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Plan for this Talk

1 Problem setup: optimizing a mean field spin glass Hamiltonian.

2 Background: Parisi formula, AMP, overlap gap property.
3 New result: a tight characterization of the best value achieved

by a class of efficient algorithms.
4 Some key ideas: ultrametricity and a branching OGP.
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Mean Field Spin Glass Hamiltonians

Definition (Sherrington-Kirkpatrick 75,. . . )

Fix constants γ1, γ2, . . . , γK ≥ 0. The mixed p-spin Hamiltonian
HN : RN → R is a random degree K polynomial defined by

HN(σ1, . . . , σN) =
K∑

k=1

N−
k−1

2 γk
∑

1≤i1,...,ik≤N
Ji1,...,ikσi1 . . . σik .

Here Ji1,...,ik are IID standard gaussians.

Equivalently: let ξ(t) =
∑K

k=1 γ
2
k t

k . Then HN is the centered
Gaussian process with covariance

E[HN(σ)HN(σ
′)] = Nξ(〈σ,σ′〉/N).

Two input sets will be considered:
Ising – σ ∈ {−1, 1}N
Spherical – ||σ|| =

√
N.
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Motivations for the Model

The Sherrington-Kirkpatrick model (K = 2) was introduced to
study diluted magnetic alloys such as Copper Manganese.
Magnetic interaction rapidly oscillates with distance, so use an
Ising model with random weights: HN =

∑
i ,j Ji ,jσiσj .

Mean field: forget the 3-D structure, make all Ji ,j IID.
Higher degree interactions and spherical inputs are
mathematically natural extensions.
Also arises as high-degree limit of random MaxCut, MaxSAT
(Dembo-Montanari-Sen 17, Panchenko 18).
Rich source of random non-convex functions, related to some
neural network models (Gardner-Derrida 80s, Amit-Gutfreund-
Sompolinsky 85, Choromanska-Henaff-Mathieu-Ben Arous-LeCun 15).
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The Parisi Formula

Theorem (Parisi 82, Talagrand 06/10, Panchenko 14, Auffinger-Chen 17)

In both the Ising and spherical settings, the limit

OPT ≡ p-lim
N→∞

max
x

HN(x)

N
= inf

ζ∈U
Pξ(ζ)

holds for explicit Parisi functionals PIs
ξ ,P

Sp
ξ . Here U is the set of

non-decreasing functions ζ : [0, 1]→ R+.

Question: can efficient algorithms reach (OPT− ε)N?
If not, what can be done efficiently?
Goal: compute σ = A(HN) with HN(σ) as large as possible.
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A Look at the Landscape

If HN is close to convex, maybe gradient descent works.
Not the case! On the sphere, HN can have:

Exponentially many near-optimal local maxima.

Exponentially more suboptimal local maxima.

Exponentially more suboptimal saddle points.
(Auffinger-Ben Arous 13, A-BA-Černý 13, Subag 17,
Ben Arous-Mei-Montanari-Nica 19, Subag-Zeitouni 21)

Adversarial HN : reaching OPT
log(N)c is hard (Arora-Berger-Hazan-

Kindler-Safra 05, Barak-Brandao-Harrow-Kelner-Steurer-Zhou 12).
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AMP Algorithms Succeed under No Overlap Gap

Theorem (Subag 18, Montanari 19, El Alaoui-Montanari-S 20, S 21)

The asymptotic value

ALG = inf
ζ∈L
Pξ(ζ)

is achievable by AMP (assuming a minimizer ζ∗ ∈ L exists).
L ) U contains all bounded variation functions ζ : [0, 1]→ R+.

Approximate message passing (AMP) is really efficient.
Uses only O(1) queries of ∇HN . Great for tons of problems.
(Bolthausen 14, Donoho-Maleki-Montanari 09, Bayati-Montanari
11, Javanmard-Montanari 13, Bayati-Lelarge-Montanari 15,
Rush-Venkataramanan 18, Montanari-Venkataramanan 21,. . . )

In brief: take small steps to simulate an SDE related to Pξ.
(AMS 20, roughly): No SDE-based AMP can reach ALG+ ε.

Equality case ALG = OPT corresponds to no overlap gap.
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Algorithmic Hardness from the Overlap Gap Property

Theorem (Gamarnik-Jagannath 20, G-J-Wein 20&21, S 21)

No stable algorithm can achieve OPT unless aforementioned AMP
algorithms succeed (in even models with γ3 = γ5 = · · · = 0).

Stable algorithms include:
O(1) iterations of gradient descent or AMP
. . . or any “constant-order method” querying ∇O(1)HN

Langevin dynamics run for O(1) time
Low degree polynomials
Poly-size circuits with depth at most logN

2 log logN .

Proof based on overlap gap property (OGP): a family of
topological hardness criteria.
(Achlioptas-Coja Oghlan 08, Gamarnik-Sudan 14, Gamarnik-Sudan 17
Rahman-Virag 17, Gamarnik-Zadik 17, Chen-Gamarnik-Panchenko-
Rahman 17, Gamarnik-Jagannath-Sen 19, Wein 20, . . . )
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Overlap Gap Property for Spin Glasses: A Cartoon

Consider path HN,t =
√
1− tHN,0 +

√
tHN,1.

σt = A(HN,t) is morally continuous in t.

Overlap gap property: for some qOGP ∈ (0, 1), if
||σ0 − σt || ≈ qOGP

√
N, then either σ0 or σt is suboptimal.

min (HN,0(σ0),HN,t(σt)) ≤ (OPT− ε)N.

“Continuity” implies ||σt −σ0|| ≈ qOGP
√
N for some t ∈ [0, 1].
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New Result: An Algorithmic Threshold

Theorem (Huang-S. 21+)

No overlap concentrated algorithm can beat ALG (in even models).

Overlap concentrated algorithms include:
O(1) iterations of gradient descent or AMP
. . . or any constant-order method querying ∇O(1)HN

Langevin dynamics run for O(1) time
Low degree polynomials
Poly-size circuits with depth logN

2 log logN .

For the algorithms listed above, result holds in a strong sense:

P[HN(A(HN)) ≥ (ALG+ ε)N] ≤ O(e−c(ε)N).

Proof relies on a new branching OGP.
In spherical models, branching OGP is in some sense
necessary to rule out ALG+ ε. Simpler OGPs cannot.
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Ultrametric Spaces and Trees

Recall: ultrametric spaces X satisfy the ultrametric triangle
inequality

d(x , y) ≤ max(d(x , z), d(y , z)), ∀x , y , z ∈ X .

Equivalent to hierarchical clustering, or graph metrics of leaves
of a rooted tree.
(All ultrametrics will be finite with sensible diameter.)

For all β > 0, Gibbs measure eβHN(σ)dσ/Z is “≈ ultrametric”.
(Parisi 82, Mézard-Parisi-Sourlas-Toulouse-Virasoro 84, Derrida 85, Ruelle
87, Panchenko 13, Jagannath 17, Chatterjee-Sloman 20,. . . )
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Algorithms and Ultrametrics

Turns out algorithms can build ultrametric spaces!
AMP algorithms for this problem explore using many small
steps. Branch to get a multi-valued algorithm.

Result: for any finite ultrametric X , branching IAMP can
output a configuration (σx)x∈X approximating X :

HN(σx) ≈ ALG · N, ∀x ∈ X ,

||σx − σy || ≈ dX (x , y)
√
N, ∀x , y ∈ X .

(Subag 18, El Alaoui-Montanari 20, S 21)
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Branching OGP

If algorithms can recreate any ultrametric, we should use a
stronger OGP.

Classic OGP: rule out pairs (σ1,σ2) at distance qOGP
√
N.

1 layer OGP: tuples (σ1, . . . ,σm) with all distances qOGP
√
N.

Ladder OGP: Dist(σi+1, span(σ1, . . . ,σi )) = δ
√
N.

Branching OGP: rule out configurations (σx)x∈X
approximating an arbitrarily complicated ultrametric space.

But...why would branching OGP imply hardness?
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Overlap Concentrated Algorithms

Definition
An algorithm A is overlap concentrated if the random distance

||A(HN,0)−A(HN,t)||√
N

tightly concentrates around its mean χ(t), uniformly over t ∈ [0, 1].

Holds by concentration of measure if A is Lipschitz in HN .
=⇒ gradient descent, AMP, . . . are overlap concentrated.
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Ultrametric Transformations from Overlap Concentration

For ultrametric X , create correlated Hamiltonians (HN,x)x∈X .
Outputs σx = A(HN,x) form a new ultrametric space χ(X ):

||σx1 − σx2 ||√
N

≈ χ(dX (x1, x2)), x1, x2 ∈ X .

χ is continuous, so we can make χ(X ) any ultrametric.
=⇒ if A achieves (ALG+ ε)N, then there is a configuration
(σx)x∈X approximating any desired ultrametric χ(X ) with

HN,x(σx) ≥ (ALG+ ε)N, ∀x ∈ X .
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Ruling Out a Complicated Ultrametric

Take χ(X ) a k-ary tree branching at depths [0, δ, 2δ, . . . , 1].
These are “universal” for finite ultrametrics as δ → 0.

Parisi formula upper bound generalizes to richer settings.
Control average of HN,x(σx) over all χ(X )-configurations:

max
(σx )x∈X

{
1
|X |

∑
x∈X

HN,x(σx) :
||σx1 − σx2 ||√

N
≈ dχ(X )(x1, x2) ∀x1, x2 ∈ X

}
.

Upper bounds from any increasing function ζ : [0, 1]→ R+,
expressed as multi-dimensional generalizations PX

ξ of Pξ.

Eventually, obtain upper bound Pξ(ζ̃) in terms of the original
Parisi functional.
Increasing ζ transforms into no-longer increasing ζ̃.
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These are “universal” for finite ultrametrics as δ → 0.
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Control average of HN,x(σx) over all χ(X )-configurations:

max
(σx )x∈X

{
1
|X |

∑
x∈X

HN,x(σx) :
||σx1 − σx2 ||√

N
≈ dχ(X )(x1, x2) ∀x1, x2 ∈ X

}
.
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Ruling Out a Complicated Ultrametric

The ratio ζ̃/ζ is piece-wise constant, shrinks at each jδ.
Hence ζ̃ approximates any ζ∗ ∈ L, get upper bound ALG+ ε.

Classic OGP: tree branches once, so ζ̃ decreases once.
Cannot approximate general functions, cannot reach ALG.
This limitation is fundamental:

Theorem (Huang-S 21+)

On the sphere, to rule out (ALG+ ε) with forbidden ultrametric trees,
the trees must contain full binary subtrees of unbounded size (as ε→ 0).
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Conclusion

Problem: optimize a mean field spin glass Hamiltonian.
Result: ALG is the best asymptotic value achievable by overlap
concentrated algorithms, so existing AMP algorithms are
optimal within this class (modulo technical points).

Overlap concentrated algorithms include constant-order
methods such as GD and AMP with O(1) iterations.
Proof uses a branching OGP based on general ultrametric
trees, which is in some sense necessary.

A natural open direction: how generally does branching OGP
identify the exact algorithmic threshold?
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