is used to derive optimal mixing times for several Markov chains. In the opposite direction,
[PS19] introduces a strengthened log-Sobolev inequality where the entropy is bounded by a nonlinear function
of the Dirichlet form. This is used to obtain improved hypercontractivity and Fourier coefficient bounds for
functions with small support.
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Sampling from random initializations. The separation between worst-case mixing times and mixing
from a random initialization has been studied in a variety of other settings. [CDL+12, BGZ25] characterize
which product measure initializations enjoy rapid mixing in a temperature range where worst-case mixing is
exponential for the Curie-Weiss Potts model. Notably, as discussed in [BGZ25, Section 1.3], their analysis
also characterizes mixing from initializations constructed by simulated annealing, [LS16, LS17] show that
a uniform initialization halves the mixing time for Glauber dynamics for the ferromagnetic Ising model on
bounded degree graphs, such as the 1D lattice. [GS22] introduces the notion of weak spatial mixing in
a phase, and proves that Glauber dynamics for the ferromagnetic Ising model on the 2D lattice has rapid
mixing when initialized uniformly at ±~1. [GS24] uses the same notion to study mixing from a similar random
initialization for a certain natural Markov chain for the random cluster model. [BNN24] show rapid mixing
for Glauber dynamics for the exponential random graph model when initialized from a carefully chosen
Erdős–Rényi random graph.

Sampling from spherical spin glasses and algorithmic stochastic localization. There is a long
history of work studying Markov chain dynamics on spin glasses. An important line of work [CHS93, CK93,
BCKM98, BDG06, BGJ20, CCM21, Sel24b] studies the Langevin dynamics for spherical spin glasses on an
N -independent time scale. While the Langevin dynamics do not mix on this time scale, these works capture
important statistics of the trajectory such as the energy attained by the Langevin dynamics after a given
time, and uncover deep phenomena such as aging.

Rapid mixing guarantees at sufficiently high temperature were obtained in [GJ19] for the Langevin
dynamics for spherical spin glasses, and in [BB19, EKZ22, AJK+22, ABXY24, AJK+24, AKV24] for the
Glauber dynamics for the Sherrington–Kirkpatrick model [SK75] and Ising spin glasses. These approaches
show mixing from a worst-case initialization via a functional inequality.

Recently, [AMS22, AMS23b] introduced a new sampling algorithm based on simulating Eldan’s stochastic
localization scheme [Eld13, Eld20b]. This approach has since been used in applications such as Bayesian
posterior sampling [MW23, MW24], and is closely related to the denoising diffusions method in machine
learning [SDWMG15, HJA20, SSDK+21] (see [Mon23b] for details). The resulting algorithm samples in a
wider range of temperatures, though with the weaker guarantee of vanishing Wasserstein rather than total
variation error. The recent work [HMP24] improved this guarantee to total variation, and the resulting
algorithm succeeds to the same threshold (SL) as in the present work.

Within the algorithmic stochastic localization approach, the main task is to estimate the means of a
sequence of exponential tilts of the Gibbs measure, which appear as the drift process of a stochastic differential
equation parametrizing the localization process. In [AMS22], this is achieved with an estimator based on
approximate message passing (AMP), which is accurate to leading order. [HMP24] develops an improved
estimator with a suitable correction term, which improves the algorithm’s guarantee from Wasserstein to
total variation error.

Covariance bounds for spin glasses. There has been a great deal of recent work on covariance bounds
for spin glasses [BXY23, AG24, BSXY24], in part due to the connection between covariance bounds and
functional inequalities developed in the localization schemes literature. In particular, [AG24, BSXY24]
address the case of the Sherrington–Kirkpatrick (SK) model, and [BXY23] addresses the SK model with
external field.

7.1.5 Open problems

We conclude with several open problems.

Non-sampling guarantees for simulated annealing. While we initiate a study of simulated annealing
to attain sampling guarantees, one could ask how to analyze simulated annealing beyond sampling. In recent
work [LMR+24], three of the authors, Liu, and Raghavendra introduce the framework of locally stationary
distributions to analyze slow-mixing Markov chains, and leverage it to obtain recovery guarantees for the
spiked Wigner and stochastic block model inference problems. We start by reiterating [LMR+24, Problems
1.20 and 1.21]—is simulated annealing computationally optimal for random CSPs with planted solutions?
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Further, consider the problem of optimizing the Hamiltonian (7.1) of the mixed p-spin model. Historically,
simulated annealing was one of the earliest algorithms developed for this problem [CHKW23]. The works
[Mon21, Sub21a, AMS21, Sel24a] develop algorithms that are optimal among suitably Lipschitz algorithms
[HS25] and conjecturally among all efficient algorithms. The limiting energy obtained by natural Markov
chain dynamics is an long-standing question in its own right [CK93], which was solved for pure models in
[Sel24b] but is otherwise open. We ask:

Problem 7.1.11. What energy does simulated annealing obtain when run on the Hamiltonian (7.1)?

We refer the reader to [MRT04, FFRT21] and references therein for relevant discussion. We also ask the
following question, which seems instrumental to making progress towards the above.

Problem 7.1.12. How does a non-worst-case initialization (such as one constructed by simulated annealing)
affect the locally stationary distribution that is reached by a Markov chain?

Along similar lines, we have the following concrete question about understanding Markov chains from
non-worst-case initializations.

Worst-case combinatorial optimization via simulated annealing. The paradigm of solving a semidef-
inite program and rounding its solution has been extremely successful at achieving optimal approximation
guarantees for a wide variety of combinatorial optimization problems, especially constraint satisfaction prob-
lems [KKMO07, Rag08].

However, on large families of instances (sparse ones for instance), the solutions produced by these
SDPs can be refined locally to improve the approximation ratio, but these improvements do not match
the corresponding hardness thresholds. For example, for the problem of Max Cut, the classical SDP algo-
rithm [GW95] gives an αGW-approximation for αGW ≈ 0.878, and a local refinement [HK23] produces an
αGW +Ω

(
1
d2

)
-approximation. On the other hand, it is (UG-)hard [Tre01] to approximate the max-cut better

than αGW +O
(

1√
d

)
.

Problem 7.1.13. Does a Markov chain initialized at the SDP solution attain a αGW+Ω
(

1√
d

)
-approximation

to the max-cut in a bounded degree graph?

Sampling from spin glasses up to the shattering threshold. It is conjectured that the Langevin
diffusion with uniform random initialization samples from spherical p-spin models for inverse temperatures
up to the shattering threshold (Non-shattering) [CHS93, CK93]. Similarly, this is conjectured for the Glauber
dynamics Markov chain for models over the hypercube {±1}N instead of the sphere SN , for an analogous
shattering threshold. As a start, can we show such guarantees for simulated annealing (as opposed to a
fixed-temperature Markov chain from uniform initialization)?

Problem 7.1.14. Does simulated annealing sample from p-spin models up to the shattering threshold?

The failure of algorithmic stochastic localization beyond the (SL) condition [HMP24, Section 10] suggests
that ideas beyond our proof strategy are required to prove the above.

Simulated annealing in more general models. For sampling from the spherical p-spin model, our
results show that simulated annealing succeeds in the regime (SL) where algorithmic stochastic localization
succeeds. At the level of proofs, these methods are also closely related, as both revolve around suitable control
of the localization process: in the algorithmic stochastic localization approach, this is used to construct a
mean estimator for the localized measures, and in our approach it is used to bound the localized measures’
covariances. These tasks are closely linked; see Remark 7.7.4.

One question is whether simulated annealing succeeds in more general models. In particular, samplers
based on algorithmic stochastic localization have been developed for the Sherrington–Kirkpatrick model in
the replica symmetric regime [AMS22, Cel24], p-spin models over the hypercube [AMS23b], and posteriors of
spiked matrix models [MW23]. These samplers are proven to have vanishing Wasserstein error, and sampling
with vanishing total variation error remains an open problem in these models. It would be interesting to
show that simulated annealing achieves this. More speculatively, we may ask if there is a general reduction
from a sampling guarantee for algorithmic stochastic localization to one for simulated annealing.
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#BIS. A major open problem in the field of approximate counting is settling the complexity of #BIS:
where the algorithmic task is to approximate the number of independent sets in a bipartite graph. So far,
algorithmic progress for this problem has been limited to restricted classes of graphs, such as lattices & tori
[HPR19], and expander graphs [JKP20]. Numerous interesting approximate counting problems have been
shown to be #BIS-hard [CGM12, GJ12, CGG+16, GSVY16]. While vanilla Glauber dynamics fails at the
corresponding sampling task, it is plausible that a variant of simulated annealing succeeds.

Problem 7.1.15. Does (a simple variant of) simulated annealing succeed at sampling a uniformly random
independent set in a bipartite graph?

Structural guarantees from weak Poincaré inequalities. According to physics heuristics, the Gibbs
measure of a spherical mixed p-spin glass between βuniq and βsh consists of one main cluster accounting for
nearly all the mass, and metastable states with exponentially small mass that are poorly connected to the
main cluster and each other. We do not prove this picture, but the weak Poincaré inequality we obtain
(up to βSL) is sufficient to imply a sampling guarantee for simulated annealing. One open direction is to
show that the above picture holds, and that the main cluster satisfies a genuine Poincaré inequality. More
generally, one may ask:

Problem 7.1.16. If a distribution satisfies a weak Poincaré inequality, is it TV-close to a distribution
satisfying a true Poincaré inequality?

We note that Lemmas 7.4.9 and 7.A.5 show a converse of this statement, that if we perturb a distribution
satisfying a true Poincaré inequality (for the Langevin diffusion or Glauber dynamics Markov chains), the
resulting distribution satisfies a weak Poincaré inequality.

7.1.6 Organization

In Section 7.2, we give a technical overview of how we use weak Poincaré inequalities to analyze simulated
annealing for our main application of sampling from spherical p-spin distributions.

In Section 7.3, we cover some basic preliminaries that will be useful. Then, in Section 7.4, we formally
define weak functional inequalities and establish some of their basic properties.

In Section 7.5, we demonstrate the effectiveness of this framework by showing how to sample from a
mixture of distributions satisfying Poincaré inequalities from data-based initializations.

Our main application to spherical p-spin models spans Sections 7.6 to 7.8, and requires more background
in stochastic localization and spin glass theory. In Section 7.6, we review some basic properties of stochastic
localization and show how to adapt the framework of localization schemes from [CE22] to prove weak
functional inequalities. Then, in Section 7.7, we initiate the discussion of weak Poincaré inequalities for
spherical p-spin models. To assist the reader in understanding the proof of a weak Poincaré inequality, we
provide a separate technical overview in Section 7.7.1. The rest of Section 7.7 reduces the proof to proving
high-probability covariance bounds for strictly replica-symmetric models with small external field, which is
then established in Section 7.8.
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7.2 Technical overview

Let H be a Hamiltonian on state space Ω, and let µH be its Gibbs distribution. Our goal in this section
is to describe our strategy to prove that simulated annealing succeeds at sampling. In our application, Ω
is the scaled sphere SN :=

√
N · SN−1, and µH comes with an associated Markov chain known as Langevin

diffusion, which we denote with PH . For ease of exposition, we restrict the discussion to this setting, though
much of it holds in a more general setting.
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Definition 7.2.1 (Simulated annealing, informal). Initialize at the uniform distribution on SN (which is
equal to µ0), and for each i ∈ [m], run P i

mH
for time T .

For the sequel, we abbreviate P i
mH

and µ i
mH

as Pi and µi, and we use Pi,t to denote running Pi for
time t. The strategy to prove that simulated annealing succeeds at sampling is to establish a weak Poincaré
inequality for Pi for all i.

Let L be the infinitesimal generator of Pi. For functions f, g : Ω→ R, we define the Dirichlet form E(f, g)
as Eµi [f L g].

Remark 7.2.2. In the case of Langevin diffusion for a distribution π, the Dirichlet form can be evaluated
as

E(f, g) = E
µi
〈∇f,∇g〉 ,

where ∇ denotes the Euclidean gradient if π is supported on RN , and the Riemannian gradient on SN if π
is supported on SN .

As discussed in Section 7.1, we say a Markov chain satisfies a weak Poincaré inequality with parameters
(C, ε) if

E(f, f) ≥ C · Var[f ]− ε · ‖f − E f‖2∞ − ε · sup
x∈Ω
‖∇f(x)‖2 ,

which implies the following mixing result Theorem 7.4.6 for the chi-squared divergence; see also [RW01, The-
orem 2.1]. Defining νt as the distribution after running the Markov chain for time t from initial distribution
ν0, we have

χ2(νt‖µi) ≤ exp(−Ct) · χ2(ν0‖µi) + ε ·
∥∥∥∥dν0

dµi
− 1

∥∥∥∥2

∞
+ ε · sup

x∈Ω

∥∥∥∥∇dν0

dµi
(x)

∥∥∥∥2

.

Analyzing simulated annealing with weak Poincaré inequalities. To see why the above statement
plays well with simulated annealing, imagine plugging in initialization ν0 = µi−1. By selecting the number

of annealing steps m = poly(N), we can ensure
∥∥∥ dν0
dµi
− 1
∥∥∥
∞

and supx∈Ω

∥∥∥∇ dν0
dµi

(x)
∥∥∥ are O(1). The guarantee

after running the Markov chain for some sufficiently large polynomial time T is then

χ2(Pi,Tµi−1‖µi) ≤ O(ε) ,

which in particular implies
TV(Pi,Tµi−1, µi) ≤ O(

√
ε) .

When we combine the above with the data processing inequality, we then get the following guarantee for
νm,T := Pm,T · · ·P2,TP1,T ν0, the distribution that simulated annealing samples from.

TV(Pm,T · · ·P1,Tµ0, µm) ≤ TV(Pm,T · · ·P1,Tµ0, Pm,Tµm−1) + TV(Pm,Tµm−1, µm)

≤ TV(Pm−1,T · · ·µ0, µm−1) +O(
√
ε) .

Applying the above inequality m times tells us that TV(νm,T , µm) ≤ O(
√
ε ·m).

We now turn our attention to the proof technique for showing a weak Poincaré inequality.

How to prove weak Poincaré inequalities. Suppose our goal is to prove a weak Poincaré inequality
for a measure π. The high-level strategy in the localization schemes approach for proving a weak Poincaré
inequality is to design a measure decomposition of π: for some mixture distribution ρ, express π as Ez∼ρ πz.
Refer to Section 7.3.1 for a brief review of measure decompositions. Once we have a measure decomposition
in hand, establishing the following simple set of inequalities forms the crux of the argument. Let f be a
function such that Eπ f = 1.

1. Conservation of Dirichlet form.
Eπ(f, f) ≥ E

z∼ρ
Eπz (f, f) .

In the case of Langevin diffusion, this is an equality, and in the case of Glauber dynamics, the inequality
is true by a generic concavity argument; see, e.g. [AJK+22, Page 19] or [LMRW24, Page 5].
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2. Weak Poincaré inequality for good component measures.

E
z∼ρ
Eπz (f, f) ≥ C · E

z∼ρ
Varπz [f ] · 1[z “good”]− ε‖f − 1‖2∞ − ε‖∇f‖

2
∞ ,

where the “good” πz are those which satisfy a (c, ε)-weak Poincaré inequality. This inequality follows
from the nonnegativity of norms and Dirichlet forms.

3. Approximate conservation of variance.

E
z∼ρ

Varπz [f ] ≥ α · Varπ[f ] .

This is one of the parts that depends nontrivially on π and the decomposition ρ, and we discuss the
general proof strategy for this portion based on localization schemes.

4. High-probability goodness of component measures.

Pr
z∼ρ

[z “good”] ≥ 1− ε .

This part also requires analyzing the measure decomposition we design. Ideally, the measure decom-
position presents us with “simpler” measures than π itself.

Once we have the above inequalities at hand, we get a (cα, 2ε)-weak Poincaré inequality; see Lemma 7.4.10
for details.

How to construct a good measure decomposition. Henceforth, we restrict our attention to the case
where π = µH , the Gibbs distribution for a spherical mixed p-spin glass model. In the discussion below, we
fix H as a typical Hamiltonian, and drop the phrase “with high probability” for events that occur with high
probability over the randomness of H.

To construct our measure decomposition, we rely on Eldan’s stochastic localization [Eld13]. Our inspira-
tion is the use of stochastic localization as a tool for measure decomposition for proving Poincaré inequalities
in the work of Chen and Eldan [CE22]. Stochastic localization is a measure-valued random process (µt)t≥0

described by:

dµt(x) ∝ exp(〈yt, x〉 −
t

2
‖x‖2)dµH(x) ,

where yt = σ+Bt where σ ∼ µH and (Bt)t≥0 is a standard Brownian motion; see [AM22, Theorem 2] for a
proof of why the above description of stochastic localization is equivalent to the more traditional definition
via a stochastic differential equation that µt obeys.

We run stochastic localization up to a stopping time τ , defined as

τ := min{t : 0 ≤ t ≤ T, ‖Cov(µt)‖ ≥ K or t = T} ,

where T is chosen as a sufficiently large constant, independent of N . We impose the constraint on the
covariance matrix as it is relevant to satisfying approximate conservation of variance: [CE22, Eq. (20)] proves
that a measure decomposition based on stochastic localization run for time at most T satisfies approximate
conservation of variance with parameter α = exp(−KT ) if ‖Cov(µt)‖op is bounded byK almost surely. Hence,
by construction, we automatically ensure that our measure decomposition satisfies approximate conservation
of variance.

For the measure decomposition to ultimately be useful, we also need to argue that the component
measures satisfy a weak Poincaré inequality with high probability. Building on technical results in Huang,
Montanari, and Pham [HMP24, Section 9.2], we show that the stochastic localization process run up to
time T starting at µH gives a distribution satisfying an (Ω(1), exp(−Ω(n)))-weak Poincaré inequality with
probability 1 − exp(−Ω(n)) over the randomness of the stochastic localization path; see Lemma 7.7.8 for
details. Unfortunately, in the situation where the stochastic localization process stops before T , we do not
have a simple way to show a weak Poincaré inequality, and for our analysis, treat z arising from early
stopping as “bad”.

Thus, we have: Prz∼ρ[z “good”] ≥ 1 − exp(−Ω(n)) − Pr[τ < T ]. To bound Pr[τ < T ], it is sufficient
to prove a high-probability covariance norm bound on the entire stochastic localization path for 0 ≤ t ≤ T .
Most of the technical work in this paper is devoted to proving this covariance norm bound.
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Theorem 7.2.3 (Informal version of Lemma 7.7.7). For a typical H, with probability 1− e−Ω(n1/5) over the
randomness of the stochastic localization path, we have ‖Cov(µt)‖op < K.

The proof of the covariance bound spans Sections 7.7 and 7.8; we give a detailed technical overview of
how it is proved in Section 7.7.1.

7.3 Preliminaries

Notation

• We use SN to denote the scaled (N − 1)-sphere,
√
N · SN−1.

• We use ρ to denote the uniform measure over SN .

• Given σ1, σ2 ∈ SN , we use R(·, ·) to denote the normalized inner product (i.e. the overlap)

R(σ1, σ2) :=
〈σ1, σ2〉
N

.

• For an interval I ⊆ [−1, 1] and x ∈ SN , define Band(x, I) := {σ ∈ SN : R(σ,x) ∈ I}.

• We use c to denote small constants whose values may change from line to line, and C to denote similarly
fickle large constants.

• Let f : Ω→ R be any function. We define osc(f) := sup f − inf f .

• Let f : Ω→ R be a smooth function. If Ω ⊆ RN , then ∇f denotes its Euclidean gradient. If Ω ⊆ SN ,
then ∇spf denotes the Riemannian gradient on SN . When the correct notion of gradient is clear from
context, by an abuse of notation we will suppress this distinction and simply write ∇f .

7.3.1 Measure decompositions

Our framework for proving weak functional inequalities relies on the notion of a measure decomposition.

Definition 7.3.1 (Measure decomposition). Let π be a distribution on RN . Let ρ be a mixture distribution,
also on RN , which indexes into a family of mixture components {πz}z∈RN . We say that (ρ, πz) is a measure
decomposition for π if

π = E
z∼ρ

πz .

One reason measure decompositions are useful is that they compose nicely with worst-case functional
inequalities, as shown in the following lemma.

Lemma 7.3.2 ([BB19, AJK+22, CE22]). Let π be a distribution over Ω ⊆ RN , and π = Ez∼ρ πz a measure
decomposition of π such that

• for all functions f , Ez∼ρ Varπz [f ] ≥ CVarVarπ[f ], and

• Every πz satisfies a ρPI-Poincaré inequality with respect to Langevin diffusion.

Then, π satisfies a ρPICVar-Poincaré inequality.

In Lemma 7.4.10, we will show an average-case relaxation of the above result, that π satisfies a weak
Poincaré inequality if most measures in the decomposition satisfy weak Poincaré inequalities. Then, in Sec-
tion 7.6, we construct explicit measure decompositions using the localization schemes framework introduced
in [CE22]. This will show weak Poincaré inequalities for our measures of interest.

Besides proving functional inequalities, measure decompositions have also been directly used for sampling
and inference (see, e.g., [MW24, LMR+24]).
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7.3.2 Langevin diffusion

In this paper, we study Langevin diffusion on RN and the scaled sphere SN . These definitions can be directly
generalized to the setting of Riemannian manifolds, but we do not comment further on this.

Definition 7.3.3 (Langevin diffusion on RN ). Let π be a distribution on RN with density at x proportional
to e−V (x) for some function V . The Langevin diffusion process with stationary distribution π is the solution
to the stochastic differential equation

dZt = −∇V (Zt)dt+
√

2dBt,

where (Bt)t≥0 is a standard Brownian motion.

Definition 7.3.4 (Langevin diffusion on SN ). Let π be a distribution on SN with dπ(x) ∝ e−V (x)dρ(x),
where V : SN → R. The Langevin diffusion process with stationary distribution π is the solution to the
stochastic differential equation

dZt = −∇spV (Zt)dt+
√

2dBt,

where (Bt)t≥0 is a standard spherical Brownian motion. (For a textbook introduction to spherical Brownian
motion, see [Hsu02].)

Fact 7.3.5 ([Che23b, Example 1.2.17]). The Langevin diffusion SDE with stationary distribution π is re-

versible with respect to π. In particular, the ergodicity of the process implies that KLL(Zt)π
t→∞−−−→ 0.

Furthermore, it is well-known that Langevin diffusion on RN with respect to a strongly log-concave
stationary distribution converges rapidly.

Definition 7.3.6. Let π be a distribution over RN with density proportional to e−V . π is said to be
α-strongly log-concave if V is α-strongly convex, that is, ∇2V � αI.

Fact 7.3.7 ([Che23b, Theorem 1.2.24]). Let π be a distribution satisfying a log-Sobolev inequality with
constant ρLS, in that for any differentiable function f : RN → R>0,

E
π
‖∇
√
f‖2 ≥ ρLSEntπ[f ].

Then, if πt is the distribution at time t of Langevin diffusion,

KLπtπ ≤ KLπ0πe
−ρLS·t.

Furthermore, α-strongly log-concave distributions π satisfy a log-Sobolev inequality with constant α.

7.4 Weak functional inequalities

In this paper, we study continuous-time Markov chains.

Definition 7.4.1 (Markov semigroup). Let (Xt)t≥0 denote a continuous-time Markov process on state
space Ω. Let (Pt)t≥0 be the associated Markov semigroup operator; Pt acts on functions f : Ω → R
via Ptf(x) = E[f(Xt)|X0 = x]. Throughout, we assume that the semigroup is reversible with respect to
stationary distribution π. Furthermore, let L denote the infinitesimal generator of Pt, i.e., Pt = e−tL. For
functions f, g : Ω→ R, we define the Dirichlet form as E(f, g) = Eπ[fLg].

See e.g. [Che23b, Section 1.2] for a textbook treatment. Of particular interest to us are the two settings
where the semigroup corresponds to a discrete-time Markov chain or the Langevin diffusion defined in
Section 7.3.2. In these cases, the Dirichlet form satisfies the following explicit identities.

Fact 7.4.2 (Dirichlet form from discrete-time Markov chain). Let P be the transition matrix of a reversible
discrete-time Markov chain with stationary distribution π. We can define an associated continuous-time
semigroup operator (Pt)t≥0 by setting L = I − P . The Dirichlet form for the continuous-time dynamics
satisfies

E(f, g) := E
x∼π

E
y∼Px

(f(x)− f(y))(g(x)− g(y)) .

Here, for a probability distribution µ, we say x ∼ µ to denote a sample x from µ, and we use y ∼P x for a
single transition from x according to P .
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Fact 7.4.3 (Dirichlet form for Langevin diffusion). We will need the following explicit identities for the
Dirichlet form for Langevin diffusion.

(1) When (Pt)t≥0 corresponds to Langevin diffusion on RN with stationary distribution π, the Dirichlet
form is E(f, g) = Eπ[〈∇f,∇g〉].

(2) When (Pt)t≥0 corresponds to Langevin diffusion on SN with stationary distribution π, the Dirichlet
form is E(f, g) = Eπ[〈∇spf,∇spg〉].

Definition 7.4.4. We say π satisfies a weak Poincaré inequality if for some error functional Error : RΩ
>0 →

R≥0 and ρPI > 0,

Varπ[f ] ≤ 1

ρPI
· E(f, f) + Error(f) .

Similarly, we say π satisfies a weak modified log-Sobolev inequality if for some error functional Error : RΩ
>0 →

R≥0 and ρLS ≥ 0,

Entπ[f ] ≤ 1

ρLS
· E(f, log f) + Error(f).

Theorem 7.4.5. Consider the trajectory (νt)t≥0 of a reversible continuous-time Markov chain with station-
ary distribution π, initialized at the distribution ν0, and suppose that π satisfies a weak MLSI with parameters
Error and ρLS. Fix T > 0, and set ΛT to be the distribution on [0, T ] with density ΛT (s) = eρLS

eρLST−1
· eρLSs.

Then,
KLνTπ ≤ e−ρLSTKLν0π + E

s∼ΛT
[Error( dνs

dπ )].

Proof. Let f0 = dν0
dpi , and let ft = Ptf0 = dνt

dπ (this last equality holds due to reversibility). For ease of

notation, set Errort = Error(ft) for t ≥ 0. Recalling that E(ft, log ft) = − d
dtKLνtπ, the weak MLSI says that

−E(ft, log ft) + ρLS · KLνtπ − ρLS · Errort ≤ 0,

so
d

dt

(
eρLSt · KLνtπ − ρLS

∫ t

0

eρLSsErrorsds

)
≤ 0.

Therefore,

eρLST · KLνTπ − ρLS

∫ T

0

eρLSsErrorsds ≤ KLν0π,

and

KLνTπ ≤ e−ρLSTKLν0π + ρLS

∫ T

0

eρLS(s−T )Errors.

Noting that ΛT (s) = ρLS

eρLST−1
· eρLSs ≥ ρLSe

ρLS(s−T ), the above implies that

KLνTπ ≤ e−ρLSTKLν0π + E
s∼ΛT

[Errors] ,

as desired.

By essentially the same proof, we obtain the analogous result for weak Poincaré inequalities.

Theorem 7.4.6. Consider the trajectory (νt)t≥0 of a (continuous-time) Markov chain with stationary
distribution π, initialized at the distribution ν0, and suppose that π satisfies a weak Poincaré inequal-
ity with parameters Error and ρPI. Fix T > 0, and set ΛT to be the distribution on [0, T ] with density

ΛT (s) = e2ρPI

e2ρPIT−1
· e2ρPIs. Then,

χ2(νT ‖π) ≤ e−2ρPITχ2(ν0‖π) + E
s∼ΛT

[Error( dνs
dπ )].

For the analysis of the annealed Langevin dynamics, we will also require the following definition. For
f : Ω→ R, let osc(f) := sup(f)− inf(f), and let ∇f denote the Riemannian gradient.
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Definition 7.4.7 (Weak functional inequalities for Langevin). We say a distribution π on Ω ⊆ RN or
Ω ⊆ SN satisfies a (ρPI, ε)-weak Poincaré inequality if for all differentiable functions f ,

Varπ[f ] ≤ 1

ρPI
· E(f, f) + ε · (osc(f)2 + sup

x∈Ω
‖∇f‖2).

Similarly, we say π satisfies a (ρLS, ε)-weak modified log-Sobolev inequality if for all differentiable functions
f ,

Entπ[f ] ≤ 1

ρLS
· E(f, log f) + ε · (osc(

√
f)2 + sup

x∈Ω
‖∇f‖2).

Remark 7.4.8. As mentioned in the beginning of this section, by replacing the Riemannian gradient with the
discrete gradient, an analogous theory can be developed for annealed Glauber dynamics; see Definition 7.A.1.

We shall typically use weak Poincaré inequalities with functions f that have expectation 1, where we
bound osc(f) ≤ 2‖f − 1‖∞.

7.4.1 Properties of weak functional inequalities

In this section, we state some crucial properties of weak functional inequalities for Langevin diffusion on RN
or SN . With minor modifications, the same results hold for Glauber dynamics on finite state spaces; see
Section 7.A for formal details.

Lemma 7.4.9. Let π be a distribution on RN or SN satisfying a ρPI-Poincaré inequality for Langevin
diffusion, and π′ a distribution such that TV(π, π′) ≤ δ. Then, π′ satisfies a

(
ρPI, δmax(ρ−1

PI , 1)
)
-weak

Poincaré inequality for Langevin diffusion.

Proof. There exists a coupling C of (π, π′) such that for (x, x′) ∼ C, Pr[x 6= x′] ≤ δ. Thus,

Eπ′(f, f) = E
π′
‖∇f‖2

≥ E
π
‖∇f‖2 − δ sup ‖∇f‖2

≥ ρPIVarπ[f ]− δ sup ‖∇f‖2.

Let I = [inf f, sup f ]. Note that Varπ[f ] = infa∈I Eπ[(f − a)2]. For each a ∈ I,

E
π

[(f − a)2] ≥ E
π′

[(f − a)2]− δ · osc(f)2,

and therefore
Varπ[f ] ≥ Varπ′ [f ]− δ · osc(f)2. (7.3)

Combining with the above shows

Eπ′(f, f) ≥ ρPIVarπ′ [f ]− δ
(
ρPI · osc(f)2 + sup ‖∇f‖2

)
.

As foreshadowed previously, measure decompositions compose well with weak functional inequalities.
Indeed, the following lemma can be viewed as a relaxation of the setup to prove genuine functional inequalities
(cf. Lemma 7.3.2).

Lemma 7.4.10. Let π be a distribution over RN or SN , and π = Ez∼ρ πz a measure decomposition of π
such that

• for all functions f , Ez∼ρ Varπz [f ] ≥ CVarVarπ[f ], and

• with probability 1−η over z ∼ ρ, πz satisfies a (ρPI, δ)-weak Poincaré inequality with respect to Langevin
diffusion.

Then, π satisfies a
(
ρPICVar,

δ+η
CVar

)
-weak Poincaré inequality.
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Proof. Let us say that z is good if πz satisfies a weak Poincaré inequality, and f be a function. Then,

Eπ(f, f) = E
z∼ρ
Eπz (f, f)

≥ E
z∼ρ
Eπz (f, f)1z is good

≥ E
z∼ρ

ρPIVarπz [f ]1z is good − δρPI · (osc(f)2 + sup ‖∇f‖2)

= E
z∼ρ

ρPIVarπz [f ]− δρPI · (osc(f)2 + sup ‖∇f‖2)− E
z∼ρ

ρPIVarπz [f ]1z is not good

≥ ρPI E
z∼ρ

Varπz [f ]− (δρPI + ηρPI) · (osc(f)2 + sup ‖∇f‖2)

≥ CVarρPIVarπ[f ]− (δρPI + ηρPI) · (osc(f)2 + sup ‖∇f‖2) .

The desired follows.

7.4.2 Weak Poincaré inequalities and annealed Markov chains

The notion of weak functional inequalities defined in Definition 7.4.7 can be naturally applied in the context
of simulated annealing, which we now define.

Definition 7.4.11 (Annealing scheme). Let H be a Hamiltonian over Ω, and (µβ)β≥0 the class of distribu-
tions over Ω with µβ(σ) ∝ eβH(σ). For each β ≤ β0, let P = Pβ be a (reversible and ergodic) Markov chain
with stationary distribution µβ .

An (inverse) temperature schedule is any function β : R≥0 → R≥0. An annealing scheme A is the
time-inhomogeneous Markov chain such that at time t, one applies the Markov chain Pβ(t).

Of interest is the temperature schedule of the form t 7→ δ ·
⌊
t
T

⌋
, with the chain being run for time

T ·
(
β0

δ + 1
)

.

Theorem 7.4.12. Let T, δ > 0 such that k0 := β0

δ is an integer. Suppose that for each β = kδ for
0 ≤ k ≤ k0, µβ satisfies a (ρPI, ε)-weak Poincaré inequality for Pβ. Consider the annealing scheme given

by schedule t 7→ δ ·
⌊
t
T

⌋
, run for total time T ·

(
β0

δ + 1
)

. Let ν be the output distribution of this annealing

scheme. Then,

TV(ν, µβ0) ≤ β0

δ
·
[
(1 + δ sup ‖∇H‖)e2δ‖H‖∞ − 1

]
·O
(
e−2ρPIT + ε

)1/2
.

Remark 7.4.13. Setting ε = 0 and δ = β0 matches the guarantees of [CE22] (after applying Pinsker’s
inequality).

Proof. We shall prove the above using a simple inductive argument – our goal will be to show that initialized
at µβ , the Pβ+δ Markov chain run for time T yields a distribution sufficiently close (in total variation
distance) to µβ+δ. The total variation distance between the distribution that the annealed Markov chain
outputs and the true distribution µβ0

is then upper bounded by the sum of these total variation errors.
Let ν(r,k) be the distribution obtained by running the annealed Markov chain initialized with µrδ until

inverse temperature kδ. In particular, ν(r,k) corresponds to the result of running our annealed Markov chain
for T (k − r) time, and ν(k.k) = µkδ. We are interested in bounding TV

(
ν(0,k0), µβ0

)
. We have

TV
(
ν(0,k0), µβ0

)
= TV

(
ν(k0−1,k0), µβ0

)
+

∑
1≤r≤k0−1

(
TV
(
ν(r−1,k0), µβ0

)
− TV

(
ν(r,k0), µβ0

))
≤ TV

(
ν(k0−1,k0), µβ0

)
+

∑
1≤r≤k0−1

TV
(
ν(r−1,k0), ν(r,k0)

)
(Triangle inequality)

≤ TV
(
ν(k0−1,k0), µβ0

)
+

∑
1≤r≤k0−1

TV
(
ν(r−1,r), ν(r,r)

)
(Data processing)

=
∑

1≤r≤k0

TV
(
ν(r−1,r), µrδ

)
.
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We now turn to controlling the error functional osc(f)2 + sup ‖∇f‖2. Fix an arbitrary β, and set f to be

the likelihood ratio
dµβ

dµβ+δ
. Then,

‖f − 1‖∞ ≤
∥∥∥∥ e−δH

Eµβ+δ e−δH
− 1

∥∥∥∥
∞

≤
∥∥∥∥ e−δH − 1

Eµβ+δ e−δH

∥∥∥∥
∞

+

∣∣∣∣ 1

Eµβ+δ e−δH
− 1

∣∣∣∣
≤ eδ‖H‖∞ − 1

e−δ‖H‖∞
+
eδ‖H‖∞ − 1

e−δ‖H‖∞
≤ 2 · (e2δ‖H‖∞ − 1).

Hence, osc(f) ≤ 4 · (e2δ‖H‖∞ − 1). Next, a simple computation yields

‖∇f‖ =
δe−δH

Eµβ+δ e−δH
‖∇H‖

≤ 2δ · e2δ‖H‖∞‖∇H‖ ,

so we have sup ‖∇f‖ ≤ 2δ · e2δ‖H‖∞ sup ‖∇H‖.
Since each µrδ satisfies a (ρPI, ε)-weak Poincaré inequality, Theorem 7.4.6 with the above calculation

implies that

TV
(
ν(r−1,r), µrδ

)2

≤ χ2
(
ν(r−1,r)‖µrδ

)
≤ e−2ρPIT · χ2

(
µ(r−1)δ‖µrδ

)
+ ε · (16(e2δ‖H‖∞ − 1)2 + 4(δe2δ‖H‖∞ sup ‖∇H‖)2)

≤ (16(e2δ‖H‖∞ − 1)2 + 4(δe2δ‖H‖∞ sup ‖∇H‖)2)
(
e−2ρPIT + ε

)
.

Plugging this back into the earlier sequence of equations completes the proof.

Remark 7.4.14. While the proof above has been stated for the annealing scheme where at time t the
Hamiltonian is of the form σ 7→ β(t) · H(σ), the proof immediately extends to essentially any annealing
scheme that changes the Hamiltonian “slowly”, in that if Ht is the Hamiltonian at time t, ‖Ht+T −Ht‖∞ ≤ δ
for all t. A concrete example of such a scheme that might work better than the vanilla annealing is that
which at time t has as Hamiltonian σ 7→ H(β(t) · σ).

7.5 Vignette: sampling from mixture models with advice

We are interested in the following question.

Let π be a distribution over RN with density proportional to e−V . Given oracle access to the
gradient ∇V , when is it possible to efficiently produce samples that are close (in total variation
distance) to π?

We begin with an overview of existing results towards the above question. Recall from Fact 7.3.7 that for
distributions satisfying a Poincaré inequality, such as strongly log-concave distributions, Langevin diffusion
enjoys rapid mixing. Beyond this setting, however, very little is known. [BCE+22, CWZZ24] prove certain
“local mixing” guarantees for Langevin diffusion on non-log-concave distributions, but these do immediately
not translate to sampling guarantees. The works [GLR18, LRG18, GTC24] use Langevin diffusion-based
algorithms to sample from mixtures of log-concave distributions. Furthermore, the first of these papers
proves that it is hard to sample from a mixture of two Gaussian distributions with distinct covariance
matrices given access to just the gradient ∇V .

In [KV24], the first theoretical guarantees are provided for a new model designed to circumvent this issue,
where in addition to being given access to the gradient ∇V , we are also given “advice” in the form of m
samples from the distribution (also see [NHH+20] and [Hin10, GLZ+18, XLZW16] for related discussion).
In particular, they show that when the stationary distribution is a mixture of constantly many strongly log-
concave distributions, Langevin diffusion initialized at the empirical measure on the advice gets close to the
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stationary distribution. However, their dependence on the number of components K is doubly exponential.
The main result in this section improves the doubly exponential dependence to a polynomial one for any
mixture of distributions satisfying Poincaré inequalities. Similar results are obtained by Koehler, Lee, &
Vuong [KLV24].

Theorem 7.5.1. Let ε, δ ∈ (0, 1), and let π a mixture

π =

K∑
i=1

piπi

of distributions (πi)
K
i=1, where each πi satisfies a Poincaré inequality with constant (at least) ρPI. Further

assume that pi ≥ p∗ for all i. Let ν0 be a random distribution over RN such that E ν0 = π, in that for any
measurable subset A of RN , E ν0(A) = π(A). Set

m = Ω

(
log(1/δ)

p∗ε2

)
.

Let ν1, . . . , νm be iid draws from ν0, and ν the uniform mixture over the (νi)
m
i=1. Further suppose that with

probability at least 1 − δ, χ2(νi‖π) ≤ M . Denoting by µT the distribution attained by running Langevin
diffusion for time T initialized ν, it holds that

Pr
[
χ2(µT ‖π) ≤ ε

]
≥ 1−O(δ),

for T = Ω
(

1
ρPI

log
(
M
ε

))
, where the probability is over the draws of νi.

Remark 7.5.2. One should think of ν0 as being the point mass distribution supported on a (random)
sample drawn from π. Alternatively, one can think of ν0 as being the distribution obtained by drawing a
sample x0 according to π, then running Langevin diffusion for a short amount of time — doing this would
make the χ2-divergence χ2(ν0‖π) finite. We also remark that a version of this proof goes through if we have
that each πi satisfies a log-Sobolev inequality instead of a Poincaré inequality, working with KL divergences
instead.

Proof of Theorem 7.5.1. The idea of the proof will be to show that up to some additive error depending on
the samples, π does satisfy a Poincaré inequality with respect to the distributions along the path of Langevin
diffusion initialized at the empirical distribution. This error corresponds to how imbalanced the samples are
in terms of the mixture weights — a straightforward concentration argument using Bernstein’s inequality
then shows that this error is small, so the χ2 divergence essentially decays exponentially fast, as if π satisfied
a true Poincaré inequality.

Let ft be the Radon-Nikodym derivative of µt (obtained by running Langevin diffusion initialized at ν)
with respect to π. By definition, we have

χ2(µt‖π) = E
π

[f2
t ]− 1

=

K∑
i=1

pi

(
E
πi

[f2
t ]− 1

)

=

K∑
i=1

piVarπi [ft] +

K∑
i=1

pi

(
E
πi

[ft]
2 − 1

)
.

Because each πi satisfies a Poincaré inequality, the first term is bounded as

K∑
i=1

piVarπi [ft] ≤
1

ρPI

∑
i=1

pi E
πi
‖∇ft‖2 =

1

ρPI
E
π
‖∇ft‖2.

Consequently,

χ2(µt‖π) ≤ 1

ρPI
· E
π
‖∇ft‖2 +

K∑
i=1

pi

(
E
πi

[ft]
2 − 1

)
. (7.4)
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Theorem 7.4.6 then yields that

χ2(µT ‖π) ≤ χ2(µ0‖π) · e−ρPIT + E
s∼ΛT

[
K∑
i=1

pi

(
E
πi

[ft]
2 − 1

)]

≤Me−ρLST + E
s∼ΛT

[
K∑
i=1

pi

(
E
πi

[ft]
2 − 1

)]
.

Above, we use that because the KL divergence to π of each of the νi is at most M , so is that of the mixture
µ0 = ν.

To conclude, we shall establish tail bounds on

E
s∼ΛT

[
K∑
i=1

pi

(
E
πi

[fs]
2 − 1

)]
.

For 1 ≤ j ≤ m, let f
(j)
s be the Radon-Nikodym derivative of µ

(j)
s with respect to π, where µ

(j)
s is the

distribution obtained by running Langevin diffusion for time s initialized at νj . It is not difficult to see that

fs = 1
m

∑m
j=1 f

(j)
s .

First, for fixed s and j, we use the fact that the (Eπi [f
(j)
s ])j are independent mean 1 random variables, with

Hoeffding’s inequality, to get tail bounds for Eπi [fs]2 − 1. We may use this to bound a certain Orlicz norm

of this random variable — this bound on the norm also transfers to Es∼ΛT

[∑K
i=1 pi

(
Eπi [fs]2 − 1

)]
as it is

a convex combination of random variables with bounded Orlicz norm. This immediately yields the desired
tail bound.

Fix s and i. To start, we have the almost sure bounds

1

p∗
=

1

p∗
E
π

[f (j)
s ] =

1

p∗

K∑
r=1

pr E
πr

[f (j)
s ] ≥ E

πi
[f (j)
s ] ≥ 0.

Note that because the expected νj is equal to π, Eνj Eπi [f
(j)
s ] = 1 for any j. Furthermore, because Eπi

[
f

(j)
s

]
is a mean 1 random variable which is bounded in

[
0, 1

p∗

]
, its variance is at most 1

p∗
(see e.g. [BD00]).

Bernstein’s inequality implies that

Pr

[∣∣∣∣Eπi fs − 1

∣∣∣∣ > t

]
= Pr

[∣∣∣∣∣ 1

m

m∑
i=1

E
πi

[
f (j)
s

]
− 1

∣∣∣∣∣ > t

]
≤ 2 exp

(
−mp∗

2
· t2

1 + t

)
.

Thus, for any t > 0,

Pr

[∣∣∣∣Eπi[fs]2 − 1

∣∣∣∣ > t

]
≤ Pr

[∣∣∣∣Eπi fs − 1

∣∣∣∣ > t

2(1 +
√
t)

]

≤ 2 exp

−mp∗
8
·

(
t

1+
√
t

)2

1 + t
1+
√
t

 .

Now, consider the Orlicz norm ‖ · ‖ψ associated to the above family of tail bounds. As mentioned earlier,
standard machinery may be used to go from the above tail bounds to a bound on the norm

∥∥Eπi [fs]2 − 1
∥∥
ψ

.

Convexity of the norm yields the same bound on
∥∥∥Es∼ΛT

∑K
i=1 pi

(
Eπi [fs]2 − 1

)∥∥∥
ψ

. Translating this back to

a tail bound, we get that

Pr

[∣∣∣∣∣ E
s∼ΛT

K∑
i=1

pi

(
E
πi

[fs]
2 − 1

)∣∣∣∣∣ > ε

2

]
≤ 2 exp

(
−mp∗ε

2

10

)
≤ δ.
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Conditioning on the above event not happening, we get that

χ2(µT ‖π) ≤ χ2(µ0‖π) · e−ρPI·T +
ε

2
≤ ε,

as desired.

7.6 Stopped localization schemes

7.6.1 Localization schemes

We review some basic notions for the localization schemes framework introduced in [CE22].

Definition 7.6.1 (Linear-tilt localization scheme). Let µ = µ0 be a probability measure, (µt)t∈Z≥0
be a

localization process. A linear-tilt localization scheme is one where µt is defined by

µt+1(x) = µt(x) (1 + 〈x−m(µt), Zt〉)

where Zt is a random variable with E[Zt|µt] = 0 and m(µt) denotes the mean of µt.

For our main application to p-spin models, we will focus on a continuous-time version of linear-tilt
localization known as stochastic localization [Eld13].

Definition 7.6.2 (Stochastic localization). Let µ be a probability measure on Ω ⊆ RN , (Bt)t≥0 be a
standard Brownian motion on RN . The stochastic localization process with driving matrix (Ct)t≥0 is a
localization process (µt)t≥0 with µ0 = µ and

µt(x) ∝ µ0(x) exp(− 1
2 〈x,Σtx〉+ 〈yt, x〉),

where Σt =
∫ t

0
C2
sds and yt =

∫ t
0
C2
sm(µs)ds+ CsdBs.

A crucial property of these localization schemes is that establishing (approximate) conservation of variance
reduces to bounding the covariance matrices of the intermediate distributions µt.

Lemma 7.6.3 (Conservation of variance for linear-tilt [CE22, Claim 22]). Let (µt)t∈Z≥0
be a linear-tilt

localization process. Suppose that for all t ≤ T we have∥∥∥Cov(Zt|µt)1/2 · Cov(µt) · Cov(Zt|µt)1/2
∥∥∥
op
≤ Kt,

where Kt ∈ [0, 1]. Then for any function ϕ,

EVarµT [ϕ]

Varµ[ϕ]
≥
T−1∏
t=0

(1−Kt).

Lemma 7.6.4 (Conservation of variance for stochastic localization). Let (µt)t≥0 be a stochastic localization
process with driving matrix (Ct)t≥0. Suppose that for all t ≤ T we have∥∥∥C1/2

t · Cov(µt) · C1/2
t

∥∥∥
op
≤ Kt

where Kt ∈ [0, 1]. Then for any function ϕ,

EVarµT [ϕ]

Varµ[ϕ]
≥ e−

∫ T
0
Ktdt.
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7.6.2 Proving weak Poincaré inequalities using stopped localization schemes

To apply Theorem 7.4.12, we required weak Poincaré inequalities for the measures of interest. To show these,
we next introduce a generic tool to prove these using Lemma 7.4.10, building on the localization schemes
framework introduced in Section 7.6.1. Let µ be a distribution. Using a localization scheme, we would like
to design a measure decomposition µ = Ez∼ρ µz such that

• for all functions f , Varπ[f ] ≤ CVar Ez∼ρ Varπz [f ], and

• with probability 1− η over z ∼ ρ, πz satisfies a (ρPI, δ)-weak Poincaré inequality.

One way to ensure the first condition — approximate conservation of variance — is to simply stop
the localization scheme whenever it fails to hold. Indeed, the following lemma immediately follows from
Lemma 7.6.3.

Lemma 7.6.5. Let µ = µ0 be a measure, and let (µt)t∈Z≥0
be a linear-tilt localization process defined by

µt+1(x) = µt(x) (1 + 〈x−m(µt), Zt〉)

for some random variable Zt with E[Zt|µt] = 0. Let T > 0 be an arbitrary stopping time and 0 ≤ Kt < 1 for
each t ≥ 0, and consider the stopping time

τ = T ∧ inf
t≥0

{∥∥∥Cov(Zt|µt)1/2 · Cov(µt) · Cov(Zt|µt)1/2
∥∥∥
op
≥ Kt

}
.

Then, for any function ϕ,
EVarµτ [ϕ]

Varµ[ϕ]
≥
∏
t≥0

(1−Kt).

Similarly, we have the following lemma for stochastic localization, which follows from Lemma 7.6.4.

Lemma 7.6.6. Let µ = µ0 be a measure, and (µt)t≥0 be a stochastic localization process with driving matrix
(Ct)t≥0. Let T,K > 0 be constant parameters, and consider the stopping time

τ = T ∧ inf
t≥0

{∥∥∥C1/2
t · Cov(µt) · C1/2

t

∥∥∥
op
≥ K

}
.

Then,
EVarµτ [ϕ]

Varµ[ϕ]
≥ e−TK .

Remark 7.6.7. The localization process in the above lemmas can depend on ϕ, and need not be a linear-tilt
localization. The more general requirement is that

E
[
Varµt+1

[ϕ]|µt
]

Varµt [ϕ]
≥ Kt or

1

Varµt [ϕ]
· d
ds

E [Varµs [ϕ] | µt]
∣∣∣∣
s=t

≥ K.

This can always be achieved by stopping the localization process whenever these conditions fail to hold.

With these elements in hand, we now show how to prove a weak Poincaré inequality using stopped
localization schemes.

Lemma 7.6.8. Let µ = µ0 be a measure, and (µt)t≥0 be a stochastic localization process with driving
matrix (Ct)t≥0. Let T,K > 0 be constant parameters. Suppose that with probability 1 − η1, it holds that∥∥∥C1/2

t · Cov(µt) · C1/2
t

∥∥∥
op
< K for all t ∈ [0, T ]. Further suppose that with probability 1 − η2, µT satisfies a

(ρPI, δ)-weak Poincaré inequality. Then, µ satisfies a
(
ρPIe

−TK , eTK (δ + η1 + η2)
)
-weak Poincaré inequality.
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Proof. As in Lemma 7.6.6, define the stopping time

τ = T ∧ inf
t≥0

{∥∥∥C1/2
t · Cov(µt) · C1/2

t

∥∥∥
op
≥ K

}
.

Consider the measure decomposition µ = Eµτ . By Lemma 7.6.6, this decomposition is variance-conserving
with parameter e−K . By the hypothesis of the lemma, τ = T with probability 1 − η1, and µ1 satisfies a
weak Poincaré inequality with probability 1− η2. Consequently, µτ satisfies a weak Poincaré inequality with
probability at least 1− η1 − η2. Lemma 7.4.10 completes the proof.

Remark 7.6.9. An analogous lemma to the above holds if (µt)t∈Z≥0
is any linear-tilt localization process.

While it will not be used in this paper, we note that a similar method proves a weak Poincaré inequality
for a natural Markov chain associated to a localization scheme. This includes for example the restricted
Gaussian dynamics; see [CE22] for several other examples.

Lemma 7.6.10. Let µ = µ0 be a measure, and (µt)t≥0 be a stochastic localization process with driving
matrix (Ct)t≥0. Let T,K > 0 be constant parameters. Consider the Markov chain P given by Px→y =

E
[
µT (x)µT (y)

µ0(x)

]
. Define the stopping time

τ = T ∧ inf
t≥0

{∥∥∥C1/2
t · Cov(µt) · C1/2

t

∥∥∥
op
≥ K

}
.

If τ = T with probability at least 1− δ, then P satisfies a (e−TK , δeTK)-weak Poincaré inequality.

Proof. For the Markov chain P , the Dirichlet form is given by EP (f, f) = EVarµT [f ] (see, e.g., [CE22,
Proposition 19]). We then have the chain of inequalities

EVarµT [f ] ≥ EVarµτ [f ]− δosc(f)2

≥ e−TKVarµ0
[f ]− δosc(f)2.

The first inequality here is immediate since

EVarµτ [f ]− EVarµT [f ] = EVarµτ [f ]1τ 6=T ≤ osc(f)2 Pr[τ 6= T ].

The second inequality follows from Lemma 7.6.4.

Remark 7.6.11. As in Remark 7.6.7, the above lemma can be generalized to localization schemes other
than stochastic localization.

7.7 Sampling from spherical p-spin models

In this section, we prove that simulated annealing samples from spherical spin glass models for models
satisfying (SL). Recall that SN =

√
N · SN−1. For γ2, γ3, . . . , γp∗ ≥ 0, the mixed p-spin Hamiltonian

HN : SN → R is defined by

HN (σ) :=
∑
p≥2

γp
N (p−1)/2

N∑
i1,...,ip=1

gi1,...,ipσi1 · · ·σip , (7.5)

for i.i.d. samples gi1,...,ip from N (0, 1). This is the gaussian process on RN with covariance

EHN (σ1) ·HN (σ2) = N · ξ
(
R(σ1, σ2)

)
,

where we recall the mixture function ξ is defined by ξ(s) =
∑p∗
p=2 γ

2
ps
p. The algorithm we will study is the

following simple annealing scheme for Langevin diffusion.
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Definition 7.7.1 (Annealed Langevin diffusion). Let δN , TN > 0 be parameters possibly depending on
N . For any β ≥ 0, let µβ := µβHN , where HN is the p-spin Hamiltonian. Annealed Langevin diffusion
is the annealing scheme A where β(t) = δNbt/TNc and Pβ is the Langevin semigroup operator for Gibbs
distribution µβ . In words, A keeps β constant for time TN and then increments β by δN .

Theorem 7.7.2. Let HN be a mixed p-spin Hamiltonian whose mixture function ξ satisfies (SL), which we
recall below:

ξ′′(q) <
1

(1− q)2
for all q ∈ [0, 1).

Let µ be the associated Gibbs measure over the scaled sphere SN , with

dµ(σ) ∝ exp(HN (σ))dρ(σ).

With probability 1 − e−cN1/5

over the randomness of HN , the following holds. For some parameters δN =
O(N−4/5), TN = Ω(N1/5), the output measure ν of the the annealed Langevin diffusion scheme with these
parameters satisfies

TV(ν, µ) ≤ e−cN
1/5

.

Remark 7.7.3. We expect that the error e−cN
1/5

can be improved to e−cN , matching the fact that a
e−O(N) fraction of the Gibbs measure is typically trapped in metastable states between the uniqueness and
shattering thresholds [BJ24]. However, we will not pursue this improvement in this paper.

Remark 7.7.4. The condition (SL) is a fundamental barrier for stochastic localization, both as an algorithm
and a proof technique. As was essentially shown in [HMP24, Section 10], for models satisfying (Strict RS)
but not (SL), the means m(µt) along the localization process do not move stably, in the sense that there
exist time intervals of width o(1) in which m(µt) moves by Ω(N1/2). (The condition (Strict RS) is an artifact
of the proof, and it is expected that the mean continues to move non-stably beyond the regime (Strict RS)).
In the setting of [HMP24], this implies that their algorithmic simulation of the localization process fails,
because approximate message passing will not estimate the mean at some times. In our setting, this implies
that the covariance Cov(µt), which arises as the derivative of m(µt), is genuinely not bounded in operator
norm at some times, and thus the main input to our framework does not hold.

Remark 7.7.5. While the result above is stated for the continuous time Langevin diffusion, the results
therein can be adapted to the discretized Langevin Monte Carlo algorithm using standard tools, à la [Che23b,
Part II], to obtain a polynomial time sampling algorithm.

To prove the above, we shall use Theorem 7.4.12 in conjunction with Lemma 7.6.8. For the remainder
of this section, let (γp)p≥2 be a sequence of weights such that the associated mixture function ξ satisfies the
condition (SL).

Notation 7.7.6 (Measure decomposition for p-spin models). Let µHN = µ0. For a large constant time T ,
let (µt)0≤t≤T be the stochastic localization process with driving matrix Id (see Definition 7.6.2).

Lemma 7.7.7 (Covariance bound on stochastic localization path). There exist constants c,K, depending

only on ξ, such that for any constant T > 0 the following holds with probability at least 1− e−cN1/5

over the
randomness of HN . If (µt)0≤t≤T is the (random) trajectory of stochastic localization initialized at µ0 = µHN ,

with probability 1− e−cN1/5

, ‖Cov(µt)‖op < K for all 0 ≤ t ≤ T . In other words,

Pr
HN

[
Pr

(µt)|HN

[
‖Cov(µt)‖op < K for all 0 ≤ t ≤ T

]
≥ 1− e−cN

1/5

]
≥ 1− e−cN

1/5

.

Lemma 7.7.8 (Weak Poincaré inequality for endpoint distributions). There exists a constant T depending
only on ξ such that the following holds with probability at least 1− e−cN over the randomness of HN . With
probability at least 1 − e−cN , the (random) measure µT satisfies a (c, e−cN )-weak Poincaré inequality. In
other words,

Pr
HN

[
Pr

µT |HN

[
µT satisfies a (c, e−cN )-weak Poincaré inequality

]
≥ 1− e−cN

]
≥ 1− e−cN .
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Let us first see how these two lemmas imply the main theorem.

Proof of Theorem 7.7.2. Fix some 0 ≤ β ≤ 1. Note that the Hamiltonian βHN has mixture function
ξβ(s) = ξ(β2s), and if ξ satisfies (SL) then ξβ does as well. Plugging in Lemmas 7.7.7 and 7.7.8 into

Lemma 7.6.8 implies that with probability at least 1− e−cN1/5

, µβHN satisfies a (c, e−cN
1/5

)-weak Poincaré

inequality. A union bound implies that with probability 1−e−cN1/5

, for all β encountered along the annealing

schedule, µβHN satisfies a (c, e−cN
1/5

)-weak Poincaré inequality.

By [HS25, Proposition 2.3], with probability 1− e−cN , ‖∇HN‖∞ = O(
√
N). The same argument implies

that with probability 1 − e−cN , ‖HN‖∞ = O(N). With probability 1 − e−cN1/5

, all three of these events
occur, and Theorem 7.4.12 completes the proof.

We conclude this subsection by proving Lemma 7.7.8.

Proof of Lemma 7.7.8. Let dµt(σ) ∝ eHN,T (σ) dσ for HN,T (σ) = HN (σ) + 〈y, σ〉. Let

SN (y) = {σ ∈ SN : R(y, σ) > 0}.

Let U ∈ RN×(N−1) be a matrix whose columns are an orthonormal basis of the orthogonal complement of y.
Let ŷ =

√
Ny/‖y‖ be y (which is a.s. nonzero) scaled to length

√
N , and define the map σy(ρ) : RN−1 →

SN (y) by

σy(ρ) =
ŷ +Uρ√
1 +R(ρ, ρ)

.

This is the inverse of the map that first stereographically projects SN (y) from the origin to ŷ+URN−1, the
plane tangent to SN at ŷ, and then maps the resulting point to coordinates given by U . Let ε0 = 0.1, and
A = {ρ ∈ RN−1 : ‖ρ‖2 ≤ ε0N}, and note that

σy(A) = {σ ∈ SN : R(σ, ŷ) ≥ (1 + ε0)−1/2}

is a spherical cap around ŷ. Let A′ := σy(A). By arguments in [HMP24, Subsection 9.2], there exists a

measure ν (denoted ν̃projHN ,y
, see Eq. 2.10 therein) such that the following holds with probability 1− e−cN .

• The push-forward of ν|A through σy coincides with (µT )|A′ . (Lemma 9.5 therein.)

• µT (A′) = 1− e−cN . (Lemma 9.6 therein states this with 1− oN (1) in place of 1− e−cN , but the proof
implies bound 1− e−cN , as this is the bound given by Proposition 5.12 used therein.)

• ν(A) = 1− e−cN . (Corollary 9.7 therein, modulo the same issue of 1− oN (1) versus 1− e−cN , which
is addressed the same way.)

• ν is Ω(1)-strongly log-concave. (Proposition 9.8 therein.)

By the well-known Bakry-Émery condition (see, e.g., [Che23b, Section 1.2.3]), on this event ν satisfies a
ρPI-Poincaré inequality for some ρPI = Ω(1). We will transfer this inequality to a (ρPI, e

−cN )-weak Poincaré

inequality for µT . Consider a smooth test function f : SN → R and let f̃ : RN−1 → R be defined by
f̃ = f ◦σy. Since TV

(
µT , (µT )|A′

)
= e−cN and TV

(
ν, ν|A

)
= e−cN , and osc(f ′) ≤ osc(f), arguing as in (7.3)

shows

VarµT (f) ≤ Var(µT )|A′
(f) + e−cNosc(f)

= Varν|A(f̃) + e−cNosc(f)

≤ Varν(f̃) + 2e−cNosc(f).

By the Poincaré inequality for ν and the definition of the Dirichlet form for Langevin diffusion,

Varν(f̃) ≤ 1

ρPI
· Eν(f̃ , f̃) =

1

ρPI
· E
ν

[‖∇f̃‖2]
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By [HMP24, Proof of Lemma 9.5], the map σy has Jacobian Jσy satisfying ‖Jσy‖op ≤ 1, and thus for all
ρ ∈ RN−1,

‖∇f̃(ρ)‖ = ‖∇(f ◦ σy)(ρ)‖ ≤ ‖∇f(σy(ρ))‖.

It follows that

E
ν

[‖∇f̃‖2] ≤ E
ν|A

[‖∇f̃‖2] + e−cN sup ‖∇f̃‖2

≤ E
(µT )|A′

[‖∇f‖2] + e−cN sup ‖∇f‖2

≤ E
µT

[‖∇f‖2] + 2e−cN sup ‖∇f‖2

Combining the above shows

VarµT (f) ≤ 1

ρPI
EµT (f, f) + 2e−cN

(
osc(f) +

1

ρPI
sup ‖∇f‖2

)
.

The result follows by adjusting c.

7.7.1 Technical overview for covariance bounds

The proof of the main theorem has boiled down to Lemma 7.7.7 — we now give a high-level overview of our

proof strategy for this. We wish to show that with very high probability (1 − e−Ω(N1/5)), the covariance is
bounded along the entire path (µt)0≤t≤T of stochastic localization. By performing a union bound over time
and a standard perturbation argument, it suffices to show that for a fixed time t ∈ [0, T ], µt has bounded
covariance with very high probability.

To do this, we recall an alternate view of stochastic localization [AM22]. The measure at time t of
stochastic localization (with the identity driving matrix) is given as follows. First, draw σ ∼ µHN , and
independently g ∼ N (0, IN ). Then, µt has the same law as µHN ,tσ+

√
tg, in that

µHN ,tσ+
√
tg(σ̃) ∝ exp

(
HN (σ̃) + 〈tσ +

√
tg, σ̃〉

)
.

As written, the covariance of this distribution is difficult to analyze — the sample σ has very complicated
correlations with the disorder of the Hamiltonian HN , making it intractable.

The planting trick. To deal with this, we will use the planting trick introduced by Achlioptas and Coja-
Oghlan [AC08]. The application of this method in the context of stochastic localization is by now standard
[AMS22, AMS25, HMP24], and we review the main ideas for the reader’s convenience.

Definition 7.7.9 (Planted p-spin model). The planted measure µpl is a joint law over a Hamiltonian HN

and a spike x ∈ SN given by

dµpl(HN , x) ∝ exp (HN (x)) · dρ(x) · dµnull(HN ),

where ρ is the uniform measure over SN and µnull is the law over p-spin Hamiltonians with mixture function
ξ. We frequently abuse notation to let µpl(HN ) denote the marginal of µpl on HN .

To provide further intuition for the above definition, consider the following alternate sampling interpre-
tation of the planted model, which describes the distribution of x conditioned on HN .

Fact 7.7.10. Consider the following inference problem. We start by sampling the spike x ∼ SN , sample
G(p) as a rank-p tensor with iid N (0, 1) entries for p ≥ 2, and for each p let M (p) = −G(p) +

γp
N(p−1)/2x

⊗p.

Then, the posterior on x after observing the tensors (M (p))p≥2 is of the form µ(x = σ | (M (p))) ∝
exp(HN (σ)), where

HN (σ) =
∑
p≥2

γp
N (p−1)/2

〈M (p), σ⊗p〉.

Then, the joint law of (HN ,x) is µpl.
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The above says that conditioned on HN , the distribution of x (according to µpl) is simply distributed as
a sample according to µHN . That is, the spike x resulting in a Hamiltonian HN ∼ µpl is exchangeable with
a sample from µHN .

The latter of these interpretations will be very useful for us. When dealing with the measure at time t
of stochastic localization applied to the p-spin model, the primary issue was that it was unclear how to deal
with the sample σ drawn from the Gibbs distribution. However, if we could work with the planted p-spin
model, this issue would be absent. Indeed, the exchangability of the spike and a sample implies that the law
of µt applied to the planted model is given by

µHN ,tx+
√
tg(σ̃) ∝ exp

(
HN (σ̃) + 〈tx+

√
tg, σ̃〉

)
,

where x is the spike hidden in HN . This decouples the randomness of the external field tx +
√
tg and the

disorder of the Hamiltonian HN that arises from the Gaussians (G(p))p≥2.
As was shown in [HMP24, Corollary 3.5] and recalled just below, the planted and null models are mutually

contiguous. Thus high-probability statements from one model transfer to the other, and it suffices to study
the planted model.

For all models satisfying (Strict RS), the measures µnull(HN ) and µpl(HN ) from Definition 7.7.9
are mutually contiguous, i.e., for any sequence of events EN , µnull(EN )→ 0 whenever µpl(EN )→ 0.

The transfer from the p-spin model to the planted model may then be carried out by setting

EN =

HN : Pr
σ∼µHN
g∼N (0,IN )

[∥∥∥Cov (µHN ,tσ+
√
tg

)∥∥∥ > K
]
< e−cN

1/5

 .

This event is very complicated in the null model, but exchangeability makes it tractable in the planted
model. In the actual proof, we will require a stronger (quantitative) version of mutual contiguity; see
Proposition 7.7.17 for details.

Now, we must understand what the Hamiltonian in the planted model looks like conditioned on the spike.

Fact 7.7.11. Consider the following process: sample x ∼ SN , H̃N ∼ µnull, and define HN by HN (σ) =

H̃N (σ) +N · ξ(R(x, σ)). Then, the joint law of (HN ,x) is µpl.

Consequently, our goal is to bound the covariance of the distribution

µt(σ) ∝ exp
(
H̃N (σ) +N · ξ (R (x, σ)) + 〈tx+

√
tg, σ〉

)
.

for H̃N ∼ µnull with mixture function ξ. Now, define ξt by ξt(s) = ξ(s) + ts, and extend the definition of the
p-spin model (7.5) to allow a random linear term. Then,

µt(σ) ∝ exp

H̃N,t(σ) +N · ξt(R(x, σ))︸ ︷︷ ︸
HN,t(σ)

 ,

where H̃N,t ∼ µnull with mixture function ξt.

The TAP planted model. We now turn to controlling the covariance matrix of these models. As we will
see below, it is relatively easier to bound the covariance matrix (in fact, the second moment matrix) of a
model with zero or small external field. However, for any time t > 0, HN,t has an external field. We will use
a method developed in [HMP24] to reduce to the case of a model with zero or small external field.

Let mtrue = m(µt). The main intuition of this reduction is that the Gibbs measure concentrates near
a codimension-2 band passing through mtrue and orthogonal to mtrue and x, and furthermore the model on
this band is essentially a replica symmetric model with no external field. Moreover, one expects that both
R(mtrue,mtrue) and R(mtrue,x) concentrate near a value q∗ = q∗(t) defined by ξ′t(q∗) = q∗

1−q∗ .
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However, mtrue is a complicated function of HN,t, so it is a priori difficult to reason about the joint
distribution of (mtrue, HN,t). Thus, this reduction is formally carried out by conditioning on a TAP fixed
point mTAP, which will serve as a proxy for mtrue. Define the TAP free energy

FTAP(m) = HN,t(m) +
N

2
· θ(R(m,m)) +

N

2
log(1−R(m,m)),

where
θ(s) = ξ(1)− ξ(s)− (1− s)ξ′(s).

As shown in [HMP24], for sufficiently small constant ι > 0, with probability 1 − e−cN FTAP has a unique
critical point mTAP in the region Sι defined by R(m,m), R(m,x) ∈ [q∗ − ι, q∗ + ι]. Due to the existence
and uniqueness of mTAP, it becomes possible to relate HN,t to a “TAP-planted model” where one samples
mTAP first, and then samples HN,t conditional on ∇FTAP(m) = 0:

Lemma 7.7.12 (See Lemma 7.7.23; essentially due to [HMP24]). For any small constant ι > 0, the following
holds. For any HN,t-measurable event E, if

sup
mTAP∈Sι

Pr(E|∇FTAP(mTAP) = 0)→ 0,

then Pr(E)→ 0.

Crucially, the conditional law of HN,t in the TAP-planted model is very tractable, as (for a fixed mTAP)
∇FTAP(mTAP) = 0 amounts to a linear constraint on the Gaussian process HN,t. The resulting explicit
conditional law of HN,t is described in Lemma 7.7.26.

Remark 7.7.13. While it will not be relevant to our purposes, [AMS22, AMS23b, HMP24] have shown
that mTAP typically approximates mtrue well, in the sense that ‖mtrue −mTAP‖2 = O(1), thereby justifying
the heuristic that mTAP is a proxy for mtrue.

Remark 7.7.14. The idea of reducing to a TAP-planted model has also been used beyond the setting of
sampling from spherical spin glasses. In the recent work [Hua24], an analogous reduction is used to obtain
the capacity of the Ising perceptron. In this application, passage to the TAP-planted model is used to tightly
control a partition function rather than to bound a covariance matrix.

Consequently, we can now work within the TAP-planted model. Let HTAP denote the Hamiltonian HN,t

after conditioning on x and ∇FTAP(mTAP) = 0. As

Cov(µHTAP
) � E

σ∼µHTAP

(σ − v)(σ − v)>

for any v ∈ RN (with equality at v = mtrue), it suffices to control the operator norm of

E
σ∼µHTAP

(σ −mTAP)(σ −mTAP)>.

Reduction to slices of the sphere. Next, to control the covariance, let us decompose the sphere into
codimension-2 slices

S(a, b) :=

{
σ ∈ SN : R(σ,m) =

(
1 +

a√
N

)
R(m,m), R(σ,x) =

(
1 +

b√
N

)
R(x,m)

}
,

with the central slice centered at m = mTAP. Let µa,b be the measure µHTAP
conditioned to lie in the

codimension-2 slice S(a, b).
The concentration of the Gibbs measure described in the previous section implies that, viewed as random

variables of a sample σ ∼ µHTAP
, a and b are well-concentrated around 0. Let va,b be the center of S(a, b).
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The covariance of the distribution may be bounded as

Cov(µ) � E(σ −m)(σ −m)>

= E
(a,b)

E
σ∼µa,b

(σ − va,b + va,b −m)(σ − va,b + va,b −m)
>

� 2 E
(a,b)

E
σ∼µa,b

(σ − va,b)(σ − va,b)> + 2 E
(a,b)

(va,b −m)(va,b −m)>

� 2 E
(a,b)

E
σ∼µa,b

(σ − va,b)(σ − va,b)> + 2 E
(a,b)

O
(
a2 + b2

)
. (7.6)

One can interpret va,b as explaining the variation within the slice originating from them and x directions.
Hence, as alluded to in the previous discussion about the TAP planted model, the key fact is that under
µa,b, the recentered sample σ − va,b is a sample from a spherical spin glass in two lower dimensions, as can
be shown by calculating the covariance of the (conditioned) Gaussian process HTAP restricted to this slice.
This verification is carried out in Corollary 7.7.29.

These codimension-2 models have the crucial property that the spherical spin glass on the slice a = b = 0
is a model satisfying (Strict RS) with no external field (i.e. degree-1 term), while nearby slices have a small
(random) external field of magnitude

√
a2 + b2. In particular, the first term of (7.6) requires bounding the

second moment of a Gibbs sample from a strictly RS model with small (random) external field. As a result,
(7.6) would be bounded if we proved the following.

1. Let HN be the Hamiltonian of a slightly generalized mixed p-spin model, where we allow the mixture
function ξ to have a small linear term γ1q (in our proofs we allow γ2

1 ≤ N−4/5), such that the non-
degree-1 part ξ∼1 of ξ satisfies (Strict RS). Then, with high probability,∥∥∥∥ E

µHN
σσ>

∥∥∥∥
op

= O
(
1 + γ2

1N
)
.

Much of Section 7.8 is dedicated to showing this.

2. The second moments of a and b are O(1). In fact, we will show in Lemma 7.7.40 that they are essentially
O(1)-subgaussian.

Let us start by explaining how to show subgaussianity.

Subgaussianity of a, b. The distribution ν of (a, b) is given by

ν(a, b) ∝ exp

(
log Ẑa,b +

N − 4

2
log

(
1− ‖va,b‖

2

N

)
+HTAP(va,b)

)
.

Here, the first term log Ẑa,b is the free energy of the (N − 2)-dimensional p-spin model µa,b, obtained by
restricting µHTAP

to the slice S(a, b) and rescaling the distribution to lie on SN−2. The second term is an
effective decrement in the free energy caused by the radius of the sphere S(a, b) shrinking for larger values
of a and b. The third term is an effective increment in the free energy coming from the energy of HTAP at
the center of the slice S(a, b).

For a fixed (a, b), the only random quantities in the definition of ν are the first and third terms. In
Theorem 7.7.32, proved in Section 7.8, we show that the first term may essentially be approximated by a
deterministic function of the mixture function of µa,b, at the cost of incurring a small O(1) error. We do
not elaborate on the details of this proof in the technical overview; it is similar to that used to bound the
covariance (which we explain shortly). The third term is similar, and is a deterministic function plus a small
Gaussian, whose variance is O(a2 + b2).

Given these bounds, we may show that the distribution ν is strongly log-concave at 0 with high probability
over the randomness of HTAP. A simple perturbation argument then implies that ν is strongly log-concave
in a macroscopic neighborhood of 0, implying subgaussianity.
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Covariance bound for strictly RS models with small external fields. The covariance bound has
now boiled down to bounding ‖M‖op, for M = EµHN [σσ>] the second moment matrix of model satisfying
(Strict RS) with small external field. Note that M is a HN -measurable random variable.

The proof proceeds in two high level steps, which we carry out in Section 7.8.

1. We show using the second moment method that with positive probability over HN , ‖M‖op is bounded.

2. Using a much simpler argument, we can show that ‖M‖op is essentially O(N−1/10)-Lipschitz in the
disorder. Hence, by gaussian concentration, it concentrates very well around its expectation (which is
O(1) by the positive probability bound).

Let us elaborate a bit more on the proof of the first point above. It turns out that, under the condition
(Strict RS) with small external field, the leading order contribution to M comes from the degree-2 part
of the Hamiltonian HN,2(σ) = γ2

N1/2

∑
i,j gi,jσiσj . We will ultimately reduce the study of the covariance

matrix of µHN to that of µHN,2 , and then show boundedness of Cov(µHN,2) using random matrix theory.
A similar strategy of isolating the degree-2 component of HN was used to study the partition function and
magnetization of strictly RS models in [HMP24].

Degree-2 behavior. Let us discuss the typical behavior of the covariance of µHN,2 . Define the degree-2
Gibbs measure

dµHN,2(σ) ∝ exp(HN,2(σ))dρ(σ),

with corresponding partition function ZN,2 =
∫

exp(HN,2(σ))dρ(σ). This is the spherical Sherrington-
Kirkpatrick model with interaction matrix A = ∇2HN (0); note that A is a scaled GOE matrix. Observe
that if we shift A by a constant multiple of the identity γIdN , the measure does not change, as it is supported
on SN . The crucial observation is the following:

For a careful choice of γ, the measure dµHN,2(σ) ∝ exp(− 1
2 〈σ, (γIdN − A)σ〉)dρ(σ) looks like a

Gaussian with covariance (γIdN −A)−1.

In fact, we will see that it suffices to pick γ = 1 + ξ′′(0). The typical value of ‖x‖22, where x ∼ N (0, γIdN −
A)−1, is equal to Tr(γIdN −A)−1. By approximating this trace using the semicircle law for the eigenvalues

of A and the explicit choice of γ, we see that ‖x‖22 ≈ N , which justifies the heuristic that this Gaussian
approximates the spherical distribution µHN,2 .

For the above discussion to be well-defined, we require that γIdN − A is positive definite, which can
only occur if the maximum eigenvalue of A is bounded above by γ = 1 + ξ′′(0). By standard concentration
inequalities about the maximum eigenvalue of a GOE matrix, this holds with a constant margin with expo-
nentially good probability. Thus, at least for typical realizations of HN,2, the covariance will have bounded
operator norm. To make this rigorous, we will use the Laplace transform to precisely control the moments
of the overlaps, as was previously done in [BL16, HMP24].

Reduction to degree-2. Below, we give some justification for why one should expect to be able to reduce
to the degree-2 behavior. We will heuristically argue this by showing that the partition function ZN is
essentially controlled by the degree-2 portion.

To simplify the discussion, let us assume that we are in a 2 + p spin model, so that HN (σ) = HN,2(σ) +

HN,p(σ), where HN,p(σ) =
γp

N(p−1)/2

∑N
i1,...,ip=1 gi1,...,ipσi1 · · ·σip . The corresponding mixture function de-

composes as ξ(q) = γ2
2q

2 +ξ∼2(q), so that ξ∼2(q) = γ2
pq
p corresponds to the non degree-2 part of the mixture

function. It turns out that, once we condition on HN,2 (and hence the value of ZN,2), the full partition
function ZN is essentially deterministic. Indeed, we will show in Proposition 7.8.2 that with very high
probability,

ZN ≈ ZN,2eNξ∼2(1)/2

To see why this is reasonable, let us consider the first two moments of ZN conditioned on the degree-2
Hamiltonian HN,2. Indeed, let E∼2 denote expectation with respect to HN,p conditioned on HN,2. Standard
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gaussian MGF calculations yield E∼2 ZN = eNξ∼2(1)/2ZN,2 and

E
∼2

[Z2
N ] = Z2

N,2e
Nξ∼2(1)

∫
exp(Nξ∼2(R(σ1, σ2)))dρ⊗2(σ1, σ2)

= (E
∼2
ZN )2

∫
exp(Nγ2

pR(σ1, σ2)p)dρ⊗2(σ1, σ2).

At sufficiently high temperatures, the typical overlap behavior R(σ1, σ2) � N−1/2, where σ1, σ2 are iid
draws from µHN . This matches the overlap behavior at infinite temperature, where the Gibbs distribution
is uniform. Then, pretending that R(σ1, σ2) = cN−1/2 for all σ1, σ2, we obtain that

E
∼2

[Z2
N ] ≈ (E

∼2
ZN )2 exp(cpγ2

pN
1−p/2).

Since p ≥ 3, it follows that, conditional on HN,2, the conditional variance of ZN is tiny compared to its
conditional expectation. In summary, we see that the higher degree portions of the partition function have
negligible contributions to the fluctuations of ZN , so that the typical behavior of ZN is controlled by ZN,2.

Turning now to the covariance bound, we will control the (i, j)th covariance entryMi,j :=
∫
σiσje

HN (σ)dρ(σ).
A crucial fact is that, by rotational invariance of the sphere and gaussians, we can rotate to the eigenbasis
of A = ∇2HN (0) so that A becomes diagonal. When A is diagonal, one can in fact show that

E
∼2

[M2
i,j ] .

1

N2
(E
∼2
Mi,j)

2,

where E∼2Mi,j can be interpreted as (up to normalization) the predicted (i, j)th covariance entry by just
looking at the degree-2 randomness; see Propositions 7.8.17 and 7.8.18 for details. It follows that the
Frobenius norm error of the true covariance compared to the degree-2 covariance is O(1). Combined with
the typical behavior of the degree-2 covariance being essentially the diagonal matrix ((1 + ξ′′(0))IdN −A)−1,
we conclude an O(1) covariance bound for µHN .

Although this direct moment approach can be made rigorous at sufficiently high temperature, it will
not cover the entire regime (Strict RS) of our main theorem. To deal with this, we will use the free energy
typical truncation recently introduced by [HS23b]. The main idea is that, while pairs σ1, σ2 with overlap
R(σ1, σ2) � N−1/2 do not necessarily dominate the second moment E[Z2

N ] throughout the regime (Strict RS),

there is a truncation Z̃N accounting for nearly all of ZN , whose second moment is dominated by such pairs.
We defer the details to the following sections.

7.7.2 Null models, planted models, and contiguity

As described in the technical overview, we will need a quantitative strengthening of contiguity between the
null and planted models. For convenience, let us restate the definition of the planted model.

Definition 7.7.9 (Planted p-spin model). The planted measure µpl is a joint law over a Hamiltonian HN

and a spike x ∈ SN given by

dµpl(HN , x) ∝ exp (HN (x)) · dρ(x) · dµnull(HN ),

where ρ is the uniform measure over SN and µnull is the law over p-spin Hamiltonians with mixture function
ξ. We frequently abuse notation to let µpl(HN ) denote the marginal of µpl on HN .

Remark 7.7.15 (Interpretation of planted model). Equivalently, the planted measure µpl can be described
as follows.

• Sample x ∼ SN .

• Sample H̃N ∼ µnull.

• Define HN by HN (σ) = H̃N (σ) +N · ξ(R(x, σ)).
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The following Bayesian interpretation of µpl will make the planted model amenable to explicit calculation.
For (x, HN ) sampled from µpl, the posterior distribution x|HN is described by the density:

dµx|HN (σ) ∝ exp(HN (σ))dρ(σ) .

Therefore, the distribution of (HN , σ) for σ ∼ µHN is identical to that of (HN ,x).

In order to show the probability bound of 1 − e−cN
1/5

in Lemma 7.7.7, we will prove the following
quantitative strengthening of mutual contiguity, under the following quantitative strict RS condition. Note
that, since the proof of Theorem 7.7.2 union bounds over poly(N) many values of β, quantitative control of
the error in Lemma 7.7.7 is needed to carry out the proof.

Condition 7.7.16 (ε-strict replica symmetry). We say ξ is ε-strictly replica symmetric if for all q ∈ (0, 1),

1

q2
· (ξ(q) + q + log(1− q)) ≤ −ε/2. (7.7)

Under this assumption, we prove the following quantitative contiguity result in Section 7.8.

Proposition 7.7.17 (Quantitative contiguity). Under Condition 7.7.16, there exists c = c(ε) > 0 such that

for any event E, if µpl(E) = p, then µnull(E) ≤ e−cN1/5

+ e
1
c

√
log 2

p p.

Thus, from now on, we work under the planted model. One reason the planted model is easier to work
with is because of the following lemma, which provides a simple description of the distribution of µt (by
describing the distribution of the external field at time t) in the planted model.

Lemma 7.7.18. Let µt be the distribution after running stochastic localization with the Id driving matrix
for time t initialized at µHN . Then µt arises as the Gibbs distribution of the Hamiltonian HN,t(σ):

HN,t(σ) = HN (σ) + 〈yt, σ〉 ,

where
(HN ,yt)

d
= (HN , tx+

√
tg) ,

where x ∼ SN , HN ∼ µpl(·|x), and g ∼ N (0, IdN ).

Notation 7.7.19 (µpl,t, ξt(q), γ(q)). We will use µpl,t to denote the distribution of the pair (HN,t,x),
ξt(q) = ξ(q) + tq to refer to the mixture function of HN,t, and γ(q) to refer to the function qξ′t(q).

In the subsequent sections, we will prove a high probability covariance bound for µt at a fixed time t
under the planted model.

Lemma 7.7.20. There exist universal constants c, T,K, such that for any t ∈ [0, T ], with probability at least

1− e−cN1/5

over the randomness of HN drawn from µpl,t, we have ‖Cov(µt)‖ ≤ K.

We now have all the necessary ingredients to prove the covariance bound along the entire localization
path for the null model.

Proof of Lemma 7.7.7. Define T as the discrete set {iT/δ : 1 ≤ i ≤ 1/δ, i ∈ Z} for δ = N−100. We will
prove:

Pr
HN

[
Pr

(µt)|HN

[
‖Cov(µt)‖op < K for all t ∈ T

]
≥ 1− e−cN

1/5

]
≥ 1− e−cN

1/5

.

A simple continuity argument can be used to derive the desired statement from the above. By taking a
union bound over all elements of T , along with Proposition 7.7.17 and Lemma 7.7.20, we can conclude:

E
HN

Pr
(µt)|HN

[
‖Cov(µt)‖op > K for some t ∈ T

]
≤ e−2cN−1/5

.

The resulting statement then follows from Markov’s inequality on the random variable

Pr
(µt)|HN

[
‖Cov(µt)‖op > K for some t ∈ T

]
.
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7.7.3 TAP planted models

In this section, we formally introduce the TAP planted model and relate it to the planted model from the
previous section.

Definition 7.7.21. Let HN be a planted Hamiltonian with mixture function ξ, and define

θ(s) = ξ(1)− ξ(s)− (1− s)ξ′(s).

The associated TAP free energy is defined by

FTAP(m) = HN (m) +
N

2
· θ (R(m,m)) +

N

2
· log (1−R(m,m)) .

While the TAP free energy is interesting for a multitude of reasons, we will be interested in it because
its fixed points provide a good proxy for the mean. Furthermore, the linearity of the TAP free energy in
the Gaussian coefficients of the Hamiltonian provides certain desirable properties (that using the true mean
would not allow).

Fact 7.7.22 ([HMP24, Fact 4.2]). Let ξ be a mixture function satisfying the condition (SL). For any
t ∈ [0,∞), let ξt(q) = ξ(q) + tq. Then there is a unique solution in [0, 1), which we denote q∗ = q∗(t), to

ξ′t(q∗) =
q∗

1− q∗
.

Lemma 7.7.23. For any K > 0, sufficiently small (constant) ι > 0 and x ∈ SN :

Pr
µpl,t

[∥∥Cov(µHN,t)
∥∥
op
≥ K

]
≤ C · sup

m∈Sι
Pr

µpl,t|x

[∥∥Cov(µHN,t)
∥∥
op
≥ K ∧ Eι | ∇FTAP(m) = 0

]1/2
+ 2e−cN ,

where

Sι = Sι(x) :=
{
m ∈ RN : |R(m,m)− q∗|, |R(m,x)− q∗| < ι

}
,

and Eι is the event that FTAP has a unique critical point mTAP in Sι, and that

Pr
σ∼µHN,t

[
R(σ,mTAP), R(σ,x) ∈ [q∗ − ι, q∗ + ι]

]
≥ 1− e−cN .

Proof. The above statement is effectively due to [HMP24, Propositions 4.4(d) and 4.5(a)]. For the reader’s
convenience, we include the steps to arriving at the above statement. For any event E (and in particular, for
the event E defined in [HMP24, Proposition 4.4]), we have:

Pr
[∥∥Cov(µHN,t)

∥∥
op
≥ K

]
≤ Pr

[∥∥Cov(µHN,t)
∥∥
op
≥ K ∧ Eι ∧ E

]
+ Pr

[
E
]

+ Pr
[
Eι
]
.

The desired statement follows by observing that Pr
[
Eι
]
≤ e−cN by [HMP24, Proposition 4.5(a)], Pr

[
E
]
≤

e−cN by [HMP24, Proposition 4.4], and applying [HMP24, Proposition 4.4(d)] withX = 1
[∥∥Cov(µHN,t)

∥∥
op
≥ K ∧ Eι

]
.

Lemma 7.7.23 reduces our task to studying the covariance matrix in a conditional planted model.

Notation 7.7.24 (µTAP, HTAP, qm, qx). For x ∼ SN and m ∈ RN , we consider the distribution µTAP,x,m of
HTAP for HTAP ∼ (µpl,t|x,∇FTAP(m) = 0). We use qm and qx to refer to R(m,m) and R(m,x) respectively.

Lemma 7.7.25. Let x ∈ SN , let Sι be as in Lemma 7.7.23, and let m ∈ Sι. Then for an absolute constant
K > 0,

Pr
HTAP∼µTAP,x,m

[‖Cov(µHTAP
)‖ ≥ K ∧ Eι] ≤ e−cN

1/5

.
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Proof of Lemma 7.7.20. The statement is immediate from Lemmas 7.7.23 and 7.7.25.

The rest of this section is dedicated to proving Lemma 7.7.25. As a first step, we determine the law of
the typical Hamiltonian sampled from µTAP. We prove the following lemma in Appendix 7.B — it follows
by routine calculations, using the form of the law of a Gaussian process conditioned on the value of a linear
function of it. Recall that ξt(q) = ξ(q) + tq.

Lemma 7.7.26. The law of Hamiltonian HTAP ∼ µTAP,x,m is described by a Gaussian process (HTAP(σ))σ∈SN
defined by

E HTAP(σ) = Nξt(R(x, σ))− 〈x, v(σ)〉 · ξ′t(qx)− ξ′t(R(m, σ))

γ′(qm)
· 〈m, σ〉 ·

(
θ′(qm)− 1

1− qm

)
1

N
Cov(HTAP(σ), HTAP(σ′)) = ξt(R(σ, σ′))−R(σ, σ′)

ξ′t(R(m, σ))ξ′t(R(m, σ′))

ξ′t(qm)

+
ξ′′t (qm)

γ′(qm)ξ′t(qm)
γ(R(m, σ))γ(R(m, σ′)),

where

v(σ) :=
ξ′t(R(m, σ))

ξ′t(qm)

[
I − ξ′′t (qm)

γ′(qm)
· mm

>

N

]
σ

γ(q) := q · ξ′t(q) .

For the proofs below, it will also be helpful to consider Hamiltonians with a linear term representing an
external field. For a sequence γ1, γ2, . . . , γp∗ , consider the following generalization of HN from (7.5):

HN (σ) :=
∑
p≥1

γp
N (p−1)/2

N∑
i1,...,ip=1

gi1,...,ipσi1 · · ·σip . (7.8)

This has mixture function
ξ(s) =

∑
p≥1

γ2
pq
p.

We will write ξ∼1(s) =
∑
p≥2 γ

2
pq
p for the part of ξ with degree at least 2, and extend Condition 7.7.16 to

such ξ as follows.

Condition 7.7.27 (ε-strict replica symmetry). We say ξ is ε-strictly replica symmetric if γ2
1 ≤ N−4/5 and

ξ∼1 satisfies Condition 7.7.16.

7.7.4 Slices in TAP planted models

For succinctness, we shall fix x ∈ SN and m ∈ Sι(x), and use µTAP to refer to the distribution µTAP,x,m.
For HTAP ∼ µTAP, we are interested in bounding the covariance of µHTAP

. To reason about µHTAP
, we write it

as a mixture of distributions over (N − 2)-dimensional slices of SN . For a, b ∈ R, we define

S(a, b) :=

{
σ ∈ SN : R(σ,m) =

(
1 +

a√
N

)
qm, R(σ,x) =

(
1 +

b√
N

)
qx

}
.

Let ra,b refer to the radius of this slice, which is equal to

ra,b =

√
1− qm

(
1 +

a√
N

)2

− qmq2
x

qm − q2
x

(
a− b√
N

)2

.

Note in particular that

qm

(
1 +

a√
N

)2

+
qmq

2
x

qm − q2
x

(
a− b√
N

)2

≥ qm
(

1 +
a√
N

)2

. (7.9)
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We refer to the uniform distribution on this slice as ρa,b, and the partition function on the slice as

Za,b := E
σ∼ρa,b

exp(HTAP(σ)) .

With this definition, the partition function of the original Hamiltonian is given by

Z = ΛN

∫
Za,br

N−4
a,b d(a, b)

for some fixed number ΛN depending only on N .

Remark 7.7.28. To see why we scale by rN−4
a,b , observe that when HTAP is the constant-0 Hamiltonian, the

resulting distribution on the sphere should be uniform. The distribution restricted to each slice must also be
uniform. However, not all slices are weighted equally — slice that have smaller radii must be downweighted
accordingly, with this weighting proportional to rN−4

a,b for S(a, b).1

Use ν to refer to the distribution over (a, b) where dν(a, b) ∝ Za,br
N−4
a,b d(a, b), and µa,b to refer to the

distribution µHTAP
restricted to S(a, b). Now, we can write µHTAP

as the following mixture:

µHTAP
= E

(a,b)∼ν
µa,b .

We will need coarse understanding of the tails of ν, and fine understanding of the distribution µa,b for
small a and b.

Now, let us probe the distribution µa,b.

dµa,b
dρa,b

(σ) =
exp(HTAP(σ))

Eσ∼ρa,b exp(HTAP(σ))

Since S(a, b) can be naturally identified with SN−2, the first step to understanding µa,b is to express it as a
p-spin model on SN−2. To do so, we will verify that some Hamiltonian that gives rise to µa,b has a mixture
function that is given by a polynomial in the overlap. We can write any σ ∈ S(a, b) as:

σ =
√
N · v(a, b) +

√
1− ‖v(a, b)‖2︸ ︷︷ ︸

ra,b

σ⊥

for σ⊥ ∈ SN orthogonal to m and x, and for v(a, b) in the span of m and x. Let Q be an isometric linear
transformation that maps SN−2 to SN ⊥ {m,x}. We can write HTAP(σ) = HTAP(v(a, b) + ra,bQτ) (where
τ ∈ SN−2). The following is a consequence of Lemma 7.7.26, and is proved in Appendix 7.B.

Corollary 7.7.29. For a fixed choice of a and b, the Gaussian process (HTAP(v(a, b) + ra,bQτ))τ∈SN−2
is

described by the following law.

• Let Ha,b be a spherical p-spin Hamiltonian with mixture function ξa,b given by:

ξa,b(s) := ξt

(
‖v(a, b)‖2 + r2

a,bs
)
− ξt

(
‖v(a, b)‖2

)
− s ·

r2
a,bξ
′
t

(
qm ·

(
1 + a√

N

))2

ξ′t(qm)
.

• Let V (a, b) := ξt

(
‖v(a, b)‖2

)
− ‖v(a, b)‖2 ·

ξ′t

((
1+ a√

N

)
qm
)2

ξ′t(qm) +
ξ′′t (qm)

γ′(qm)ξ′t(qm) · γ
((

1 + a√
N

)
qm

)2

.

The law of HTAP(v(a, b) + ra,bQτ) is the same as that of Ha,b(τ) +
√
N · ga,b + EµTAP

HTAP(v(a, b) + ra,bQτ)
where ga,b is a centered Gaussian of variance V (a, b) independent of Ha,b.

Now, HTAP is described by the collection (Ha,b, ga,b)a,b. This is not an independent collection of random
variables. The only structural properties of this collection we will use are:

1The constant of proportionality here is something depending only on N .
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• For each a, b ∈ R, we have Ha,b and ga,b are independent.

• For any a, b, we have ga,b = g0,0 + ĝa,b, where ĝa,b is a centered Gaussian of variance O
(
a4+b4

N2

)
.

We will first give an explicit form for v(a, b).

Fact 7.7.30. We have

√
N · v(a, b) = m ·

(
1 +

aqm − bq2
x√

N(qm − q2
x)

)
+

qmqx
qm − q2

x

x ·
(
b− a√
N

)
.

Lemma 7.7.31. There exists ε = ε(ξ) > 0 such that for all t ≥ 0 and all |a|, |b| ≤ εN1/10, the mixture
function ξa,b defined in Corollary 7.7.29 (recall this implicitly depends on t) is ε-strictly replica symmetric
(Condition 7.7.27).

Proof. We will first show ξ′a,b(0) ≤ N−4/5. We calculate:

ξ′a,b(0) = r2
a,bξ
′
t

(
‖v(a, b)‖2

)
−
r2
a,bξ
′
t

(
qm

(
1 + a√

N

))2

ξ′t(qm)

≤ ξ′t
(
qm +

2aqm√
N

+O

(
a2 + b2

N

))
−
ξ′t

(
qm

(
1 + a√

N

))2

ξ′t(qm)
.

Here, the inequality follows from the fact that ‖v(a, b)‖2 = qm

(
1 + a√

N

)2

+O
(
a2+b2

N

)
, ξ′t is non-decreasing,

and r2
a,b ≤ 1. Now, we have, using the O(1)-Lipschitzness of ξ′t,

ξ′t
(
‖v(a, b)‖2

)
= ξ′t(qm) + ξ′′t (qm) · 2aqm√

N
+O

(
a2 + b2

N

)
and

ξ′t

(
qm

(
1 +

a√
N

))2

= ξ′t(qm)2 +
2aqm√
N
· ξ′′t (qm) · ξ′t(qm) +O

(
ξ′t(qm) · a

2 + b2

N

)
.

Thus ξ′a,b(0) = O(a
2+b2

N ). Setting ε sufficiently small ensures ξ′a,b(0) ≤ N−4/5. Next, we show (ξa,b)∼1 satisfies

Condition 7.7.16. Since ξ satisfies (SL), there exists sufficiently small ε = ε(ξ) such that ξ′′(q) ≤ 1−ε
(1−q)2 for

all q ∈ [0, 1). Then,

ξ′′a,b(q) =
(

1− ‖v(a, b)‖2
)2

ξ′′t

(
‖v(a, b)‖2 +

(
1− ‖v(a, b)‖2

)
q
)

≤
(

1− ‖v(a, b)‖2
)2

· 1− ε(
1− ‖v(a, b)‖2 −

(
1− ‖v(a, b)‖2

)
q
)2

=
1− ε

(1− q)2
≤ 1

(1− q)2
− ε.

Integrating twice shows

(ξa,b)∼1(q) + q + log(1− q) ≤ 1

2
εq2.

We are now ready to bound Cov(µHTAP
). First, recall that for any distribution µ over RN and any vector

v ∈ RN , we have Cov(µ) � Eσ∼µ(σ − v)(σ − v)>. Thus it suffices to bound

E
σ∼µHTAP

(σ −m)(σ −m)
>

= E
(a,b)∼ν

E
σ∼µa,b

(σ − v(a, b) + v(a, b)−m)(σ − v(a, b) + v(a, b)−m)
>

� 2 E
(a,b)∼ν

E
σ∼µa,b

(σ − v(a, b))(σ − v(a, b))
>

+ 2 E
(a,b)∼ν

(v(a, b)−m)(v(a, b)−m)> . (7.10)
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We will bound the spectral norm of each of the above terms below. We employ the following statement for
proving the desired bounds, proved in Section 7.8.

Theorem 7.7.32. Suppose ε > 0, and ξ is ε-strictly replica symmetric (Condition 7.7.27). Then, there

exist c = c(ε) and C = C(ε) such that the following hold with probability 1− e−cN1/5

.

(a) We have ∇2HN (0) � (1 + ξ′′(0)− ε2/8)IN and∣∣∣∣logZN −
Nξ(1)

2
− Nξ′′(0)

4
− log(1− ξ′′(0))

2
+

1

2
log det

(
(1 + ξ′′(0))IN −∇2HN (0)

)∣∣∣∣ ≤ 1.

(b) The Gibbs measure satisfies ‖EµHN σσ
>‖op ≤ C(1 + γ2

1N).

Bounding the first term. Observe that:

E
σ∼µa,b

(σ − v(a, b))(σ − v(a, b))
>

= r2
a,bQa,b E

τ∼µHa,b
ττ>Q>a,b .

Thus, ∥∥∥∥ E
σ∼µa,b

(σ − v(a, b))(σ − v(a, b))
>
∥∥∥∥ = r2

a,b

∥∥∥∥ E
τ∼µHa,b

ττ>
∥∥∥∥ ≤ Cr2

a,b(1 + a2 + b2) . (7.11)

where the inequality follows from Lemma 7.7.31 and Theorem 7.7.32.
Our next goal is to control the fluctuations of (a, b). By definition, if Ẑa,b is the partition function of the

distribution with Hamiltonian Ha,b defined by Ha,b(τ) = HTAP(v(a, b) + ra,bQτ), we have

ν(a, b) ∝ exp

(
log Ẑa,b + (N − 4) log ra,b + E

µTAP

HTAP(v(a, b)) +
√
Nga,b

)
. (7.12)

We will show that (a, b) ∼ ν, conditioned on |a|, |b| ≤ εN1/10 for ε as in Lemma 7.7.31, is subgaussian
with variance O(1). We will also show in Lemma 7.7.39 that ν places very little mass outside the set
|a|, |b| ≤ εN1/10.

Lemma 7.7.33. Let ε be as in Lemma 7.7.31. On an event with probability 1−e−cN1/5

, the following holds.
The density of (a, b) under ν, conditioned on |a|, |b| ≤ εN1/10, is given by

ν(a, b) ∝ exp
(
NÊa,b +

√
Nga,b + Error

(1)
a,b + Error

(2)
a,b + ∆a,b

)
,

where |∆a,b| ≤ 1 and

Êa,b =
ξa,b(1)

2
+ log ra,b +

1

N
E
µTAP

HTAP(v(a, b))− ξt(1)

2

=
1

2

log r2
a,b − ξt(‖v(a, b)‖2)− r2

a,b ·
ξ′t

(
qm

(
1 + a√

N

))2

ξ′t(qm)


− γ(qx) ·

ξ′t

(
qm

(
1 + a√

N

))
ξ′t(qm)

·
((

1 +
b√
N

)
− qm ·

ξ′′t (qm)

γ′(qm)
·
(

1 +
a√
N

))

+ ξt

(
qx

(
1 +

b√
N

))
+
γ
(
qm

(
1 + a√

N

))
γ′(qm)

·
(

(1− qm)ξ′′t (qm) +
1

1− qm

)
.

for the error terms

Error
(1)
a,b =

(
log Ẑa,b −

Nξa,b(1)

2
−
Nξ′′a,b(0)

4
+

1

2
log det

(
(1 + ξ′′a,b(0))Id−∇2HN (v(a, b))

))
− 4 log ra,b

and

Error
(2)
a,b =

Nξ′′a,b(0)

4
− 1

2
log det

(
(1 + ξ′′a,b(0))Id−∇2HN (v(a, b))

)
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The above follows by expanding out all the terms in the expression (7.12) for the density of ν and

evaluating the term log Ẑa,b using Theorem 7.7.32, which applies because the models ξa,b for |a|, |b| ≤ εN1/10

are ε-strictly replica symmetric by Lemma 7.7.31. Because the conclusion of Theorem 7.7.32 holds with

probability 1− e−cN1/5

, we may evaluate log Ẑa,b over a 1/poly(N)-net of such (a, b) via a union bound, and
then infer the estimate for all such a, b by a standard continuity argument.

Lemma 7.7.34. ∇Êa,b
∣∣∣
(a,b)=(0,0)

= 0.

Lemma 7.7.35. There exist constants η, ε > 0 such that for all |a|, |b| ≤ ε
√
N , N∇2Êa,b � −ηId.

The above follow from routine calculations, which we defer to Appendix 7.B.

Lemma 7.7.36. For every constant ι > 0, there is a constant c such that with probability 1− e−cN , for all

a, b, we have |ga,b − g0,0| ≤ ιa
2+b2√
N

.

Lemma 7.7.37. With probability 1− e−cN1/5

, |Error(1)
a,b| = O(1) uniformly for all |a|, |b| < εN1/10, for ε as

in Lemma 7.7.31.

Proof. We shall show this very high probability bound for a fixed a, b. Constructing a net over the relevant
a, b and performing a union bound over this net allows us to extend this to a uniform bound for all a, b; we
omit the details. We may write the error term as

Error
(1)
a,b = log Ẑa,b −

Nξa,b(1)

2
−

log
(

1− ξ′′a,b(0)
)

2

−
Nξ′′a,b(0)

4
+

1

2
log det

(
(1 + ξ′′a,b(0))Id−∇2Ha,b(0)

)
+O(1).

Due to the bound on a and b, the above is O(1) with very high probability by Theorem 7.7.32(a). The
desideratum follows.

Lemma 7.7.38. For any sufficiently small ι > 0, with probability at least 1 − e−cN ,
∣∣∣Error(2)

a,b − Error
(2)
0,0

∣∣∣ =

O (1) for all a, b < ιN1/4.

We relegate the proof of the above to the appendix Appendix 7.B. The idea of the proof is that the Hessian
∇2Ha,b(0) does not deviate too much for small variations in a, b – the first order terms in the deviation end
up being cancelled by the ξ′′a,b(0)/2 term, while the second order terms are O(1).

Lemma 7.7.39. Let Eι be as in Lemma 7.7.23. With probability 1− e−cN1/5

, either Eι does not hold, or the
following holds. For ε as in Lemma 7.7.31,

Pr
(a,b)∼ν

[
|a| ≤ εN1/10 and |b| ≤ εN1/10

]
≥ 1− e−cN

1/5

.

Proof. On the event Eι, we have

Pr
(a,b)∼ν

[
|a| > ιN1/2 or |b| > ιN1/2

]
≤ e−cN .

Thus, let

T =
{

(a, b) ∈ R2 : |a| ∈ [εN1/10, ιN1/2] or |b| ∈ [εN1/10, ιN1/2]
}
.

It suffices to show that Pr(a,b)∼ν [(a, b) ∈ T ] ≤ e−cN
1/5

with probability 1 − e−cN1/5

. Recall the density of

(a, b) ∼ ν is given by (7.12), and that E Ẑa,b = eNξa,b(1)/2. Thus, for Ê denoting expectation with respect to

the Ẑa,b alone,

Ê
∫
T

exp

(
log Ẑa,b + (N − 4) log ra,b + E

µTAP

HTAP(v(a, b)) +
√
Nga,b

)
d(a, b)

=

∫
T

exp

(
NÊa,b +

Nξt(1)

2
+
√
Nga,b − 4 log ra,b

)
d(a, b).
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On the event in Lemma 7.7.36, we have, for any constant ι > 0,
√
Nga,b ≤

√
Ng0,0 + ι(a2 + b2).

By Lemma 7.7.35,
NÊa,b ≤ NÊ0,0 − η(a2 + b2).

Combining shows that

NÊa,b +
√
Nga,b − 4 log ra,b ≤ NÊ0,0 +

√
Ng0,0 −

η

2
(a2 + b2) +O(1).

Combining shows

Ê
∫
T

exp

(
log Ẑa,b + (N − 4) log ra,b + E

µTAP

HTAP(v(a, b)) +
√
Nga,b

)
d(a, b)

≤ e−cN
1/5

exp

(
NÊ0,0 +

Nξt(1)

2
+
√
Ng0,0

)
and therefore with probability 1− e−cN1/5/2 over the Ẑa,b,∫

T

exp

(
log Ẑa,b + (N − 4) log ra,b + E

µTAP

HTAP(v(a, b)) +
√
Nga,b

)
d(a, b)

≤ e−cN
1/5/2 exp

(
NÊ0,0 +

Nξt(1)

2
+
√
Ng0,0

)
(7.13)

On the other hand, Lemma 7.7.33 implies that with probability 1− e−cN1/5

,

log Ẑ0,0 + (N − 4) log r0,0 + E
µTAP

HTAP(v(0, 0)) +
√
Ng0,0

= NÊ0,0 +
Nξt(1)

2
+
√
Ng0,0 + Error

(1)
0,0 + Error

(2)
0,0 +O(1),

and Lemma 7.7.37 implies |Error(1)
0,0| = O(1) with probability 1− e−cN1/5

. Furthermore, Lemma 7.8.3 below

implies that |Error(2)
0,0| ≤ N1/10 with probability 1− e−cN1/5

. Thus

log Ẑ0,0 + (N − 4) log r0,0 + E
µTAP

HTAP(v(0, 0)) +
√
Ng0,0

≥ NÊ0,0 +
Nξt(1)

2
+
√
Ng0,0 − 2N1/10,

and standard continuity arguments imply that for T ′ = {(a, b) : |a|, |b| ≤ N−10},∫
T ′

exp

(
log Ẑa,b + (N − 4) log ra,b + E

µTAP

HTAP(v(a, b)) +
√
Nga,b

)
d(a, b)

≥ e−3N1/10

exp

(
NÊ0,0 +

Nξt(1)

2
+
√
Ng0,0

)
.

Comparing with (7.13) implies the conclusion, after adjusting c.

Lemma 7.7.40. With probability 1− e−cN1/5

, either Eι does not hold or the following holds. There exists a
random variable X over R2 (coupled with ν) such that the following holds for (a, b) ∼ ν.

(a) With probability at least 1− e−cN1/5

, X = (a, b).

(b) X has mean O(1) and is O(1)-subgaussian.

Proof. This is an immediate corollary of Lemmas 7.7.34, 7.7.35, 7.7.36, 7.7.37, 7.7.38, 7.7.39, setting X to
be the random variable that is equal to (a, b) if |a|, |b| < εN1/10, and 0 otherwise.
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We are now finally prepared to bound Cov(µ).

Lemma 7.7.25. Let x ∈ SN , let Sι be as in Lemma 7.7.23, and let m ∈ Sι. Then for an absolute constant
K > 0,

Pr
HTAP∼µTAP,x,m

[‖Cov(µHTAP
)‖ ≥ K ∧ Eι] ≤ e−cN

1/5

.

Proof. Note that |a|, |b| ≤ 2
√
N almost surely. Let X be as in Lemma 7.7.40. This lemma implies that with

probability at least 1− e−cN1/5

over the randomness of the Hamiltonian,

E
(a,b)∼ν

[
a2 + b2

]
= E[‖X‖2] + E

(a,b)∼ν

[
1[X 6= (a, b)](a2 + b2)

]
≤ O(1) + Pr(X 6= (a, b)) · 8N = O(1).

Thus, by plugging in (7.11) along with this observation into (7.10), we get that the following holds with

probability at least 1− e−cN1/5

‖Cov(µ)‖ ≤ 2C E
(a,b)∼ν

(1 + a2 + b2) +

∥∥∥∥2 E
(a,b)∼ν

(v(a, b)−m)(v(a, b)−m)>
∥∥∥∥

≤ O(1) + 2 E
(a,b)∼ν

‖v(a, b)−m‖2

≤ O(1) + 2 E
(a,b)∼ν

[
O(a2 + b2)

]
≤ O(1) .

7.8 High-probability covariance bound of replica symmetric spher-
ical spin glass

In this section we prove the main technical input to the proofs in Section 7.7.4. This takes the form of a
high-probability bound on the partition function and covariance matrix (in fact, second moment matrix) of
a spherical spin glass in the replica symmetric phase.

In this section, we let HN be defined as in (7.8), with a linear term corresponding to an external field:

HN (σ) :=
∑
p≥1

γp
N (p−1)/2

N∑
i1,...,ip=1

gi1,...,ipσi1 · · ·σip .

We recall ξ∼1(q) =
∑
p≥2 γ

2
pq
p denotes the part of ξ without the linear term, and let

ξ∼2(q) = γ2
1q +

∑
p≥3

γ2
pq
p

denote the part of ξ excluding the degree 2 term.
The results in this section hold under the following condition, which we restate for reference.

Condition 7.7.27 (ε-strict replica symmetry). We say ξ is ε-strictly replica symmetric if γ2
1 ≤ N−4/5 and

ξ∼1 satisfies Condition 7.7.16.

Throughout this section, we treat ε > 0 as a constant and let Oε(1) denote a quantity bounded depending
on ε.

Theorem 7.7.32. Suppose ε > 0, and ξ is ε-strictly replica symmetric (Condition 7.7.27). Then, there

exist c = c(ε) and C = C(ε) such that the following hold with probability 1− e−cN1/5

.

(a) We have ∇2HN (0) � (1 + ξ′′(0)− ε2/8)IN and∣∣∣∣logZN −
Nξ(1)

2
− Nξ′′(0)

4
− log(1− ξ′′(0))

2
+

1

2
log det

(
(1 + ξ′′(0))IN −∇2HN (0)

)∣∣∣∣ ≤ 1.
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(b) The Gibbs measure satisfies ‖EµHN σσ
>‖op ≤ C(1 + γ2

1N).

In the below proofs, we allow the constants c and C to change from line to line, but they will always be
uniform in ε. We always set C sufficiently large depending on ε, and then c sufficiently small depending on
ε, C.

Theorem 7.7.32 will be proved through the following pair of propositions. We introduce the degree-2
Hamiltonian

HN,2(σ) :=
γ2

N1/2

N∑
i1,i2=1

gi1,i2σi1σi2 =
1

2
〈∇2HN (0)σ, σ〉. (7.14)

Similarly let HN,∼2(σ) = HN (σ) −HN,2(σ) be the non degree-2 part of HN (σ). Define the degree-2 Gibbs
measure and partition function by

dµHN,2(σ) =
exp(HN,2(σ))

ZN,2
dρ(σ), ZN,2 =

∫
SN

exp(HN,2(σ))dρ(σ).

Throughout this section, we will let E denote expectation with respect to the disorder coefficients gi1,...,ip ,

while 〈·〉 denotes averaging with respect to σ ∼ µHN (or several i.i.d. samples σ1, σ2, . . . from this measure).
Similarly, let 〈·〉2 denote Gibbs average with respect to µHN,2 .

Note that ∇2HN (0) depends on HN only through HN,2.

Proposition 7.8.1 (Concentration of degree-2 partition function; proved in Subsection 7.8.1). With proba-
bility 1− e−cN over HN,2, we have ∇2HN (0) � (1 + ξ′′(0)− ε2/8)IN and∣∣∣∣logZN,2 −

Nξ′′(0)

2
− log(1− ξ′′(0))

2
+

1

2
log det

(
(1 + ξ′′(0))I −∇2HN (0)

)∣∣∣∣ ≤ 1/2.

The following is proved in Subsections 7.8.2 and 7.8.3.

Proposition 7.8.2. There is a HN,2-measurable event with probability 1 − e−cN1/5

on which the following

holds with probability 1− e−cN1/5

over HN,∼2.

1. The partition functions ZN , ZN,2 satisfy∣∣∣∣log
ZN
ZN,2

− Nξ∼2(1)

2

∣∣∣∣ ≤ 1/2.

2. The Gibbs measure satisfies ‖〈σσ>〉‖op ≤ C(1 + γ2
1N).

Proof of Theorem 7.7.32. Immediate from Propositions 7.8.1 and 7.8.2, since ξ(1) = ξ∼2(1) + 1
2ξ
′′(0).

We also show the following concentration of the log determinant in Theorem 7.7.32.

Lemma 7.8.3 (Proved in Subsection 7.8.1). There exists a HN,2-measurable random variable X that the
following holds.

1. With probability 1− e−cN , X = log det((1 + ξ′′(0))I −∇2HN (0))−Nξ′′(0)/2.

2. X has mean Oε(1) and is Oε(1)-subgaussian.

This implies the quantitative contiguity between the planted and null models, which we restate below for
convenience.

Proposition 7.7.17 (Quantitative contiguity). Under Condition 7.7.16, there exists c = c(ε) > 0 such that

for any event E, if µpl(E) = p, then µnull(E) ≤ e−cN1/5

+ e
1
c

√
log 2

p p.
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Proof. Let Egood be intersection of the event in Theorem 7.7.32, the event

X = log det((1 + ξ′′(0))I −∇2HN (0))−Nξ′′(0)/2

from Lemma 7.8.3, and the event X ≤ t, for some t > 0 to be determined. Then, after adjusting c = c(ε) as
necessary,

µnull(Egood) ≤ e−cN
1/5

+ P(X > t) ≤ e−cN
1/5

+ e−c(t−
1
c )2+ .

Note that logEZN = Nξ(1)/2, while on the event Egood,

logZN =
Nξ(1)−X +Oε(1)

2
≥
Nξ(1)− t− 1

c

2
.

Thus EZN
ZN
≤ e 1

2 (t+ 1
c ). So,

µnull(E) ≤ µnull(Egood) +

∫
EZN
ZN

1[HN ∈ E ∩ Egood]dµpl(HN )

≤ e−cN
1/5

+ e−c(t−
1
c )2+ + e

1
2 (t+ 1

c )p.

We then take t = 1
c +

√
1
c log 1

p , so that this is bounded by

e−cN
1/5

+

(
1 + e

1
c+
√

1
c log 1

p

)
p .

Further adjusting c proves the desired bound.

7.8.1 Concentration of degree-2 partition function

We write A = 1
2∇

2HN (0) =

√
ξ′′(0)

2 M . It is straightforward to check that M is distributed as a sample from
GOE(N).

Fact 7.8.4. We have ξ′′(0) ≤ 1− ε.

Proof. Writing (7.7) as
ξ∼1(q) + q + log(1− q) ≤ −εq2/2

and Taylor expanding around q = 0 implies the result.

Fact 7.8.5. With probability 1− e−cN , ∇2HN (0) � (1 + ξ′′(0)− ε2/8)I.

Proof. With probability 1− e−cN , we have λmax(M) ≤ 2 + ε2/8. Then,

λmax

(
(1 + ξ′′(0)− ε2/8)I −∇2HN (0)

)
≥ 1 + ξ′′(0)− ε2/8−

√
ξ′′(0)(2 + ε2/8)

= (1−
√
ξ′′(0))2 − ε2(1 +

√
ξ′′(0))/8

> ε2/4− ε2/4 = 0

by Fact 7.8.4.

For γ ∈ (λmax(A),+∞), define

G(γ) = γ − 1

2N
log det(γI −A). (7.15)

Note that

G′(γ) = 1− 1

2N
Tr(γI −A)−1

is continuous and increasing, with limγ↓λmax(A)G
′(γ) = −∞ and limγ↑+∞G′(γ) = 1. Thus G′ has a unique

root γ∗ in (λmax(A),+∞). The following lemma is a consequence of [HMP24, Lemma 7.3], which is proved
by an analysis of a Laplace transform of the free energy also used in [BL16].
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Lemma 7.8.6. With probability 1− e−cN over HN,2,

ZN,2 = (1 +O(N−c))

√
2

G′′(γ∗)
(2e)−N/2 exp(NG(γ∗)). (7.16)

Proof. Recalling (7.14), we have

HN,2(σ) =

√
ξ′′(0)

2
〈Mσ, σ〉,

and Fact 7.8.4 implies the factor
√
ξ′′(0)/2 is bounded away from 1/2. Then [HMP24, Lemma 7.3] (with

u = 0) implies the result.

Define γ0 = (1 + ξ′′(0))/2. The next lemma shows that, although the variable γ∗ in (7.16) is random, we
may approximate it deterministically by γ0.

Lemma 7.8.7. For sufficiently large C depending on ε, and sufficiently small c depending on ε, C, with
probability 1− e−cN the following holds for all γ ∈ [γ0 −N−1/2, γ0 +N−1/2].

1. |G′(γ0)| ≤ 1/(C
√
N).

2. | G′′(γ)
2/(1−ξ′′(0)) − 1| ≤ N−1/3.

Proof. Let dρsc(x) = 1
2π1[|x| ≤ 2]

√
4− x2 dx denote Wigner’s semicircle law, and

f1(x) = 1− 1

1 + ξ′′(0)− 2
√
ξ′′(0)x

, f2(x) =
2

(1 + ξ′′(0)− 2
√
ξ′′(0)x)2

.

For k ∈ [2], let

Lk =

∫
fk(x) dρsc(x).

We will show that with probability 1− e−cN , for each k ∈ [2],∣∣∣G(k)(γ0)− Lk
∣∣∣ ≤ 1

C
√
N
. (7.17)

Recall that M ∼ GOE(N). For f : R→ R, define the spectral trace

Trf(M) =

N∑
i=1

f(λi(M)).

Note that G(k)(γ0) = N−1 · Trfk(M). Define

f̃k(x) = fk(min(x, 2 + ε2/8)).

By the proof of Fact 7.8.5, 1+ξ′′(0)−2
√
ξ′′(0)x ≥ ε2/8 for x ≤ 2+ε2/8, so f̃k is Oε(1)-Lipschitz. Moreover,

λmax(M) ≤ 2 + ε2/8 with probability 1− e−cN , and on this event Trfk(M) = Trf̃k(M).

By [GZ00, Lemma 1.2(b)], if we write Mi,i =
√

2/NZi,i, Mi,j =
√

1/NZi,j , then Trf̃k(M) is a Oε(1)-

Lipschitz function of the standard gaussians (Zi,j)1≤i≤j≤N . Thus Trf̃k(M) is Oε(1)-subgaussian, i.e.

P(|Trf̃k(M)− ETrf̃k(M)| ≥ t) ≤ 2e−t
2/C

for some C = Oε(1). By [BY05, Theorem 1.1],

Trf̃k(M)−NLk
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converges in distribution to a gaussian with mean and variance Oε(1). Combined with subgaussianity of

Trf̃k(M), this implies

|ETrf̃k(M)−NLk| = Oε(1).

It follows that (after possibly increasing C = Oε(1)),

P(|Trf̃k(M)−NLk| ≥ t) ≤ 2e−(t−C)2+/C .

Thus

P(|G(k) − Lk| ≥ t) ≤ P(Trfk(M) 6= Trf̃k(M)) + P(|Trf̃k(M)−NLk| ≥ Nt)

≤ e−cN + 2e−(Nt−C)2+/C .

Plugging in t = 1/(C
√
N) proves (7.17). Next, direct calculations show L1 = 0, L2 = 2

1−ξ′′(0) . The former

directly implies conclusion (1), and the latter implies∣∣∣∣G′′(γ0)− 2

1− ξ′′(0)

∣∣∣∣ ≤ 1

C
√
N
.

Moreover, on the probability 1 − e−cN event that λmax(M) ≤ 2 + ε2/8, G(3)(γ) = Oε(1) for all γ ∈
[γ0 −N−1/2, γ0 +N−1/2]. This implies the conclusion (2).

Lemma 7.8.3 is proved by the same method, and we present the proof here.

Proof of Lemma 7.8.3. Let
f0(x) = log(1 + ξ′′(0)−

√
ξ′′(0)x).

An elementary calculation shows that

L0 :=

∫
f0(x) dρsc(X) = ξ′′(0)/2.

Proceeding as in the above proof, we have

log det
(

(1 + ξ′′(0))I −
√
ξ′′(0)∇2HN (0)

)
= Trf0(M).

If we take f̃0(x) = f0(min(x, 2 + ε2/8)), then Trf0(M) = Trf̃0(M) with probability 1 − e−cN . The same

proof shows Trf̃0(M) is Oε(1)-subgaussian, and

|ETrf̃0(M)−NL0| = Oε(1).

Thus we may take X = Trf̃0(M)−NL0 = Trf̃0(M)−Nξ′′(0)/2.

Proof of Proposition 7.8.1. The assertion ∇2HN (0) � (1 + ξ′′(0)− ε2/8)IN is proved in Fact 7.8.5. Suppose
the events in Lemma 7.8.6 and 7.8.7 occur. Since γ∗ is the solution to G′(γ∗) = 0, we have

|γ0 − γ∗| ≤ |G′(γ0)| · 1− ξ′′(0)

2(1−N−1/3)
≤ 1

C
√
N
.

So,

N |G(γ0)−G(γ∗)| ≤
N

2
|γ0 − γ∗|2 sup

γ∈[γ0−N−1/2,γ0+N−1/2]

G′′(γ) ≤ 1

C2
· 2(1 +N−1/3)

1− ξ′′(0)
≤ 3

C2ε
.

Moreover, ξ′′(γ0)/ξ′′(γ∗) = 1 + O(N−1/3). Combining with Lemma 7.8.6 shows that, for some ∆ satisfying
|∆| ≤ 3

C2ε ,

ZN,2 = (1 +O(N−c))e∆

√
2

G′′(γ0)
(2e)−N/2 exp(NG(γ0))

= (1 +O(N−c))e∆
√

1− ξ′′(0)(2e)−N/2 exp(Nγ0) det

(
γ0I −

1

2
∇2HN (0)

)−1/2

= (1 +O(N−c))e∆
√

1− ξ′′(0) exp(Nξ′′(0)/2) det
(
(1 + ξ′′(0))I −∇2HN (0)

)−1/2
.

Taking a logarithm and setting C sufficiently large concludes the proof.
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Finally, the following concentration estimates for samples from µHN,2 will be useful in the sequel. This
is proved similarly to [HMP24, Lemma 7.5], and we defer the proof to Subsection 7.B.3.

Let v1, . . . , vN denote the (unit) eigenvectors of ∇2HN (0). These are well defined on the almost sure
event that all eigenvalues of ∇2HN (0) have multiplicity 1.

Proposition 7.8.8. With probability 1 − e−cN over HN,2, the following holds. Let σ, σ1, σ2 ∼ µHN,2 , and

let W = 〈σ, vi〉 for any i ∈ [N ], or W = 〈σ1, σ2〉/
√
N . Then:

1. For any 0 ≤ t ≤ N1/5, P(|W | ≥ t) ≤ 3e−ct
2

.

2. For any k ∈ 2N, there exists Ck > 0 independent of N such that 〈W k〉2 ≤ Ck.

In particular, part (2) implies ‖〈σσ>〉2‖op ≤ C.

7.8.2 Conditional positive probability bounds for non degree-2 part

In this subsection, we prove the following propositions, which establish a weaker version of Proposition 7.8.2
with positive instead of high probability.

Proposition 7.8.9. There is a HN,2-measurable event with probability 1−e−cN1/5

on which, with probability
1−N−1/15 over HN,∼2, ∣∣∣∣log

ZN
ZN,2

− Nξ∼2(1)

2

∣∣∣∣ = O(N−1/15).

Proposition 7.8.10. There is a HN,2-measurable event with probability 1−e−cN1/5

on which, with probability
1/2 over HN,∼2, ∥∥∥∥ ZN

ZN,2eNξ∼2(1)/2
〈σσ>〉 − 〈σσ>〉2

∥∥∥∥2

F

≤ C(1 + γ4
1N

2).

In conjunction with Propositions 7.8.8 and 7.8.9, the above immediately implies a positive probability
bound on the second moment matrix 〈σσ>〉.

Both propositions rely on the following truncation to ZN developed in [HS23b], which allows one to
estimate ZN via the second moment method throughout the strictly RS regime. As shown in the following
lemma, this truncation does not significantly affect the first moment; at the same time, it will force the
second moment to be dominated by pairs of nearly-orthogonal points.

Lemma 7.8.11. The following holds for sufficiently small c > 0 depending on ε. Let

T = T (HN ) :=

{
σ ∈ SN :

∫
SN

1[|R(σ, τ)| ≥ N−2/5]eHN (τ)dρ(τ) ≤ eNξ(1)/2−cN1/5

}
.

Then, we have:

E
∫
SN

1[σ 6∈ T ]eHN (σ)dρ(σ) ≤ eNξ(1)/2−cN1/5

, (7.18)

E
∫
SN

1[σ 6∈ T ]eHN,2(σ)dρ(σ) ≤ eNξ
′′(0)/4−cN1/5

, (7.19)

E
∫
SN

1[σ1 6∈ T, |R(σ1, σ2)| ≤ 3N−2/5]eHN (σ1)+HN (σ2)dρ⊗2(σ1, σ2) ≤ eNξ(1)−cN1/5

, (7.20)

E
∫
SN

1[σ1 6∈ T, |R(σ1, σ2)| ≤ 3N−2/5]eHN,2(σ1)+HN (σ2)dρ⊗2(σ1, σ2) ≤ eNξ(1)/2+Nξ′′(0)/4−cN1/5

. (7.21)

The proof of the above lemma is very similar to [HS23b, Proposition 3.1] and [HMP24, Lemma 7.9], and
we defer it to Subsection 7.B.3. As a corollary, we can get control on the first two moments of ZN with
respect to the randomness in HN,∼2. To this end, let E∼2 denote expectation with respect to HN,∼2.
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Corollary 7.8.12. There is a HN,2-measurable event with probability 1 − e−cN1/5

on which the following
holds. For

T̃ = T̃ (HN,∼2) :=
{
σ ∈ SN : 〈1[|R(σ, τ)| ≥ N−2/5]eHN,∼2(τ)〉2 ≤ eNξ∼2(1)/2−cN1/5

}
, (7.22)

where the Gibbs average is with respect to τ ∼ 〈·〉2, we have

E
∼2

〈
1[σ 6∈ T̃ ]eHN,∼2(σ)

〉
2
≤ eNξ∼2(1)/2−cN1/5

,

E
∼2

〈
1[σ 6∈ T̃ ]

〉
2
≤ e−cN

1/5

,

E
∼2

〈
1[σ1 6∈ T̃ , |R(σ1, σ2)| ≤ 3N−2/5]eHN,∼2(σ1)+HN,∼2(σ2)

〉
2
≤ eNξ∼2(1)−cN1/5

,

E
∼2

〈
1[σ1 6∈ T̃ , |R(σ1, σ2)| ≤ 3N−2/5]eHN,∼2(σ2)

〉
2
≤ eNξ∼2(1)/2−cN1/5

.

Proof. By Proposition 7.8.1 and Lemma 7.8.3, with probability 1− e−cN2/5

over HN,2,

ZN,2 ≥ eNξ
′′(0)/4−cN1/5/2.

On this event, for σ ∈ T where T is as in Lemma 7.8.11,〈
1[|R(σ, τ)| ≥ N−2/5]eHN,∼2(τ)

〉
2

=
1

ZN,2

∫
SN

1[|R(σ, τ)| ≥ N−2/5]eHN (τ)dρ(τ)

≤ eNξ∼2(1)/2−cN1/5/2.

Here we recall ξ(1)/2 − ξ′′(0)/4 = ξ∼2(1)/2. So, σ ∈ T̃ (HN,∼2, c/2), where this denotes T̃ defined with c/2

in place of c. Therefore T ⊆ T̃ (HN,∼2, c/2).

By Markov’s inequality and Lemma 7.8.11, with probability 1− e−cN1/5/4 over HN,2,

E
∼2

∫
SN

1[σ 6∈ T ]eHN (σ)dρ(σ) ≤ eNξ(1)/2−3cN1/5/4

On the intersection of these events,

E
∼2

〈
1[σ 6∈ T̃ (HN,∼2, c/2)]eHN,∼2(σ)

〉
2
≤ E
∼2

〈
1[σ 6∈ T ]eHN,∼2(σ)

〉
2

=
1

ZN,2
E
∼2

∫
SN

1[σ 6∈ T ]eHN (σ)dρ(σ)

≤ eNξ∼2(1)/2−cN1/5/4.

The first conclusion follows by adjusting c, and the other two conclusions follow similarly.

For the rest of this subsection, we condition on a realization of HN,2 satisfying the following good event.

Definition 7.8.13. Let E2 denote the HN,2-measurable event that the events in Proposition 7.8.8 and

Corollary 7.8.12 hold. This occurs with probability 1− e−cN1/5

.

We can now prove Proposition 7.8.9.

Proof of Proposition 7.8.9. Let T̃ be as in Corollary 7.8.12. We can write

ZN
ZN,2

= 〈eHN,∼2(σ)〉2 = X1 +X2, (7.23)

where

X1 =
〈
1[σ ∈ T̃ ]eHN,∼2(σ)

〉
2
, X2 =

〈
1[σ 6∈ T̃ ]eHN,∼2(σ)

〉
2
.
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We will show that that X2 is much smaller than E∼2X1 with high probability, and then control the fluctu-
ations of X1. For all σ ∈ SN , E∼2[eHN,∼2(σ)] = eNξ∼2(1)/2, so Corollary 7.8.12 implies

(1− e−cN
1/5

)eNξ∼2(1)/2 ≤ E
∼2

[X1] ≤ eNξ∼2(1)/2. (7.24)

On the other hand, by Corollary 7.8.12 and Markov’s inequality, with probability 1− e−cN1/5/2 over HN,∼2,

X2 ≤ eNξ∼2(1)/2−cN1/5/2, (7.25)

so X2 ≤ e−cN
1/5/2 E∼2X1, as desired.

We now control the fluctuations of X1 by estimating

Var∼2[X1] := E
∼2

[X2
1 ]− E

∼2
[X1]2.

Then, for σ1, σ2 ∼ µHN,2 ,

E
∼2

[X2
1 ] = E

∼2

〈
1[σ1, σ2 ∈ T̃ ]eHN,∼2(σ1)+HN,∼2(σ2)

〉
2
≤ E
∼2

[Y1] + E
∼2

[Y2],

where

Y1 =
〈
1[|R(σ1, σ2)| ≤ N−2/5]eHN,∼2(σ1)+HN,∼2(σ2)

〉
2
,

Y2 =
〈
1[σ1 ∈ T̃ , |R(σ1, σ2)| ≥ N−2/5]eHN,∼2(σ1)+HN,∼2(σ2)

〉
2
. (7.26)

By the definition of T̃ and (7.24),

E
∼2

[Y2] ≤ E
∼2

〈
1[σ1 ∈ T̃ ]eHN,∼2(σ1)

〉
2
eNξ∼2(1)/2−cN1/5

≤ eNξ∼2(1)−cN1/5

. (7.27)

We further calculate

E
∼2

[Y1] = eNξ∼2(1)
〈
1[|R(σ1, σ2)| ≤ N−2/5]eNξ∼2(R(σ1,σ2))

〉
2
.

Recall that in Theorem 7.7.32, we assumed γ2
1 ≤ N−4/5. Thus, for |R| ≤ N−2/5,

ξ∼2(R) = γ2
1R+O(R3) = O(N−6/5).

It follows that E∼2[Y1] ≤ (1 +O(N−1/5))eNξ∼2(1).
Combining the above estimates shows E∼2[X2

1 ] ≤ (1 + O(N−1/5))eNξ∼2(1). Further combining with the
lower bound in (7.24) shows

Var∼2[X1] = O(N−1/5)eNξ∼2(1).

By Chebyshev’s inequality, with probability 1−N−1/15/2,

|X1 − E
∼2

[X1]| = O(N−1/15)eNξ∼2(1)/2

Union bounding with the event in (7.25), and recalling (7.24), we conclude that with probability 1−N−1/15,

ZN
ZN,2

= (1 +O(N−1/15))eNξ∼2(1)/2.

The above proof also implies the following estimate, which will be useful in the sequel.

Corollary 7.8.14. On the event E2 (Definition 7.8.13), with probability 1− e−cN1/5

over HN,∼2,∫
1[|R(σ1, σ2)| ≥ N−2/5}eHN (σ1)+HN (σ2)dρ⊗2(σ1, σ2) ≤ Z2

N,2e
Nξ∼2(1)−cN1/5

.
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Proof. Dividing through by Z2
N,2, it suffices to show, for σ1, σ2 ∼ µHN,2 ,〈

1[|R(σ1, σ2)| ≥ N−2/5]eHN,∼2(σ1)+HN,∼2(σ2)
〉

2
≤ eNξ∼2(1)−cN1/5

.

The left-hand side is bounded by Y2 + Y3, where Y2 is as in (7.26) and

Y3 :=
〈
1[σ1 6∈ T̃ ]eHN,∼2(σ1)+HN,∼2(σ2)

〉
2

=
〈
1[σ 6∈ T̃ ]eHN,∼2(σ)

〉
2

〈
eHN,∼2(σ)

〉
2
.

By (7.27), E∼2[Y2] ≤ eNξ∼2(1)−cN1/5

. By Corollary 7.8.12,

E
∼2

〈
1[σ 6∈ T̃ ]eHN,∼2(σ)

〉
2
≤ eNξ∼2(1)/2−cN1/5

, E
∼2
〈eHN,∼2(σ)〉2 ≤ eNξ∼2(1)/2.

So, the following estimates each hold with probability 1− e−cN1/5/4 over HN,∼2:

Y2 ≤ eNξ∼2(1)−cN1/5/2,
〈
1[σ 6∈ T̃ ]eHN,∼2(σ)

〉
2
≤ eNξ∼2(1)/2−3cN1/5/4,

〈eHN,∼2(σ)〉2 ≤ eNξ∼2(1)/2+cN1/5/4.

The conclusion follows on the intersection of these events, after adjusting c.

We now turn to the proof of Proposition 7.8.10. By rotational invariance of gaussians, we may assume
∇2HN (0) is diagonal while keeping the law of HN,∼2 unchanged. For i, j ∈ [N ], define

Xi,j =
〈
σiσj

(
eHN,∼2(σ)−Nξ∼2(1)/2 − 1[i = j]

)〉
2
,

and note that this equals the (i, j) entry of the matrix appearing in Proposition 7.8.10. For σ ∈ RN and
i ∈ [N ], let σ∼i ∈ RN−1 denote σ with coordinate i omitted. Similarly, for i 6= j, let σ∼i,j ∈ RN−2 denote σ
with coordinates i and j omitted, and by slight abuse of notation let σ∼i,i = σ∼i. For i, j ∈ [N ] (possibly

with i = j) define analogously to T̃

T̃i,j :=
{
σ ∈ SN :

〈
1[|R(σ∼i,j , τ∼i,j)| ≥ 2N−2/5]eHN,∼2(τ)

〉
2
≤ eNξ∼2(1)/2−cN1/5

}
, (7.28)

where we recall the Gibbs average is with respect to τ ∼ 〈·〉2. Then define

X̃i,j =
〈
1[|σi|, |σj | ≤ logN, σ ∈ T̃i,j ]σiσj

(
eHN,∼2(σ)−Nξ∼2(1)/2 − 1[i = j]

)〉
2

X̂i,j =

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ≤ logN, |R(σ1

∼i,j , σ
2
∼i,j)| ≤ 2N−2/5]

σ1
i σ

1
jσ

2
i σ

2
j

(
eHN,∼2(σ1)−Nξ∼2(1)/2 − 1[i = j]

)(
eHN,∼2(σ2)−Nξ∼2(1)/2 − 1[i = j]

)〉
2

.

Note that X̂i,j is the contribution to X2
i,j coming from σ1, σ2 that are both not localized to coordinate i or j

and have small overlap. The following two lemmas reduce the task of controlling X2
i,j to bounding E∼2 X̂i,j .

They are proved by manipulating the typicality truncations T̃ and T̃i,j similarly to the proofs above; we
defer these proofs to Subsection 7.B.3.

Lemma 7.8.15. For each i, j ∈ [N ], with probability 1− e−c log2N over HN,∼2,

X2
i,j ≤ 2X̃2

i,j + e−c log2N .

Lemma 7.8.16. For each i, j ∈ [N ],

E
∼2
X̃2
i,j ≤ E

∼2
X̂i,j + e−cN

1/5

.
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We now turn to bounding the E∼2 X̂i,j . This is achieved by the following pair of propositions.

Proposition 7.8.17. For any i ∈ [N ], we have E∼2 X̂i,i ≤ C(Nγ4
1 +N−1).

Proposition 7.8.18. For any distinct i, j ∈ [N ], we have E∼2 X̂i,j ≤ C(γ4
1 +N−2).

Throughout the next two proofs, 〈·〉2 denotes expectation w.r.t. σ1, σ2 ∼ 〈·〉2, and we writeR = R(σ1, σ2),
R∼i = R(σ1

∼i, σ
2
∼i), and R∼i,j = R(σ1

∼i,j , σ
2
∼i,j).

Proof of Proposition 7.8.17. By direct calculation,

E
∼2
X̂i,i = E

∼2

〈
1[|σ1

i |, |σ2
i | ≤ logN, |R∼i| ≤ 2N−2/5]

(σ1
i )2(σ2

i )2
(
eHN,∼2(σ1)−Nξ∼2(1)/2 − 1

)(
eHN,∼2(σ2)−Nξ∼2(1)/2 − 1

)〉
2

=
〈
1[|σ1

i |, |σ2
i | ≤ logN, |R∼i| ≤ 2N−2/5](σ1

i )2(σ2
i )2
(
eNξ∼2(R) − 1

)〉
2
.

In view of Proposition 7.8.8, σ1
i and σ2

i are subgaussian of scale O(1) and R is subgaussian of scale O(N−1/2).
We will see that the above integral is dominated by |σ1

i | � |σ2
i | � 1 and |R| � N−1/2, in which case Taylor

expanding eNξ∼2(R) shows this integral has the desired scale. Formally, we can write the above integral as

Y
(1)
i,i + Y

(2)
i,i , where

Y
(1)
i,i =

〈
1[|σ1

i |, |σ2
i | ≤ logN, |R∼i| ≤ 2N−1/2 logN ](σ1

i )2(σ2
i )2
(
eNξ∼2(R) − 1

)〉
2

Y
(2)
i,i =

〈
1[|σ1

i |, |σ2
i | ≤ logN, 2N−1/2 logN ≤ |R∼i| ≤ 2N−2/5](σ1

i )2(σ2
i )2
(
eNξ∼2(R) − 1

)〉
2

are the contributions from |R∼i| smaller and larger than 2N−1/2 logN .

We first address Y
(2)
i,i . Note that on the event in the indicator in Y

(2)
i,i , |R| ≤ 3N−2/5. Thus, as γ2

1 ≤
N−4/5,

N |ξ∼2(R)| ≤ Nγ2
1R+O(NR3) = O(N−1/5).

It follows that |eNξ∼2(R) − 1| ≤ 1. Then, by Cauchy–Schwarz,

Y
(2)
i,i ≤

〈
1[|R| ≥ N−1/2 logN ](σ1

i )2(σ2
i )2
〉

2

≤
〈
1[|R| ≥ N−1/2 logN ]

〉1/2

2

〈
(σ1
i )2(σ2

i )2
〉1/2

2

≤ e−c log2N ·O(1) = e−c log2N , (7.29)

where we have used Proposition 7.8.8(1) for the tail probability and Proposition 7.8.8(2) for the coordinate
moments.

Next we turn to Y
(1)
i,i . On the event in the indicator in Y

(1)
i,i , |R| ≤ 3N−1/2 logN , so

N |ξ∼2(R)| ≤ Nγ2
1R+O(NR3) = O(N−3/10 logN),

where we recall γ2
1 ≤ N−4/5. Thus, Taylor expanding the exponential and ξ∼2,

Y
(1)
i,i =

〈
1[|σ1

i |, |σ2
i | ≤ logN, |R∼i| ≤ 2N−1/2 logN ](σ1

i )2(σ2
i )2

(
Nξ∼2(R) + 1

2N
2ξ∼2(R)2 + 1

6N
3ξ∼2(R)3

)〉
2

+O(N−6/5 log8N)

=

〈
1[|σ1

i |, |σ2
i | ≤ logN, |R∼i| ≤ 2N−1/2 logN ](σ1

i )2(σ2
i )2

(
N(γ2

1R+ γ2
3R

3 + γ2
4R

4) + 1
2N

2(γ2
1R+ γ2

3R
3)2 + 1

6N
3γ6

1R
3
)〉

2

+O(N−11/10 log9N).
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By exchangeability of (σ1
i ,−σ1

i ), (σ2
i ,−σ2

i ), and (R∼i,−R∼i), all the odd degree in R terms vanish, leaving

Y
(1)
i,i = 1

2N
2γ4

1Q2 + (Nγ2
4 +N2γ2

1γ
2
3)Q4 + 1

2N
2γ4

3Q6 + o(N−1),

and where we have introduced the notation

Qk :=
〈
1[|σ1

i |, |σ2
i | ≤ logN, |R∼i| ≤ 2N−1/2 logN ](σ1

i )2(σ2
i )2Rk

〉
2
.

By Cauchy–Schwarz and Proposition 7.8.8, for each k ∈ {2, 4, 6},

Qk ≤
〈
(σ1
i )4(σ2

i )4
〉1/2

2
〈R2k〉1/22 = O(N−k/2).

This implies Y
(1)
i,i ≤ C(Nγ4

1 +N−1). Combining with the bound (7.29) on Y
(2)
i,i implies the result.

Proof of Proposition 7.8.18. We calculate as above

E
∼2
X̂i,j ≤ E

∼2

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ≤ logN, |R∼i,j | ≤ 2N−2/5]

σ1
i σ

1
jσ

2
i σ

2
j e
HN,∼2(σ1)+HN,∼2(σ2)−Nξ∼2(1)

〉
2

=
〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ≤ logN, |R∼i,j | ≤ 2N−2/5]σ1

i σ
1
jσ

2
i σ

2
j e
Nξ∼2(R)

〉
2
.

Our strategy for evaluating this will be similar as above, except that because this integral contains σ1
i σ

1
jσ

2
i σ

2
j

instead of (σ1
i )2(σ2

i )2, we will need to expand the exponential more carefully to obtain cancellations in these

terms. Formally, we write the above integral as Y
(1)
i,j + Y

(2)
i,j for

Y
(1)
i,j =

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ≤ logN, |R∼i,j | ≤ 2N−1/2 logN ]σ1

i σ
1
jσ

2
i σ

2
j e
Nξ∼2(R)

〉
2
,

Y
(2)
i,j =

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ≤ logN, 2N−1/2 logN ≤ |R∼i,j | ≤ 2N−2/5]σ1

i σ
1
jσ

2
i σ

2
j e
Nξ∼2(R)

〉
2
.

Identically to the previous proof, on the event in the indicator in Y
(2)
i,j we have N |ξ∼2(R)| = O(N−1/5), so

eNξ∼2(R) ≤ 2. Then, by Cauchy–Schwarz and Proposition 7.8.8,

|Y (2)
i,j | ≤ 2

〈
1[|R| ≥ N−1/2 logN ]|σ1

i σ
1
jσ

2
i σ

2
j |
〉

2

≤ 2〈1[|R| ≥ N−1/2 logN ]〉1/22

〈
(σ1
i )4(σ2

i )4
〉1/4

2

〈
(σ1
j )4(σ2

j )4
〉1/4

2

≤ 2e−c log2N ·O(1) ·O(1) = e−c log2N .

To address Y
(1)
i,j , define ∆i = σ1

i σ
2
i /N and ∆j = σ1

jσ
2
j /N , the contributions to R coming from the ith and

jth coordinate, respectively. Then, by exchangeability of (σ1
i ,−σ1

i ) and (σ1
j ,−σ1

j ),

4Y
(1)
i,j =

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ≤ logN, |R∼i,j | ≤ 2N−1/2 logN ]

σ1
i σ

1
jσ

2
i σ

2
j (eNξ∼2(R∼i,j+∆i+∆j) − eNξ∼2(R∼i,j+∆i−∆j) − eNξ∼2(R∼i,j−∆i+∆j) + eNξ∼2(R∼i,j−∆i−∆j))

〉
2

.

Note that on the event in this indicator, |R∼i,j ±∆i ±∆j | ≤ 3N−1/2 logN . Define

κ(x) = eNξ∼2(x),

and note that

sup
|x|≤3N−1/2 logN

κ(4)(x) = sup
|x|≤3N−1/2 logN

(
Nξ

(4)
∼2(x) + 4N2ξ′∼2(x)ξ

(3)
∼2(x) + 3N2ξ′′∼2(x)2+

+ 6N3ξ′∼2(x)2ξ′′∼2(x) +N4ξ′∼2(x)4
)
κ(x) = O(N6/5),
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where we have used that sup|x|≤3N−1/2 logN κ(x) ≤ 2 and γ2
1 ≤ N−4/5. Since |∆i|, |∆j | ≤ N−1 log2N on the

event in the indicator, for si, sj ∈ {±1},

eNξ∼2(R∼i,j+si∆i+sj∆j) = κ(R∼i,j) + κ′(R∼i,j)(si∆i + sj∆j) + 1
2κ
′′(R∼i,j)(si∆i + sj∆j)

2

+ 1
6κ

(3)(R∼i,j)(si∆i + sj∆j)
3 +O(N6/5) · (2N−1 log2N)4.

It follows that

eNξ∼2(R∼i,j+∆i+∆j) − eNξ∼2(R∼i,j+∆i−∆j) − eNξ∼2(R∼i,j−∆i+∆j) + eNξ∼2(R∼i,j−∆i−∆j)

= 4κ′′(R∼i,j)∆i∆j +O(N−14/5 log8N),

and thus

Y
(1)
i,j =

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ≤ logN, |R∼i,j | ≤ 2N−1/2 logN ]σ1

i σ
1
jσ

2
i σ

2
j∆i∆jκ

′′(R∼i,j)
〉

2

+O(N−14/5 log12N)

=

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ≤ logN, |R∼i,j | ≤ 2N−1/2 logN ]

(σ1
i σ

1
jσ

2
i σ

2
j )2
(
N−1ξ′′∼2(R∼i,j) + ξ′∼2(R∼i,j)

2
)
eNξ∼2(R∼i,j)

〉
2

+ o(N−2).

On the event in this indicator, eNξ∼2(R∼i,j) ≤ 2, and therefore ξ′∼2 and ξ′′∼2 can be Taylor expanded to obtain

Y
(1)
i,j ≤ Y

(3)
i,j + Y

(4)
i,j + o(N−2),

where

Y
(3)
i,j = 6γ2

3N
−1

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ≤ logN, |R∼i,j | ≤ 2N−1/2 logN ]

(σ1
i σ

1
jσ

2
i σ

2
j )2R∼i,je

Nξ∼2(R∼i,j)

〉
2

,

Y
(4)
i,j = E

µHN,2

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ≤ logN, |R∼i,j | ≤ 2N−1/2 logN ]

(σ1
i σ

1
jσ

2
i σ

2
j )2
(
12γ2

4N
−1R2

∼i,j + (γ2
1 + 3γ2

3R
2
∼i,j)

2
)
eNξ∼2(R∼i,j)

〉
2

On the event in these indicators, we further have

|R2 −R2
∼i,j | = |R−R∼i,j ||R+R∼i,j | ≤ (|∆i|+ |∆j |) · 5N−1/2 logN = O(N−3/2 log3N). (7.30)

From this it readily follows that

Y
(4)
i,j ≤ 2

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ≤ logN, |R∼i,j | ≤ 2N−1/2 logN ]

(σ1
i σ

1
jσ

2
i σ

2
j )2
(
12γ2

4N
−1R2 + (γ2

1 + 3γ2
3R

2)2
)〉

2

+ o(N−2)

= 2γ4
1Q̃0 + (12γ2

1γ
2
3 + 24γ2

4N
−1)Q̃2 + 18γ2

3Q̃4 + o(N−2),

where
Q̃k =

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ≤ logN, |R∼i,j | ≤ 2N−1/2 logN ](σ1

i σ
1
jσ

2
i σ

2
j )2Rk

〉
2
.

By Cauchy–Schwarz and Proposition 7.8.8, for each k ∈ {0, 2, 4},

Q̃k ≤
〈
(σ1
i )8(σ2

i )8
〉1/4

2

〈
(σ1
j )8(σ2

j )8
〉1/4

2
〈R2k〉1/22 = O(N−k/2).
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This implies Y
(4)
i,j ≤ C(γ4

1 + N−2). To control Y
(3)
i,j , we recall that |Nξ∼2(R∼i,j)| = O(N−3/10 logN) and

Taylor expand the exponential:

Y
(3)
i,j = 6γ2

3N
−1

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ≤ logN, |R∼i,j | ≤ 2N−1/2 logN ]

(σ1
i σ

1
jσ

2
i σ

2
j )2R∼i,j(1 +Nξ∼2(R∼i,j))

〉
2

+ o(N−2)

= 6γ2
3N
−1

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ≤ logN, |R∼i,j | ≤ 2N−1/2 logN ]

(σ1
i σ

1
jσ

2
i σ

2
j )2(R∼i,j +Nγ2

1R
2
∼i,j +Nγ2

3R
4
∼i,j)

〉
2

+ o(N−2).

By exchangeability of (R∼i,j ,−R∼i,j), the contribution of the term R∼i,j vanishes. By (7.30), we can further
estimate R2

∼i,j with R2, obtaining

Y
(3)
i,j = 6γ2

3

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ≤ logN, |R∼i,j | ≤ 2N−1/2 logN ]

(σ1
i σ

1
jσ

2
i σ

2
j )2(γ2

1R
2 + γ2

3R
4)

〉
2

+ o(N−2)

= 6γ2
1γ

2
3Q̃2 + 6γ4

3Q̃4 + o(N−2) ≤ C(γ2
1N
−1 +N−2).

Combining all of the above estimates concludes the proof.

Proof of Proposition 7.8.10. By a union bound, the event in Lemma 7.8.15 holds for all i, j ∈ [N ] with

probability 1− e−c log2N (over HN,∼2). On this event,∥∥∥∥ ZN
ZN,2eNξ∼2(1)/2

〈σσ>〉 − 〈σσ>〉2
∥∥∥∥2

F

=

N∑
i,j=1

X2
i,j ≤ 2

N∑
i,j=1

X̃2
i,j + e−c log2N . (7.31)

Combining Lemma 7.8.16 and Propositions 7.8.17 and 7.8.18 shows that

E
∼2

N∑
i,j=1

X̃2
i,j ≤ 2C(N2γ4

1 + 1) + e−cN
1/5

≤ 3C(N2γ4
1 + 1).

Thus, with probability 2/3 over HN,∼2,
∑N
i,j=1 X̃

2
i,j ≤ 9C(N2γ4

1 + 1). Combining with (7.31) and taking a
final union bound shows that with probability 1/2 over HN,∼2,∥∥∥∥ ZN

ZN,2eNξ∼2(1)/2
〈σσ>〉 − 〈σσ>〉2

∥∥∥∥2

F

≤ 18C(N2γ4
1 + 1) + e−c log2N ≤ 20C(N2γ4

1 + 1).

The result follows after adjusting C.

7.8.3 From positive to very high probability

In this section, we boost the positive probability bound on the second moment matrix to a very high
probability bound. To this end, we will show that an appropriate proxy function for the second moment
matrix is very Lipschitz. This will imply the desired concentration by standard gaussian concentration.

Let g ∈ RN+N3+N4+···+Np∗ be the vectorized collection of all gaussian interactions corresponding to
HN,∼2. Throughout, as in the previous subsection, we will condition on the event E2 from Definition 7.8.13

over HN,2, which holds with probability 1− e−cN1/5

. We define the following functions of g:

F1(g) = B(1 + γ2
1N) ·

(
1− |log

ZN
ZN,2

− Nξ∼2(1)

2
|
)

F2(g) = B(1 + γ2
1N)−

∥∥〈σσ>〉∥∥
op

F (g) = max(min(F1(g), F2(g)), 0) ,
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where B is a sufficiently large constant (specified in the proof of Lemma 7.8.19). If we can show that with
high probability over g, min(F1(g), F2(g)) ≥ 0, then the conclusion follows. Indeed, from F2(g) ≥ 0, we
immediately obtain

∥∥〈σσ>〉∥∥
op
≤ B(1 + γ2

1N). F1 allows control over the free energy of the p-spin model in

terms of that of the corresponding 2-spin model. This gives good control over the overlaps (in a manner to
be made precise shortly), which is crucial for establishing the high probability statement. It is also important
earlier in this section, in showing that the free energy of the p-spin model concentrates well.

Towards this, we first start with the positive probability statement, which was essentially established in
the previous subsections.

Lemma 7.8.19. There exists a constant B > 0 such that with probability at least 1
3 , we have F (g) ≥

B
2 (1 + γ2

1N).

Proof. By Proposition 7.8.9, with probability 1 − O(N−1/15) over g, we have F1(g) ≥ B
2 (1 + γ2

1N), so
ZN

ZN,2eNξ∼2(1)/2 ≥ e−1/2. Intersecting this with the event from Proposition 7.8.10 implies that with probability

at least 1
3 ,

∥∥〈σσ>〉∥∥
op
≤ e1/2

∥∥〈σσ>〉2∥∥op + e1/2
√
C(1 + γ4

1N
2)

≤ B

2
(1 + γ2

1N) ,

where we have used E2 to apply Proposition 7.8.8 and after appropriately picking B.

Let E denote the HN,2-measurable event from Corollary 7.8.14:

{g :

∫
1[|R(σ1, σ2)| ≥ N−2/5}eHN (σ1)+HN (σ2)dρ⊗2(σ1, σ2) ≤ Z2

N,2e
Nξ∼2(1)−cN1/5

} ,

which holds with probability 1 − e−cN1/5

over g. The key observation is that this gives us good control on
the overlaps.

Lemma 7.8.20. On E, if F1(g) ≥ 0, then for any 0 ≤ p ≤ log2N , we have∥∥〈σ⊗p〉∥∥2

F
≤ O(N3p/5).

Proof. By splitting up the expectation based on whether |R(σ1, σ2)| ≥ N−2/5, on E we have∥∥〈σ⊗p〉∥∥2

F
= 〈NpR(σ1, σ2)p〉

≤ N3p/5 +N2p 1

Z2
N

∫
1[|R(σ1, σ2)| ≥ N−2/5}eHN (σ1)+HN (σ2)dρ⊗2(σ1, σ2)

≤ N3p/5 +N2p
Z2
N,2

Z2
N

eNξ∼2(1)−cN1/5

(Definition of E)

≤ N3p/5 +N2pe1−cN1/5

,

where the last line used F1(g) ≥ 0. Since p ≤ log2N , the above quantity is O(N3p/5), as desired.

The above is a crucial input to prove Lipschitzness of F on E .

Lemma 7.8.21. The function F is O((1 + γ2
1N)N−1/10)-Lipschitz restricted to E.

Before we prove this, let us see how it implies Proposition 7.8.2, restated for convenience.

Proposition 7.8.2. There is a HN,2-measurable event with probability 1 − e−cN1/5

on which the following

holds with probability 1− e−cN1/5

over HN,∼2.
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1. The partition functions ZN , ZN,2 satisfy∣∣∣∣log
ZN
ZN,2

− Nξ∼2(1)

2

∣∣∣∣ ≤ 1/2.

2. The Gibbs measure satisfies ‖〈σσ>〉‖op ≤ C(1 + γ2
1N).

Proof of Proposition 7.8.2. By Kirszbraun’s extension theorem, we can extend F to F̃ such that each F̃ has
the same Lipschitz constant as F and agrees with F on E . We can now apply gaussian concentration to F̃
to conclude that

Pr
[
|F̃ (g)− E F̃ (g)| ≥ B

4 (1 + γ2
1N)

]
≥ 1− e−cN

1/5

. (7.32)

By Lemma 7.8.19, with probability at least 1
3 , we have F (g) ≥ B

2 (1 + γ2
1N). Upon further intersection with

E (where F̃ (g) = F (g)) and the event from (7.32), we conclude E F̃ (g) ≥ B
4 (1 + γ2

1N). Thus,

Pr[F (g) = 0] ≤ Pr[Ec] + Pr[F̃ (g) = 0]

≤ e−cN
1/5

+ Pr

[
|F̃ (g)− E F̃ (g)| ≥ B(1 + γ2

1N)

4

]
≤ e−cN

1/5

,

after adjusting c.

Finally, let us prove the Lipschitz bound.

Proof of Lemma 7.8.21. The set E is a convex set in g. Indeed, eHN (σ) is a convex function of g, so the
LHS of the inequality E is convex in g, whereas the RHS does not depend on g, and sublevel sets of convex
functions are convex. Furthermore, F is absolutely continuous (hence differentiable almost everywhere), so
to prove F is Lipschitz on E it suffices to bound ‖∇F‖ on E , wherever it is defined.

The easier case is if min(F1(g), F2(g)) < 0. In this case, F (g) = 0 in an open neighborhood of g, so
∇F (g) = 0 identically. Therefore, for the rest of the proof, assume min(F1(g), F2(g)) ≥ 0. We will compute
the gradient of the Fi’s, and to simplify the calculation, we will take the gradient with respect to gp ∈ RNp

corresponding to the degree-p disorder in HN,∼2.
For F1(g), note that its only dependence on g is via logZN , we have∥∥∥∇gpF1(g)

∥∥∥ = B(1 + γ2
1N)

∥∥∥∇gp logZN

∥∥∥ = B(1 + γ2
1N) · γp

N (p−1)/2

∥∥〈σ⊗p〉∥∥
F
,

and since F1(g) ≥ 0, we can apply Lemma 7.8.20 to conclude that

‖∇g logZN‖2 .
∑

p∈[p∗]\{2}

γ2
pN
−(p−1) ·N3p/5

≤ γ2
1 ·N3/5 +

∑
p≥3

γ2
pN

1−2p/5

. γ2
1 ·N3/5 +N−1/5 (7.33)

Since γ2
1 ≤ N−4/5, we conclude that ‖∇gF1(g)‖ . (1 + γ2

1N)N−1/10, as desired.
Turning now to F2(g), we observe that

∥∥〈σσ>〉∥∥
op

= 〈〈u, σ〉2〉, where u is the top eigenvector of 〈σσ>〉
with ‖u‖2 = 1. By the envelope theorem, we can evaluate the gradient with u fixed. For any v ∈ RNp with
‖v‖2 = 1, we will upper bound 〈v,∇gp〈〈u, σ〉

2〉〉. Applying the quotient rule yields

〈v,∇gp〈〈u, σ〉
2〉〉 =

〈
〈u, σ〉2〈v,∇gpH(σ)〉

〉
−
〈
〈u, σ〉2

〉 〈
〈v,∇gpH(σ)〉

〉
=

γp
N (p−1)/2

(〈
〈u, σ〉2〈v, σ⊗p〉

〉
−
〈
〈u, σ〉2

〉 〈
〈v, σ⊗p〉

〉)
.
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Consider the first term
〈
〈u, σ〉2〈v, σ⊗p〉

〉
. Using Hölder’s inequality with q = 1+logN and q′ = 1+ 1

logN ,
we see 〈

〈u, σ〉2〈v, σ⊗p〉
〉
≤
〈
〈u, σ〉2q

′
〉1/q′ 〈

〈v, σ⊗p〉q
〉1/q

≤ N1/ logN
〈
〈u, σ〉2

〉
〈v⊗q,

〈
σ⊗pq

〉
〉1/q

. (1 + γ2
1N)〈v⊗q,

〈
σ⊗pq

〉
〉1/q

≤ (1 + γ2
1N) ·N3p/10 ,

where in the second to last line we have used F2(g) ≥ 0 to apply the bound
〈
〈u, σ〉2

〉
≤ O(1 + γ2

1N), and in
the last line we have used F1(g) ≥ 0, along with pq ≤ O(logN), to apply Lemma 7.8.20. The same argument
upper bounds the contribution of the second term as O

(
(1 + γ2

1N)N3p/10
)
. These bounds (aside from the

common factor of O(1 + γ2
1N), which we can pull out), exactly match the ones used in the calculation as

carried out for F1(g) in (7.33). Hence, the same argument ultimately yields ‖∇gF2(g)‖ . (1 + γ2
1N)N−1/10,

completing the proof.

422



Appendix

7.A Annealed Glauber dynamics on discrete domains

In this section, we collect the analogous results for weak functional inequalities for Glauber dynamics.

Definition 7.A.1 (Weak Poincaré for the hypercube). We say π on {±1}n satisfies a (ρPI, ε)-weak Poincaré
inequality for Glauber dynamics if for all functions f ,

Varπ[f ] ≤ 1

ρPI
· E(f, f) + ε · osc(f)2.

Similarly, we say π satisfies a (ρLS, ε)-weak modified log-Sobolev inequality if for all functions f ,

Entπ[f ] ≤ 1

ρLS
· E(f, log f) + ε · osc(

√
f)2.

Remark 7.A.2. The above definition is related to the continuous setting by using the discrete gradient,
which can be bounded by osc(f)2.

Remark 7.A.3. A weak Poincaré inequality with sufficiently good parameters implies a true Poincaré
inequality for Glauber dynamics. Indeed, any low conductance cut limits on the region of valid (ρPI, ε).
Hence, by Cheeger, one can conclude that Glauber satisfies a true Poincaré inequality, with some loss in
parameters.

First, we will need a concavity property for the Dirichlet form for Glauber dynamics, which is well-known.
We provide a proof for the sake of self-containedness.

Fact 7.A.4. Let π be a distribution on {±1}n, and π = Ez∼ρ πz a measure decomposition of π. Then
Eπ(f, f) ≥ Ez∼ρ Eπz (f, f).

Proof. For Glauber dynamics on the hypercube, we have

Eπ(f, f) =
1

n

∑
‖x−y‖1=2

π(x)π(y)

π(x) + π(y)
(f(x)− f(y))2

=
1

n

∑
‖x−y‖1=2

Ez∼ρ πz(x)Ez∼ρ πz(y)

Ez∼ρ πz(x) + Ez∼ρ πz(y)
(f(x)− f(y))2

≥ E
z∼ρ
Eπz (f, f),

where the last line follows from concavity of the map (a, b) 7→ ab
a+b for a, b > 0.

The following lemma transfers a true Poincaré inequality on π to a weak Poincaré inequality on π′ for
Glauber dynamics on the hypercube.

Lemma 7.A.5. Let π, π′ be distributions on {±1}n such that π satisfies a ρPI-Poincaré inequality for Glauber
dynamics and TV(π, π′) ≤ δ. Then, π′ satisfies a weak (ρPI, 2δ)-Poincaré inequality for Glauber dynamics.
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Proof. By definition, there exists a coupling C of (π, π′) such that for (x, x′) ∼ C, Pr[x 6= x′] ≤ δ. The main
difference in the proof compared to the Langevin case Lemma 7.4.9 is that the Dirichlet form comparison
is now bounded in terms of osc(f)2 rather than sup ‖∇f‖2. Indeed, by Fact 7.4.2 we have Eπ(f, f) =
Ex∼π Ey∼Px(f(x)−f(y))2, and for any fixed x the function Ey∼P x(f(x)−f(y))2 ≤ osc(f)2, so the coupling
allows to conclude that Eπ′(f, f) ≥ Eπ(f, f)− δ · osc(f)2. Similarly, we can deduce that Varπ[f ] ≥ Varπ′ − δ ·
osc(f)2. Hence, we have

Eπ′(f, f) ≥ Eπ(f, f)− δ · osc(f)2

≥ ρPI · Varπ[f ]− δ · osc(f)2 (π satisfies PI)

≥ ρPI · Varπ′ [f ]− δ · osc(f)2 (1 + ρPI) .

Remark 7.A.6. The above two results also hold more generally if P is the Markov chain associated to
a Doob localization scheme (cf. [CE22, Section 2.3]), such as when P is Glauber dynamics for a general
product domain.

Lemma 7.A.7. Let π be a distribution over {±1}n, and π = Ez∼ρ πz a measure decomposition of π such
that

• for all functions f , Ez∼ρ Varπz [f ] ≥ CVarVarπ[f ], and

• with probability 1−η over z ∼ ρ, πz satisfies a (ρPI, δ)-weak Poincaré inequality with respect to Glauber.

Then, π satisfies a
(
ρPICVar,

δ+η
CVar

)
-weak Poincaré inequality.

Proof. The proof is the same as that of Lemma 7.4.10, except in the Langevin case we have Eπ(f, f) =
Ez∼ρ Eπz (f, f), whereas here we apply Fact 7.A.4 to get the desired inequality.

Finally, we record the following simple observation connecting weak functional inequalities in discrete
domains.

Fact 7.A.8. Let π be a distribution on a finite state space Ω, and set Cπ = 1−2πmin

log(1/πmin−1) . If π satisfies a

(ρPI, ε)-weak Poincaré inequality, then π also satisfies a
(

4ρPICπ,
ε
Cπ

)
-weak MLSI and a (ρPICπ,

ε
Cπ

)-weak

LSI.

Proof. For finite state spaces, it is well-known that the LSI of the complete graph Markov chain PK(π) has

ρLS = 1−2πmin

log(1/πmin−1) (see e.g., [DSC96]). Furthermore, observe that EPK(π)
(f, f) = Varπ[f ]. Hence,

1

ρPI
E(f, f) ≥ Varπ[f ]− ε · osc(f)2 (Weak PI)

≥ CπEntπ[f2]− ε · osc(f)2, (LSI of PK(π))

which establishes the weak LSI. For the weak MLSI, one applies the inequality 4E(f, f) ≤ E(f2, log f2),
whose proof reduces to checking the two-variable inequality 4(

√
u−
√
v)2 ≤ (u−v) log u

v for positive u, v.

7.B Deferred calculations for spherical spin glasses

7.B.1 The TAP Hamiltonian

In this subsection, we will prove Lemma 7.7.26, which we restate for convenience.
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Lemma 7.7.26. The law of Hamiltonian HTAP ∼ µTAP,x,m is described by a Gaussian process
(HTAP(σ))σ∈SN defined by

E HTAP(σ) = Nξt(R(x, σ))− 〈x, v(σ)〉 · ξ′t(qx)− ξ′t(R(m, σ))

γ′(qm)
· 〈m, σ〉 ·

(
θ′(qm)− 1

1− qm

)
1

N
Cov(HTAP(σ), HTAP(σ′)) = ξt(R(σ, σ′))−R(σ, σ′)

ξ′t(R(m, σ))ξ′t(R(m, σ′))

ξ′t(qm)

+
ξ′′t (qm)

γ′(qm)ξ′t(qm)
γ(R(m, σ))γ(R(m, σ′)),

where

v(σ) :=
ξ′t(R(m, σ))

ξ′t(qm)

[
I − ξ′′t (qm)

γ′(qm)
· mm

>

N

]
σ

γ(q) := q · ξ′t(q) .

To prove the above, we will need the following formulas for any p-spin Hamiltonian HN with mixture
function ξ.

Fact 7.B.1. For any u, v,m ∈ RN , we have:

1

N
E〈u,∇HN (m)〉〈v,∇HN (m)〉 = R(u, v)ξ′(R(m,m)) +R(m,u)R(m, v)ξ′′(R(m,m)) .

Proof. Once we write the derivative as its definition as a limit, the order of the limit and the expectation
operator can be swapped by the dominated convergence theorem.

1

N
E〈u,∇HN (m)〉〈v,∇HN (m)〉 =

1

N
E lim
δ,ε→0

HN (m+ δu)−HN (m)

δ
· HN (m+ εv)−HN (m)

ε

=
1

N
lim
δ,ε→0

1

δε
E(HN (m+ δu)−HN (m)) · (HN (m+ εv)−HN (m))

= lim
δ,ε→0

1

δε
[ξ(R(m+ δu,m+ εv))− ξ(R(m+ δu,m))− ξ(R(m,m+ εv)) + ξ(R(m,m))]

= R(u, v)ξ′(R(m,m)) +R(m,u)R(m, v)ξ′′(R(m,m)) .

Fact 7.B.2. For any u, v,m ∈ RN , we have:

1

N
E〈u,∇HN (m)〉HN (v) = R(u, v)ξ′(R(m, v)) .

The proof of the above is analogous to the proof of Fact 7.B.1, and hence omitted.We now prove
Lemma 7.7.26.

Proof of Lemma 7.7.26. The distribution of HTAP(σ) is the same as that of HN,t(σ)|x,∇FTAP(m) = 0.

Recall that HN,t(σ) = Nξt(R(x, σ)) + H̃(σ) where H̃(σ) is a centered Gaussian process. Next, observe that
conditioning on ∇FTAP(m) = 0 is the same as conditioning on

∇H̃(m) = −x · ξ′t(qx)−m ·
(
θ′(qm)− 1

1− qm

)
. (7.34)

Observe that (HTAP(σ))σ∈SN is a Gaussian process, since it is obtained by conditioning on another Gaussian
process satisfying affine constraints. First, observe that we can write

HTAP(σ) = Nξt(R(x, σ)) + H̃TAP(σ) (7.35)
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where H̃TAP(σ) = H̃(σ)|x,∇FTAP(m) = 0. To understand the behavior of H̃TAP(σ), we break H̃(σ) into a

sum of two terms: one term for its projection onto the space U :=
{〈
∇H̃(m), u

〉
: u ∈ RN

}
, and the part

that is orthogonal to U , and thus independent of ∇H̃(m). Concretely, let us write

H̃(σ) =
〈
∇H̃(m), v(σ)

〉
+
(
H̃(σ)−

〈
∇H̃(m), v(σ)

〉)
. (7.36)

This is true for any v(σ), but we have set up the definition such that the second summand is independent of

∇H̃(m). To verify this, since these two random variables are each mean 0, it suffices to check that for any
u ∈ SN ,

E
〈
∇H̃(m), u

〉(
H̃(σ)−

〈
∇H̃(m), v(σ)

〉)
= 0 .

By Facts 7.B.1 and 7.B.2, the left-hand-side of the above is:

R(u, σ)ξ′t(R(m, σ))−R(u, v(σ))ξ′t(qm)−R(m, u)R(m, v(σ))ξ′′(qm) .

We would like v(σ) to be such that this is 0 for all u. Setting u orthogonal to m and σ shows that we must
have v(σ) in the subspace spanned by m and σ.

Suppose that v(σ) = ασ + βm. Then, plugging this into the above requires that

0 = R(σ, u)ξ′t(R(m, σ))− (αR(σ, u) + βR(m, u)) ξ′t(qm)−R(m, u) (αR(m, σ) + βqm) ξ′′t (qm)

= R(σ, u) (ξ′t(R(m, σ))− αξ′t(qm))

−R(m, u) (βξ′t(qm)− αR(m, σ)ξ′′t (qm)− βqmξ′′t (qm)) .

Since this is true for all u, each of these two terms must be 0. That is,

α =
ξ′t(R(m, σ))

ξ′t(qm)

and

β = −α · R(m, σ)ξ′′t (qm)

ξ′t(qm) + qmξ′′t (qm)
,

so

v(σ) =
ξ′t(R(m, σ))

ξ′t(qm)

(
σ −m · R(m, σ)ξ′′t (qm)

ξ′t(qm) + qmξ′′t (qm)

)
=
ξ′t(R(m, σ))

ξ′t(qm)

(
Id− R(m, σ)ξ′′t (qm)

ξ′t(qm) + qmξ′′t (qm)
· mm

>

N

)
σ

as defined.
Now returning to (7.36), when we condition on x and ∇FTAP(m) = 0, by plugging in (7.34), we get

H̃TAP(σ) = −〈x, v(σ)〉 · ξ′t(qx)− 〈m, v(σ)〉 ·
(
θ′(qm)− 1

1− qm

)
+
(
H̃(σ)−

〈
∇H̃(m), v(σ)

〉)
(7.37)

We use Ĥ(σ) to denote the random variable H̃(σ)−
〈
∇H̃(m), v(σ)

〉
, whose distribution remains unaffected

by the conditioning, as this random variable is independent of x and the event ∇FTAP(m) = 0. Since Ĥ(σ)
is centered, our expression for E HTAP(σ) follows from (7.35) and (7.37), and the observation that

R(m, v(σ)) =
ξ′t(R(m, σ))

γ′(qm)
·R(m, σ).

It remains to compute N−1Cov(HTAP(σ), HTAP(σ′)) for any σ, σ′ ∈ SN . Observe that this is equal to

N−1 E Ĥ(σ)Ĥ(σ′). By Facts 7.B.1 and 7.B.2, we have that this is equal to:

ξt(R(σ, σ′))−R(v(σ), σ′)ξ′t(R(m, σ′))−R(v(σ′), σ)ξ′t(R(m, σ))

+R(v(σ), v(σ′))ξ′t(qm) +R(m, v(σ))R(m, v(σ′))ξ′′(qm) .

The formula for the covariance can be obtained from the above by expanding v(σ).
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Next, we look at the mixture function of these “TAP planted distributions on slices”.

Corollary 7.7.29. For a fixed choice of a and b, the Gaussian process (HTAP(v(a, b) + ra,bQτ))τ∈SN−2
is

described by the following law.

• Let Ha,b be a spherical p-spin Hamiltonian with mixture function ξa,b given by:

ξa,b(s) := ξt

(
‖v(a, b)‖2 + r2

a,bs
)
− ξt

(
‖v(a, b)‖2

)
− s ·

r2
a,bξ
′
t

(
qm ·

(
1 + a√

N

))2

ξ′t(qm)
.

• Let V (a, b) := ξt

(
‖v(a, b)‖2

)
− ‖v(a, b)‖2 ·

ξ′t

((
1+ a√

N

)
qm
)2

ξ′t(qm) +
ξ′′t (qm)

γ′(qm)ξ′t(qm) · γ
((

1 + a√
N

)
qm

)2

.

The law of HTAP(v(a, b) + ra,bQτ) is the same as that of Ha,b(τ) +
√
N · ga,b + EµTAP

HTAP(v(a, b) + ra,bQτ)
where ga,b is a centered Gaussian of variance V (a, b) independent of Ha,b.

Proof. Let τ, τ ′ ∈ SN−2, and

σ = v(a, b) + ra,bQτ and σ′ = v(a, b) + ra,bQτ
′.

Recall from Lemma 7.7.26 that

N−1Cov (HTAP(σ), HTAP(σ′))

= ξ′t(R(σ, σ′))−R(σ, σ′)
ξ′t(R(m, σ))ξ′t(R(m, σ′)

ξ′t(qm)
+

ξ′′t (qm)

γ′(qm)ξ′t(qm)
γ(R(m, σ))γ(R(m, σ′)).

By the definition of σ and σ′, we have R(m, σ) = R(m, σ′) = R(m, v(a, b)) =
(

1 + a√
N

)
qm, and R(σ, σ′) =

R
(
‖v(a, b)‖2 + r2

a,bR(τ, τ ′)
)

, since Q is an isometry. As a result,

N−1Cov (HTAP(σ), HTAP(σ′))

= ξ′t(‖v(a, b)‖2 + r2
a,bR(τ, τ ′))−

(
‖v(a, b)‖2 + r2

a,bR(τ, τ ′)
) ξ′t ((1 + a√

N

)
qm

)2

ξ′t(qm)

+
ξ′′t (qm)

γ′(qm)ξ′t(qm)
γ

((
1 +

a√
N

)
qm

)2

.

This may be written as

N−1Cov (HTAP(σ), HTAP(σ′)) = ξa,b(R(τ, τ ′)) + V (a, b).

This implies that HTAP(σ) is equal to Ha,b(τ)+ga,b for some Gaussian process (Ha,b(τ))τ∈SN−2
, where ga,b is

a centered Gaussian of variance V (a, b). To complete the proof, we must show that the correlation structure
of Ha,b can be achieved by a p-spin model with mixture function ξa,b. To do this, it suffices to show that

ξa,b is indeed a valid mixture function, in that ξ
(p)
a,b(0) ≥ 0 for all p ≥ 1, and ξa,b(0) = 0. The latter of these

is clearly true by construction. The former is easily seen to be true for p ≥ 2, since for such p,

ξ
(p)
a,b(0) = r2p

a,bξ
(p)
t (‖v(a, b)‖2) ≥ 0

since ξt is a valid mixture function. For p = 1,

ξ′a,b(0) = r2
a,b ·

ξ′t (‖v(a, b)‖2
)
−
ξ′t

(
qm

(
1 + a√

N

))2

ξ′t(qm)


(7.9)

≥ r2
a,b ·

ξ′t
(
qm

(
1 +

a√
N

)2
)
−
ξ′t

(
qm

(
1 + a√

N

))2

ξ′t(qm)


=

r2
a,b

ξ′t(qm)
·

(
ξ′t

(
qm

(
1 +

a√
N

)2
)
ξ′t(qm)− ξ′t

(
qm

(
1 +

a√
N

))2
)
≥ 0.
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In the first inequality above, we use the fact that ξ′t is non-decreasing. The final inequality is an application
of Cauchy-Schwarz.

7.B.2 Understanding concentration around the codimension-2 slice

Next, we bound the variance of ga,b − g0,0.

Lemma 7.7.36. For every constant ι > 0, there is a constant c such that with probability 1− e−cN , for all

a, b, we have |ga,b − g0,0| ≤ ιa
2+b2√
N

.

Proof of Lemma 7.7.36. The strategy is to prove that for any a, b, a′, b′ ∈ R of magnitude� N1/4, ga,b−ga′,b′
is a Gaussian of variance O

(
·‖v(a, b)− v(a′, b′)‖4

)
= O

(
(a−a′)4+(b−b′)4

N2

)
. The desideratum then immediately

follows by applying Slepian’s lemma on (|ga,b − g0,0|)a,b comparing it to the Gaussian process 〈G, (v(a, b)−
v(0, 0))(v(a, b)− v(0, 0))>〉 for a standard Gaussian matrix G.

We carry out the calculation for a′, b′ = 0; the general case follows similarly. We have ga,b =

N−1/2
(
HTAP(

√
N · v(a, b))− EHTAP(

√
N · v(a, b))

)
, and g0,0 = N−1/2(HTAP(m)− EHTAP(m)). Clearly,

ga,b− g0,0 is a centered Gaussian process. As in the proof of Lemma 7.7.26, we have that the distribution of
HTAP(σ)− EHTAP(σ) is the same as that of

H̃(σ)−
〈
∇H̃(m), v(σ)

〉
,

where H̃ is a Hamiltonian distributed according to the mixture function ξt. Thus, the distribution of ga,b−g0,0

is:
H̃(u(a, b))−

〈
∇H̃(m), v(u(a, b))

〉
− H̃(m) +

〈
∇H̃(m), v(m)

〉
.

For brevity, we denote v(a, b) as m+ ε. We express H̃(m+ ε) in its Taylor expansion, and we get:

√
N(ga,b − g0,0) =

∑
i≥1

1

i!

〈
DiH̃(m), ε⊗i

〉
−
〈
∇H̃(m), v(m+ ε)− v(m)

〉
. (7.38)

Expanding out v(m+ ε)− v(m) ultimately yields:

v(m+ ε)− v(m) = ε+R(m, ε)ε
ξ′′t (qm)

γ′(qm)
− R(m, ε)2ξ′′t (qm)2

ξ′t(qm)γ′(qm)
m .

Plugging in the above into (7.38) gives:

√
N(ga,b − g0,0) =

∑
i≥2

1

i!

〈
DiH̃(m), ε⊗i

〉
−
〈
∇H̃(m), ε

〉
R(m, ε)

ξ′′t (qm)

γ′(qm)
−
〈
∇H̃(m),m

〉R(m, ε)2ξ′′t (qm)2

ξ′t(qm)γ′(qm)

We have an explicit expression for ε:

ε =
aqm − bq2

x√
N(qm − q2

x)
m+

qmqx
qm − q2

x

(
b− a√
N

)
x.

This explicit expression can be used to obtain the following bounds on the variances of the above terms:

Var

[
1

i!

〈
DiH̃(m), ε⊗i

〉]
≤
O
(
a2i + b2i

)
N i−1

Var

[〈
∇H̃(m), ε

〉
R(m, ε)

ξ′′t (qm)

γ′(qm)

]
=
O
(
a4 + b4

)
N

Var

[〈
∇H̃(m),m

〉R(m, ε)2ξ′′t (qm)

ξ′t(qm)γ′(qm)

]
≤
O
(
a4 + b4

)
N
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The expression for
√
N(ga,b − g0,0) only involves a constant number of terms, and since the first term

enumerates over i ≥ 2, and since |a|, |b| ≤
√
N , we have an overall bound of

O(a4+b4)
N . Dividing by

√
N gives

the desired variance bound.

Lemma 7.7.34. ∇Êa,b
∣∣∣
(a,b)=(0,0)

= 0.

Proof. Recall

Êa,b =
1

2

log r2
a,b − ξt(‖v(a, b)‖2)− r2

a,b ·
ξ′t

(
qm

(
1 + a√

N

))2

ξ′t(qm)


︸ ︷︷ ︸

(I)

+ ξt

(
qx

(
1 +

b√
N

))
+
γ
(
qm

(
1 + a√

N

))
γ′(qm)

·
(

(1− qm)ξ′′t (qm) +
1

1− qm

)
︸ ︷︷ ︸

(II)

− γ(qx)

ξ′t(qm)
· ξ′t
(
qm

(
1 +

a√
N

))
·
((

1 +
b√
N

)
− qm ·

ξ′′t (qm)

γ′(qm)
·
(

1 +
a√
N

))
︸ ︷︷ ︸

(III)

.

Because

‖v(a, b)‖2 = qm

(
1 +

a√
N

)2

+
qmqx
qm − q2

x

·
(
a− b√
N

)2

,

we have

∇‖v(a, b)‖2
∣∣
(a,b)=(0,0)

= − ∇r2
a,b

∣∣
(a,b)=(0,0)

=

(
2qm√
N
, 0

)
.

We also have r2
0,0 = 1 − qm and ‖v(0, 0)‖2 = qm. Let us start by computing the derivative with respect to

a. We have

√
N · ∂a(III)|(a,b)=(0,0) = ξ′′t (qm) · qm ·

(
1− qmξ

′′
t (qm)

γ′(qm)

)
+ ξ′t(qm) ·

(
−qm ·

ξ′′t (qm)

γ′(qm)

)
=
qmξ

′′
t (qm)

γ′(qm)
(γ′(qm)− qmξ′′t (qm)− ξ′t(qm)) = 0.

Next,

√
N · ∂a(I)|(a,b)=(0,0)

=
1

r2
0,0

· (−2qm)− ξ′t(‖v(0, 0)‖2) · (2qm)− (−2qm) ·
(
ξ′t(qm)2

ξ′t(qm)

)
− r2

0,0 ·
2ξ′t(qm) · ξ′′t (qm) · qm

ξ′t(qm)

=
−2qm
1− qm

− 2qmξ
′
t(qm) + 2qmξ

′
t(qm)− 2qm(1− qm)ξ′′t (qm)

=
−2qm
1− qm

− 2qm(1− qm)ξ′′t (qm).

Finally,

√
N · ∂a(II)|(a,b)=(0,0)

=
γ′(qm) · qm
γ′(qm)

·
(

(1− qm)ξ′′t (qm) +
1

1− qm

)
= −1

2
·
√
N · ∂a(I)|(a,b)=(0,0)

429



as desired. The derivative with respect to b is much simpler, since the derivative of r2
a,b with respect to b is

0 at (0, 0). Consequently, ∂b(I)|(a,b)=(0,0) = 0, ∂b(II)|(a,b)=(0,0) = qxξ
′
t(qx) = γ(qx), and ∂b(III)|(a,b)=(0,0) =

ξ′t(qm), completing the proof.

Lemma 7.7.35. There exist constants η, ε > 0 such that for all |a|, |b| ≤ ε
√
N , N∇2Êa,b � −ηId.

Proof. For ease of notation, define Ẽa,b = Ê√Na,
√
Nb, r̃a,b = r√Na,

√
Nb, and ṽ(a, b) = v(

√
Na,
√
Nb). As in

the previous lemma, recall

Ẽa,b =
1

2

(
log r̃2

a,b − ξt(‖ṽ(a, b)‖2)− r̃2
a,b ·

ξ′t (qm (1 + a))
2

ξ′t(qm)

)

+ ξt (qx (1 + b)) +
γ (qm (1 + a))

γ′(qm)
·
(

(1− qm)ξ′′t (qm) +
1

1− qm

)
− γ(qx)

ξ′t(qm)
· ξ′t (qm (1 + a)) ·

(
(1 + b)− qm ·

ξ′′t (qm)

γ′(qm)
· (1 + a)

)
.

Because the Hessian is Lipschitz in all the parameters involved, it suffices to prove the negative definite-
ness of the Hessian at (0, 0), under the assumption that qm = qx = q, where q (formerly denoted q∗(t))

satisfies ξ′t(q) = q
1−q . Under these constraints, we have γ(q) = qξ′t(q) = q2

1−q and γ′(q) = ξ′t(q) + qξ′′t (q) =
q

1−q (1 + (1− q)ξ′′t (q)). Ẽa,b simplifies as

Ẽa,b =
1

2

(
log r̃2

a,b − ξt(‖ṽ(a, b)‖2)− r̃2
a,b ·

ξ′t (q (1 + a))
2

ξ′t(q)

)
︸ ︷︷ ︸

(I)

+ ξt (q (1 + b)) +
γ (q (1 + a))

q
· 1 + (1− q)2ξ′′t (q)

1 + (1− q)ξ′′t (q)︸ ︷︷ ︸
(II)

− q (1 + b) · ξ′t (q (1 + a)) + q2 (1 + a) · ξ
′′
t (q)

γ′(q)︸ ︷︷ ︸
(III)

.

We have ∂2
b (III)

∣∣
(0,0)

= 0, and

∂2
b (II)

∣∣
(0,0)

= ξ′′t (q) · q2.

We have that ∂br̃
2
a,b

∣∣∣
(0,0)

= 0, and ∂2
b r̃

2
a,b

∣∣∣
(0,0)

= −2q2

1−q . Consequently,

∂2
b (I)

∣∣
(0,0)

=
1

2

(
1

r2
0,0

· ∂2
b r̃

2
a,b

∣∣
(0,0)
− ξ′t(‖v(0, 0)‖2) · ∂2

b ‖ṽ(a, b)‖2
∣∣
(0,0)
− ∂2

b r̃
2
a,b

∣∣
(0,0)
· ξ′t(q)

)

=
−q2

(1− q)2
.

It follows that

∂2
b Êa,b

∣∣∣
(0,0)

= ξ′′t (q) · q2 − q2

(1− q)2
.

Similarly, we have ∂a∂b(II)|(0,0) = 0, and

∂a∂b(III)|(0,0) = ξ′′t (q) · q2.

430



We have that ∂a∂br̃
2
a,b

∣∣∣
(0,0)

= −2q2

1−q . Consequently,

∂a∂b(I)|(0,0) =
1

2

(
1

r2
0,0

· ∂a∂br̃2
a,b

∣∣
(0,0)
− ξ′t(‖v(0, 0)‖2) · ∂a∂b‖ṽ(a, b)‖2

∣∣
(0,0)
− ∂a∂br̃

2
a,b

∣∣
(0,0)
· ξ′t(q)

)

=
−q2

(1− q)2
.

It follows that

∂a∂bÊa,b

∣∣∣
(0,0)

= ξ′′t (q) · q2 − q2

(1− q)2
.

It remains to compute the second derivative with respect to a. We have

∂2
a(III)

∣∣
(0,0)

= q3ξ′′′t (q).

We also have

∂2
a(II)

∣∣
(0,0)

= qγ′′(q) · 1 + (1− q)2ξ′′t (q)

1 + (1− q)ξ′′t (q)

= q · 1 + (1− q)2ξ′′t (q)

1 + (1− q)ξ′′t (q)
· (2ξ′′t (q) + qξ′′′t (q))

≤ q2ξ′′′t (q) + 2qξ′′t (q).

We have ∂2
a r̃

2
a,b

∣∣∣
(0,0)

= −
(

2q + 2q2

1−q

)
= − 2q

1−q and ∂ar̃
2
a,b

∣∣∣
(0,0)

= −2q. Finally,

∂2
a(I)

∣∣
(0,0)

=
1

r2
0,0

· −2q

1− q
− 1

r4
0,0

· (−2q)2 − ξ′t(q) ·
−2q

1− q
− ξ′′t (q) · (−2q)2 − −2q

1− q
· ξ′t(q)

− 2 · (−2q) · 2ξ′t(q)ξ
′′
t (q)q

ξ′t(q)
− (1− q) · 2q2(ξ′t(q)ξ

′′′
t (q) + ξ′′t (q)2)

ξ′t(q)

=
−2q

(1− q)2
− 4q2

(1− q)2
− 4q2ξ′′t (q) + 8q2ξ′′t (q)− 2q2(1− q)ξ′′′t (q)− 2q2(1− q) · ξ

′′
t (q)2

ξ′t(q)

=
−2q(2q + 1)

(1− q)2
+ 4q2ξ′′t (q)− 2q2(1− q)ξ′′′t (q)− 2q(1− q)2ξ′′t (q)2.

Therefore,

∂2
aÊa,b

∣∣∣
(0,0)
≤ −q3ξ′′′t (q) + q2ξ′′′t (q) + 2qξ′′t (q)− q(2q + 1)

(1− q)2

+ 2q2ξ′′t (q)− q2(1− q)ξ′′′t (q)− q(1− q)2ξ′′t (q)2

=
−q(2q + 1)

(1− q)2
+ 2qξ′′t (q) + 2q2ξ′′t (q)− q(1− q)2ξ′′t (q)2.

To conclude, let us check that the Hessian is negative definite. Because ξ′′t (q) · q2 − q2

(1−q)2 < 0 by the SL

condition (SL), it suffices to check that

∂2
aÊa,b

∣∣∣
(0,0)

< q2ξ′′t (q)− q2

(1− q)2
.

This is true if and only if

q(1− q)2ξ′′t (q)2 − q(q + 2)ξ′′t (q) +
q(q + 1)

(1− q)2
> 0.

It is not difficult to see that this is true if ξ′′t (q) is less than the smaller root of the above quadratic, which
is equal to

(q + 2)−
√

(q + 2)2 − 4(q + 1)

2(1− q)2
=

1

(1− q)2
.

This is true by the SL condition (SL), concluding the proof.
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Next, we shall prove Lemma 7.7.38. Recall the definition

Error
(2)
a,b =

Nξ′′a,b(0)

4
− 1

2
log det

(
(1 + ξ′′a,b(0))Id−∇2Ha,b(0)

)
,

where ∇2Ha,b(0) is equal to the restriction of r2
a,b ·∇2HTAP(v(a, b)) restricted to the codimension-2 subspace

orthogonal to m and x.

Lemma 7.7.38. For any sufficiently small ι > 0, with probability at least 1 − e−cN ,
∣∣∣Error(2)

a,b − Error
(2)
0,0

∣∣∣ =

O (1) for all a, b < ιN1/4.

Let us start by computing the correlation structure of the random matrices ∇2Ha,b(0). Note that

∇2Ha,b(0) is an (N − 2)-dimensional GOE matrix scaled by
√
ξ′′a,b(0).

Fact 7.B.3. For σ1, σ2,

1

N
E〈∇2HTAP(σ1), u1 ⊗ u2〉〈∇2HTAP(σ2), v1 ⊗ v2〉

= ξ′′t
(
R(σ1, σ2)

)
·
(
R(u1, v2) ·R(u2, v1) +R(u1, v1) ·R(u2, v2)

)
.

In particular,
1

N
E〈∇2HTAP(σ1),∇2HTAP(σ2)〉 = ξ′′t

(
R(σ1, σ2)

)
.

The above follows from calculations similar to those involved in the proofs of Facts 7.B.1 and 7.B.2; we
omit the details.

Proof of Lemma 7.7.38. We shall prove the statement for a fixed a, b; a union bound over a, b implies the
boundedness for all a, b ≤ ιN1/4.

Recalling that ∇2Ha,b(0) = r2
a,b∇2HTAP(

√
N ·v(a, b)) is a GOE matrix scaled by

√
ξ′′a,b(0). By Fact 7.B.3,

1

N
E〈∇2Ha,b(0),∇2H0,0(0)〉 = r2

a,b · r2
0,0 ·

1

N
E〈∇2HTAP(

√
N · v(a, b)),∇2HTAP(

√
N · v(0, 0))〉

= r2
a,b · r2

0,0 · ξ′′t (〈v(a, b), v(0, 0)〉) .

For comparison, we have

1

N
E
∥∥∇2Ha,b(0)

∥∥2

F
= ξ′′a,b(0) = r4

a,b · ξ′′t
(
‖v(a, b)‖2

)
.

For succinctness of notation, let(
α1 ρ
ρ α2

)
=

(
r4
0,0ξ
′′
t (‖v(0, 0)‖2) r2

a,br
2
0,0ξ
′′
t (〈v(a, b), v(0, 0)〉)

r2
a,br

2
0,0ξ
′′
t (〈v(a, b), v(0, 0)〉) r4

a,bξ
′′
t (‖v(a, b)‖2)

)
be the covariance structure of the scaled GOE matrices ∇2H0,0(0) and ∇2Ha,b(0). It is not difficult to see

that α2 = α1 +O
(
a2+b2

N

)
, and ρ is between α1 and α2. Also note that α1 = ξ′′0,0(0) and α2 = ξ′′a,b(0). Then,

for some choice of GOE matrices G and G̃, we may write

∇2H0,0(0) =
√
α1G

∇2Ha,b(0) =
ρ
√
α1
G+

√
α2 −

ρ2

α1
G̃.
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We thus have

2
(
Error

(2)
0,0 − Error

(2)
a,b

)
=
Nα1

2
− Nα2

2
− log det

(1 + α1) Id−
√
α1G︸ ︷︷ ︸

M1


+ log det

(1 + α2)Id− ρ
√
α1
G−

√
α2 −

ρ2

α1
G̃

 .

We may write the matrix inside the final log det as

(1 + α2)Id− ρ
√
α1
G−

√
α2 −

ρ2

α1
G̃

= ((1 + α1)Id−
√
α1G) + (α2 − α1)Id−

(
ρ
√
α1
−
√
α1

)
G︸ ︷︷ ︸

M2

−

√
α2 −

ρ2

α1
G̃︸ ︷︷ ︸

M3

.

The difference of the two log det terms is thus equal to

log det

Id +M
−1/2
1 M2M

−1/2
1 +M

−1/2
1 M3M

−1/2
1︸ ︷︷ ︸

M

 .

Observe that M3 is a scaled GOE matrix independent of M1 (and M2). Taylor expanding the above, we shall
control the trace and Frobenius norm of M . It may be verified that the higher-order terms, corresponding to
higher Schatten norms, are O(1). To control the trace and Frobenius norm, we shall essentially control their
values in expectation. Standard concentration arguments for GOE matrices, along the lines of Lemma 7.8.6
using [GZ00, Lemma 1.2(b) and Corollary 1.6(b)], allow us to assume (with probability 1− e−cN ) that the
eigenvalues of G are distributed according to the semicircular distribution up to some small Wasserstein
perturbation. That is, with probability 1− e−cN , denoting by λi(G) the eigenvalues of G,

TrM
−1/2
1 M2M

−1/2
1 =

∑
1≤i≤N

(α2 − α1)−
(

ρ√
α1
−√α1

)
λi(G)

(1 + α1)−√α1λi(G)

= N ·
∫ (α2 − α1)−

(
ρ√
α1
−√α1

)
u

(1 + α1)−√α1u
dµsc(u) +O(1)

= N(α2 − ρ) +O(1),

where the final equality follows from the standard semicircle integral
∫

1
x−udµsc(u) = 1

2

(
x−
√
x2 − 4

)
. On

the other hand, because G̃ is independent of G,

TrM
−1/2
1 M3M

−1/2
1 = O(1)

with probability 1− e−cN . Let us next control the Frobenius norms of these matrices. Again, because G̃ is
independent of G, with very high probability,

‖M‖2F = O(1) +
∥∥∥M−1/2

1 M2M
−1/2
1

∥∥∥2

F
+
∥∥∥M−1/2

1 M3M
−1/2
1

∥∥∥2

F
.

The first squared Frobenius norm is equal to

∑ (α2 − α1)−
(

ρ√
α1
−√α1

)
λi(G)

(1 + α1)−√α1λi(G)

2

.
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Let ι such that (1+α1)−(2+ι)
√
α1 > ι (this uses strict replica symmetry). Then, with probability 1−e−cN ,

|λi(G)| ≤ 2 + ι for all i. Conditioned on this event happening, and recalling that α2 − α1 = O
(
a2+b2

N

)
, the

above is O(a2+b2)2

N . This is O(1) for all choices of a, b ≤ ιN1/4.

We must next control the squared Frobenius norm of M
−1/2
1 M3M

−1/2
1 . Let us condition on a typical

realization of M1: all its eigenvalues are smaller than 2+ ι in magnitude, and the empirical spectral distribu-
tion is Wasserstein-close to the semicircle law in the same sense as the previous section (where we controlled
the trace), in that∑ 1

(1 + α1)−√α1λi(G)
= N ·

∫
1

(1 + α1)−√α1u
dµsc(u) +O(1) = N +O(1)

Because M3 is independent of M1, it suffices to control the expected Frobenius norm of the matrix – the
true realization concentrates around its expectation to additive O(1) factors. It is not difficult to see that
this expectation is equal to

1

N
·
(
α2 −

ρ2

α1

)
·
(∑ 1

(1 + α1)−√α1λi(G)

)2

= N ·
(
α2 −

ρ2

α1

)
·
(∫

1

(1 + α1)−√α1u
dµsc(u)

)2

+O(1)

= N ·
(
α2 −

ρ2

α1

)
+O(1).

Putting the pieces together and returning to the Taylor expansion, we get that with very high probability,

2
(
Error

(2)
0,0 − Error

(2)
a,b

)
=
Nα1

2
− Nα2

2
+ log det (Id +M)

= O(1) +
Nα1

2
− Nα2

2
+ Tr (M)− 1

2
‖M‖2F

= O(1) +N ·
(
α1

2
− α2

2
+ (α2 − ρ)− 1

2

(
α2 −

ρ2

α1

))
= O(1) +N ·

(
α1

2
− ρ+

ρ2

2α1

)
= O(1) +

N

2
· (α1 − ρ)2

α1
.

Because α1 − ρ = O
(
a2+b2

N

)
, this is O(1) for a, b ≤ ιN1/4, completing the proof.

7.B.3 Moment calculations for covariance bounds

We first prove subgaussian concentration for the covariance of the degree-2 part.

Proof of Proposition 7.8.8. Part (2) follows from part (1) by a standard tail integration argument. Indeed,
the random variable W is bounded by N1/2, so the contribution to E[W k] from the event |W | ≥ N1/5 is
bounded by

Nk/2P(|W | ≥ N1/5) ≤ Nk/2e−cN
2/5

,

which is vanishing for any constant k. So, we focus on proving part (1). In the case W = 〈σ1, σ2〉/
√
N , this

is a special case of [HMP24, Lemma 7.5] (where we take u = 0). We consider the case W = 〈σ, vi〉. Recall
that

HN,2(σ) = 〈Aσ, σ〉 =

√
ξ′′(0)

2
〈Mσ, σ〉
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where M ∼ GOE(N). For 0 ≤ s ≤ N1/5 logN , we will evaluate∫
eHN,2(σ)dρ(σ) and

∫
eHN,2(σ)+s〈vi,σ〉dρ(σ)

using [HMP24, Lemma 7.3]. We recall the function G : (λmax(A),+∞) defined in (7.15), which we copy

below for convenience, and define G̃ by

G(γ) = γ − 1

2N
log det(γI −A), G̃(γ) = G(γ) +

s2

4N(γ − λi(A))
.

Recall from below (7.15) that G′ has a unique root γ∗ on (λmax(A),+∞). By the same argument, G̃′ has
a unique root γ̃∗ on the same interval. As argued in the proof of Lemma 7.8.6, the conditions of [HMP24,
Lemma 7.3] apply. Applying this lemma with u = 0 and u = svi, respectively, shows that with probability
1− e−cN , ∫

eHN,2(σ)dρ(σ) = (1 +O(N−c))

√
2

G′′(γ∗)
(2e)−N/2 exp(NG(γ∗)),∫

eHN,2(σ)+s〈vi,σ〉dρ(σ) = (1 +O(N−c))

√
2

G̃′′(γ̃∗)
(2e)−N/2 exp(NG̃(γ̃∗)). (7.39)

Suppose further the probability 1 − e−cN event in Lemma 7.8.7 holds. As argued in the proof of Proposi-

tion 7.8.1, |γ∗ − γ0| ≤ 1
C
√
N

. Also, with probability 1− e−cN , λmax(A) ≤
√
ξ′′(0)

2 (2 + ε2/8).

We will show that on the intersection of these events |γ∗ − γ̃∗| = O(N−3/5 log2N). First note that

γ∗ − λmax(A) ≥ γ0 − λmax(A)− 1

C
√
N
≥

1 + ξ′′(0)− (2 + ε2/8)
√
ξ′′(0)

2
− 1

C
√
N
≥ ε2/32

is bounded below by a constant, as in the proof of Fact 7.8.5. Since G′(γ∗) = 0 and G̃′(γ) = G′(γ) −
s2

4N(γ−λi(A))2 , we have γ̃∗ ≥ γ∗ and so γ̃∗−λi(A) is also bounded below by a constant. Thus, as s ≤ N1/5 logN ,

we have

0 ≥ G̃′(γ∗) = − s2

4N(γ − λi(A))2
= O(N−3/5 log2N).

By direct computation,

G̃′′(γ) = G′′(γ) +
s2

8N(γ − λi(A))2
.

Since γ̃∗ ≥ γ∗, we have γ − λi(A) is bounded below by a constant for all γ ∈ [γ∗, γ̃∗]. We claim that
γ̃∗ ∈ [γ0 −N−1/2, γ0 +N−1/2]. Combining both conclusions of Lemma 7.8.7, we obtain that G′′(γ) ≥ Ωε(1)
for γ ∈ [γ0 −N−1/2, γ0 +N−1/2], and consequently the desired claim on γ̃∗ holds.

We thus have G̃′′(γ) = Oε(1) in the same interval, and consequently we can conclude the stronger

statement |γ∗ − γ̃∗| = O(N−3/5 log2N). Furthermore, since G̃(3)(γ) = Oε(1), the same logic allows us to
also conclude

G̃′′(γ̃∗)/G̃
′′(γ∗) = 1 +O(N−3/5 log2N).

By Taylor expanding G̃ around γ̃∗, we see

N |G̃(γ∗)− G̃(γ̃∗)| ≤
N

2
|γ∗ − γ̃∗|2 sup

γ∈[γ0−N−1/2,γ0+N−1/2]

G′′(γ) = O(N−1/5 log4N).

The above two displays allow us to replace instances of γ̃∗ with γ∗ in (7.39), yielding∫
eHN,2(σ)+s〈vi,σ〉dρ(σ) = (1 +O(N−c))

√
2

G̃′′(γ∗)
(2e)−N/2 exp(NG̃(γ∗)),
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and thus

〈es〈vi,σ〉〉2 =

∫
eHN,2(σ)+s〈vi,σ〉dρ(σ)∫

eHN,2(σ)dρ(σ)

= (1 +O(N−c))

√
G′′(γ∗)

G̃′′(γ∗)
exp(N(G̃(γ∗)−G(γ∗)))

= (1 +O(N−c)) exp(s2/(4(γ∗ − λi(A)))) = (1 +O(N−c)) exp(cs2),

where the last two steps again use that γ∗−λi(A) is bounded away from 0. The tail estimate on W = 〈vi, σ〉
now follows from a standard Chernoff bound.

We next turn to Lemma 7.8.11, proving each part in turn.

Proof of Lemma 7.8.11, (7.18). We reproduce (7.18) below for convenience:

E
∫
SN

1[σ 6∈ T (HN )]eHN (σ)dρ(σ) ≤ eNξ(1)/2−cN1/5

.

The proof follows [HS23b, Proposition 3.1], except with more precise control of overlaps between N−2/5 and
a small constant. By symmetry of the sphere, for any deterministic x ∈ SN ,

E
∫
SN

1[σ 6∈ T (HN )]eHN (σ)dρ(σ) = E
[
1[x 6∈ T (HN )]eHN (x)

]
. (7.40)

Let µpl(·|x) denote the planted model (Definition 7.7.9) conditional on spike x. A Gaussian change of
measure calculation implies that the right-hand side of (7.40) equals

eNξ(1)/2PHx,I
N ∼µpl(·|x)[x 6∈ T (Hx,IN )].

Thus it suffices to show
PHx,I

N ∼µpl(·|x)[x 6∈ T (Hx,IN )] ≤ e−cN
1/5

.

Recall (Remark 7.7.15) that a sample Hx,IN ∼ µpl(·|x) can be generated by

Hx,IN (σ) = Nξ(R(x, σ)) + H̃N (σ), (7.41)

where H̃N ∼ µnull. Furthermore, from the definition, x ∈ T (Hx,IN ) is equivalent to∫
SN

1[|R(x, τ)| ≥ N−2/5]eH
x,I
N (τ)dρ(τ) ≤ eNξ(1)/2−cN1/5

(7.42)

We will show this occurs with probability at least 1 − e−cN
1/5

. Let ψ denote the probability density of
R(x, τ) ∈ [−1, 1], where τ is sampled from the Haar measure on SN . Then it is known that

ψ(q) =
1

Zψ
(1− q2)(N−3)/2

where Zψ = Θ(N−1/2). Define the codimension-1 band

Band(q) = Band(q;x) := {τ ∈ SN : R(x, τ) = q}

and let

Zx,I(q) =

∫
Band(q)

eH
x,I
N (τ)dρq(τ),

where ρq is the Haar measure on Band(q), normalized so that ρq(Band(q)) = ψ(q). Then the left-hand side
of (7.42) is equal to ∫

N−2/5≤|q|≤1

Zx,I(q)dq.
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An application of Guerra’s interpolation as in [HS23b, Lemma 3.3] shows that for any q ∈ [−1, 1] and
constant η > 0, with probability 1− e−cN ,

1

N
logZx,I(q) ≤ 1

2
(ξ(1) + ξ(|q|) + |q|+ log(1− |q|)) + η.

Since ξ∼1 is ε-strictly replica symmetric and γ2
1 ≤ N−4/5, this implies

1

N
logZx,I(q) ≤ ξ(1)

2
− εq2

4
+ 2η.

Let δ > 0 be small depending on ε, and η small depending on δ. This implies that for any |q| ≥ δ, with
probability 1− e−cN ,

1

N
logZx,I(q) ≤ ξ(1)

2
− εδ2

8
.

Taking a union bound over a N−1-net of |q| ≥ δ as in [HS23b, Lemma 3.4] implies that with probability
1− e−cN , ∫

δ≤|q|≤1

Zx,I(q)dq ≤ eNξ(1)/2−cN . (7.43)

We address the remaining range of q by a first moment bound. Note that

E
∫
N−2/5≤|q|≤δ

Zx,I(q)dq = eNξ(1)/2

∫
N−2/5≤|q|≤δ

eNξ(q)ψ(q)dq. (7.44)

Recall from Fact 7.8.4 that ξ′′(0) ≤ 1− ε. Thus, for sufficiently small δ, for all |q| ≤ δ,

ξ∼1(q) +
1

2
log(1− q2) ≤ −εq2/4.

Thus, for all N−2/5 ≤ |q| ≤ δ,

1

N
log
(
eNξ(q)ψ(q)

)
= ξ(q) +

1

N
logψ(q) = γ2

1q + ξ∼1(q) +
1

2
log(1− q2) +O(N−1 logN)

≤ γ2
1q − εq2/4 +O(N−1 logN) ≤ −εN−4/5/8.

Combining with (7.44) shows

E
∫
N−2/5≤|q|≤δ

Zx,I(q)dq ≤ eNξ(1)/2−cN1/5

,

so by Markov’s inequality, with probability 1− e−cN1/5/2,∫
N−2/5≤|q|≤δ

Zx,I(q)dq ≤ eNξ(1)/2−cN1/5/2.

Combining with (7.43) proves (7.42) after adjusting c.

Proof of Lemma 7.8.11, (7.19). By the same argument leading to (7.42), it suffices to prove∫
SN

1[|R(x, τ)| ≥ N−2/5]eH
x,II
N (τ)dρ(τ) ≤ eNξ(1)/2−cN1/5

(7.45)

holds with probability at least 1− e−cN1/5

, where now

Hx,IIN (σ) = Nγ2
2R(x, σ)2 + H̃N (σ),
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i.e. we have replaced the spike in Hx,IN with only its degree-2 part. Then Hx,IIN (σ) ≤ Hx,IN (σ) almost surely
for all σ such that R(x, σ) ≥ 0, so (7.42) implies∫

SN

1[R(x, τ) ≥ N−2/5]eH
x,II
N (τ)dρ(τ) ≤ eNξ(1)/2−cN1/5

with probability 1− e−cN . Moreover, by symmetry of the degree-2 spike,∫
SN

1[R(x, τ) ≥ N−2/5]eH
x,II
N (τ)dρ(τ)

d
=

∫
SN

1[R(x, τ) ≤ −N−2/5]eH
x,II
N (τ)dρ(τ).

This implies (7.45) and thus (7.19).

Proof of Lemma 7.8.11, (7.20). This follows from a slightly more complex form of the same strategy, where
the planted Hamiltonian now has two spikes. For x1,x2 ∈ SN , let

Hx
1,x2,III

N (σ) = Nξ(R(x1, σ)) +Nξ(R(x2, σ)) + H̃N (σ).

By the same gaussian change of measure argument as above, the expectation in the left-hand side of (7.20)
equals

eNξ(1)

∫
1[|R(σ1, σ2)| ≤ 3N−2/5]P(σ1 6∈ T (Hσ1,σ2,III

N ))dρ⊗2(σ1, σ2).

Thus it suffices to show that for all x1,x2 ∈ SN with |R(x1,x2)| ≤ 3N−2/5,∫
SN

1[|R(x1, τ)| ≥ N−2/5]eH
x1,x2,III
N (τ)dρ(τ) ≤ eNξ(1)/2−cN1/5

(7.46)

with probability at least 1− e−cN1/5

. Let λ = R(x1,x2) ∈ [−3N−2/5, 3N2/5] and

x2 = λx1 +
√

1− λ2x2
⊥,

where x2
⊥ ∈ SN and R(x1,x2

⊥) = 0. Let ψ2 denote the probability density of (R(x1, τ), R(x2
⊥, τ)) ∈ [1, 1]2,

where τ is sampled from the Haar measure on SN . It is known that

ψ2(q) =
1[q2

1 + q2
2 ≤ 1]

Zψ2

(1− q2
1 − q2

2)(N−4)/2

where Zψ = Θ(N−1). Define the codimension-2 band

Band(q1, q2) = Band(q1, q2;x1,x2) := {τ ∈ SN : R(x1, τ) = q1, R(x2
⊥, τ) = q2}.

and let

Zx
1,x2,III(q1, q2) =

∫
Band(q1,q2)

eH
x1,x2,III
N (τ)dρq1,q2(τ),

where ρq1,q2 is the Haar measure on Band(q1, q2), normalized so that ρq1,q2(Band(q1, q2)) = ψ2(q1, q2). Then
the left-hand side of (7.46) is equal to∫

1[|q1| ≥ N−2/5]Zx
1,x2,III(q1, q2)d(q1, q2). (7.47)

Note that

1

N
logZx

1,x2,III(q1, q2) = ξ(q1) + ξ
(
λq1 +

√
1− λ2q2

)
+

1

N
log

∫
Band(q1,q2)

eH̃N (τ)dρq1,q2(τ).

Let q̃ = q̃(q1, q2) :=
√
q2
1 + q2

2 . Applying Guerra’s interpolation as in [HS23b, Lemma 3.3] shows that for
any η > 0, with probability 1− e−cN

1

N
log

∫
Band(q1,q2)

eH̃N (τ)dρq1,q2(τ) ≤ 1

2
(ξ(1)− ξ(q̃) + q̃ + log(1− q̃)) + η.
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and thus

1

N
logZx

1,x2,III(q1, q2) ≤ ξ(q1) + ξ
(
λq1 +

√
1− λ2q2

)
+

1

2
(ξ(1)− ξ(q̃) + q̃ + log(1− q̃)) + η

≤ ξ∼1(|q1|) + ξ∼1(|q2|) +
1

2
(ξ(1)− ξ∼1(q̃) + q̃ + log(1− q̃)) + 2η.

Since ξ∼1 only includes terms that are degree 2 or larger, ξ∼1(|q1|)+ξ∼1(|q2|) ≤ ξ∼1(q̃). Thus the last display
is bounded by

1

2
(ξ(1) + ξ∼1(q̃) + q̃ + log(1− q̃)) + 2η ≤ ξ(1)

2
− εq̃2

4
+ 2η.

Arguing as in the proof of equation (7.18) then shows that for any δ > 0 depending only on ε,∫
1[q̃(q1, q2) > δ]Zx

1,x2,III(q1, q2)d(q1, q2) ≤ eNξ(1)/2−cN (7.48)

with probability 1− e−cN . The remaining part of the integral (7.47) has expectation

E
∫

1[|q1| ≥ N−2/5, q̃(q1, q2) ≤ δ]Zx
1,x2,III(q1, q2)d(q1, q2)

= eNξ(1)/2

∫
1[|q1| ≥ N−2/5, q̃(q1, q2) ≤ δ]eNξ(q1)+Nξ(λq1+

√
1−λ2q2)ψ2(q1, q2)d(q1, q2). (7.49)

Recall γ2
1 ≤ N−4/5. For all (q1, q2) in this indicator,

1

N
log
(
eNξ(q1)+Nξ(λq1+

√
1−λ2q2)ψ2(q1, q2)

)
= ξ(q1) + ξ

(
λq1 +

√
1− λ2q2

)
+

1

2
log(1− q̃2) +O(N−1 logN)

≤ 2N−4/5q̃ − 1

2
(1− ξ′′(0))q̃2 +O(q̃3 +N−1 logN)

≤ −εq̃
2

2
+ 2N−4/5q̃ +O(q̃3 +N−1 logN).

Since N−2/5 ≤ q̃ ≤ δ, for δ sufficiently small depending on ε this is bounded by −cN−4/5. Combining with

(7.49) shows that with probability 1− e−cN1/5

,∫
1[|q1| ≥ N−2/5, q̃(q1, q2) ≤ δ]Zx

1,x2,III(q1, q2)d(q1, q2) ≤ eNξ(1)/2−cN1/5

.

Further combining with (7.48) completes the proof.

Proof of Lemma 7.8.11, (7.21). This is proved identically to equation (7.20), except with spiked Hamiltonian

Hx
1,x2,IV

N (σ) = Nγ2
2R(x1, σ)2 +Nξ(R(x2, σ)) + H̃N (σ),

i.e. the spike involving x1 is replaced with just its degree-2 component. The same argument applies and we
omit details.

We turn to the proofs of Lemmas 7.8.15 and 7.8.16. The following fact will be useful in the proofs of
both lemmas.

Fact 7.B.4. If σ ∈ SN satisfies |σi|, |σj | ≤ logN and σ 6∈ T̃i,j, then σ 6∈ T̃ .

Proof. Consider any τ ∈ SN satisfying |R(σ∼i,j , τ∼i,j)| ≥ 2N−2/5. Since |τi|, |τj | ≤ N1/2,

|R(σ, τ)| ≥ |R(σ∼i,j , τ∼i,j)| −
|σi||τi|+ |σj ||τj |

N
≥ N−2/5.

Thus the expectation over τ in (7.22) is larger than the expectation over τ in (7.28), and so σ 6∈ T̃ .
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Proof of Lemma 7.8.15. We can write Xi,j = X̃i,j + X̃
(1)
i,j + X̃

(2)
i,j , where

X̃
(1)
i,j =

〈
1[|σi|, |σj | ≤ logN, σ 6∈ T̃i,j ]σiσj

(
eHN,∼2(σ)−Nξ∼2(1)/2 − 1[i = j]

)〉
2
,

X̃
(2)
i,j =

〈
1[|σi| ∨ |σj | > logN ]σiσj

(
eHN,∼2(σ)−Nξ∼2(1)/2 − 1[i = j]

)〉
2
.

By using (a+ b)2 ≤ 2a2 + 2b2, we deduce that

X2
i,j ≤ 2X̃2

i,j + 2(X̃
(1)
i,j + X̃

(2)
i,j )2,

so the rest of the proof is dedicated to showing that |X̃(1)
i,j + X̃

(2)
i,j | ≤ e−c log2N with probability 1− e−c log2N .

To do so, we will simply apply Markov to control |X̃(1)
i,j | and |X̃(2)

i,j |.
By Fact 7.B.4 and using |σi|, |σj | ≤

√
N ,

|X̃(1)
i,j | ≤ N

〈
1[|σi|, |σj | ≤ logN, σ 6∈ T̃i,j ]

(
eHN,∼2(σ)−Nξ∼2(1)/2 + 1[i = j]

)〉
2

≤ N
〈
1[σ 6∈ T̃ ]

(
eHN,∼2(σ)−Nξ∼2(1)/2 + 1[i = j]

)〉
2
.

By the first two equations from Corollary 7.8.12, E∼2 |X̃(1)
i,j | ≤ e−cN

1/5

. Furthermore,

E
∼2
|X̃(2)

i,j | ≤ N E
∼2

〈
(1[|σi| > logN ] + 1[|σj | > logN ])

(
eHN,∼2(σ)−Nξ∼2(1)/2 + 1[i = j]

)〉
2

≤ 2N 〈1[|σi| > logN ] + 1[|σj | > logN ]〉2 ≤ e
−c log2N

by Proposition 7.8.8(1). By Markov’s inequality, with probability 1− e−c log2N , |X̃(1)
i,j |+ |X̃

(2)
i,j | ≤ e−c log2N ,

after adjusting c as necessary. This concludes the proof.

Proof of Lemma 7.8.16. We can write X̃2
i,j = X̂i,j + X̂

(1)
i,j − X̂

(2)
i,j , where

X̂
(1)
i,j =

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ≤ logN, σ1, σ2 ∈ T̃i,j , |R(σ1

∼i,j , σ
2
∼i,j)| > 2N−2/5]

σ1
i σ

1
jσ

2
i σ

2
j

(
eHN,∼2(σ1)−Nξ∼2(1)/2 − 1[i = j]

)(
eHN,∼2(σ2)−Nξ∼2(1)/2 − 1[i = j]

)〉
2

,

X̂
(2)
i,j =

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ≤ logN, (σ1 6∈ T̃i,j ∨ σ2 6∈ T̃i,j), |R(σ1

∼i,j , σ
2
∼i,j)| ≤ 2N−2/5]

σ1
i σ

1
jσ

2
i σ

2
j

(
eHN,∼2(σ1)−Nξ∼2(1)/2 − 1[i = j]

)(
eHN,∼2(σ2)−Nξ∼2(1)/2 − 1[i = j]

)〉
2

.

By the same argument as before, it suffices to control E∼2 |X̂(1)
i,j | and E∼2 |X̂(2)

i,j |. Note that almost surely,

|X̂(1)
i,j | ≤ N

2

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ≤ logN, σ1, σ2 ∈ T̃i,j , |R(σ1

∼i,j , σ
2
∼i,j)| > 2N−2/5](

eHN,∼2(σ1)−Nξ∼2(1)/2 + 1
)(

eHN,∼2(σ2)−Nξ∼2(1)/2 + 1
)〉

2

≤ N2(X̂
(3)
i,j + X̂

(4)
i,j )

where

X̂
(3)
i,j =

〈
1[σ1 ∈ T̃i,j , |R(σ1

∼i,j , σ
2
∼i,j)| > 2N−2/5]eHN,∼2(σ1)+HN,∼2(σ2)−Nξ∼2(1)

〉
2
,

X̂
(4)
i,j =

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ≤ logN, |R(σ1

∼i,j , σ
2
∼i,j)| > 2N−2/5]

(eHN,∼2(σ1)−Nξ∼2(1)/2 + eHN,∼2(σ2)−Nξ∼2(1)/2 + 1)

〉
2

.
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By definition of T̃i,j ,

X̂
(3)
i,j ≤

〈
1[σ1 ∈ T̃i,j ]eHN,∼2(σ1)−Nξ∼2(1)/2−cN1/5

〉
2
,

and thus E∼2 X̂
(3)
i,j ≤ e−cN

1/5

. Furthermore,

X̂
(4)
i,j ≤

〈
1[|R(σ1, σ2)| > N−2/5](eHN,∼2(σ1)−Nξ∼2(1)/2 + eHN,∼2(σ2)−Nξ∼2(1)/2 + 1)

〉
2
,

and thus
E
∼2
X̂

(4)
i,j ≤ 3

〈
1[|R(σ1, σ2)| > N−2/5]

〉
2
≤ e−cN

1/5

by Proposition 7.8.8(1). Combining shows E∼2 |X̂(1)
i,j | ≤ e−cN

1/5

. Similarly

|X̂(2)
i,j | ≤ N

2

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ≤ logN, (σ1 6∈ T̃i,j ∨ σ2 6∈ T̃i,j),

|R(σ1
∼i,j , σ

2
∼i,j)| ≤ 2N−2/5]

(
eHN,∼2(σ1)−Nξ∼2(1)/2 + 1

)(
eHN,∼2(σ2)−Nξ∼2(1)/2 + 1

)〉
2

By Fact 7.B.4, on the indicator in this expectation, σ1, σ2 ∈ T̃ . Moreover

|R(σ1, σ2)| ≤ |R(σ1
∼i,j , σ

2
∼i,j)|+

|σ1
i ||σ2

i |+ |σ1
j ||σ1

j |
N

≤ 3N−2/5.

Thus

|X̂(2)
i,j | ≤ 2N2

〈
1[σ1 6∈ T̃ , |R(σ1, σ2)| ≤ 3N−2/5](

eHN,∼2(σ1)−Nξ∼2(1)/2 + 1
)(

eHN,∼2(σ2)−Nξ∼2(1)/2 + 1
)〉

2

and Corollary 7.8.12 implies E∼2 |X̂(2)
i,j | ≤ e−cN

1/5

.

441



Bibliography

[AB13] Antonio Auffinger and Gérard Ben Arous. Complexity of random smooth functions on the
high-dimensional sphere. Ann. Probab., 41(6):4214–4247, 2013.

[Abb18] Emmanuel Abbe. Community detection and stochastic block models: recent developments.
J. Mach. Learn. Res., 18(177):1–86, 2018.
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Poincaré Probab. Stat., 60(1):636–657, 2024.
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