Tight Algorithmic Thresholds for Optimizing Mean Field Spin Glass Hamiltonians

Mark Sellke (Stanford)

Simons Workshop on Rigorous Evidence for Information-Computation Trade-offs

September 15, 2021

Joint work with Brice Huang (MIT)

9 Problem setup: optimizing a mean field spin glass Hamiltonian.

- **9** Problem setup: optimizing a mean field spin glass Hamiltonian.
- 2 Background: Parisi formula, AMP, overlap gap property.

- **1** Problem setup: optimizing a mean field spin glass Hamiltonian.
- **2** Background: Parisi formula, AMP, overlap gap property.
- Solution New result: a tight characterization of the best value achieved by a class of efficient algorithms.

- Problem setup: optimizing a mean field spin glass Hamiltonian.
- **2** Background: Parisi formula, AMP, overlap gap property.
- New result: a tight characterization of the best value achieved by a class of efficient algorithms.
- Some key ideas: ultrametricity and a branching OGP.

Mean Field Spin Glass Hamiltonians

Definition (Sherrington-Kirkpatrick 75,...)

Fix constants $\gamma_1, \gamma_2, \ldots, \gamma_K \ge 0$. The mixed *p*-spin Hamiltonian $H_N : \mathbb{R}^N \to \mathbb{R}$ is a random degree *K* polynomial defined by

$$H_N(\sigma_1,\ldots,\sigma_N)=\sum_{k=1}^K N^{-\frac{k-1}{2}}\gamma_k\sum_{1\leq i_1,\ldots,i_k\leq N}J_{i_1,\ldots,i_k}\sigma_{i_1}\ldots\sigma_{i_k}.$$

Here $J_{i_1,...,i_k}$ are IID standard gaussians.

Mean Field Spin Glass Hamiltonians

Definition (Sherrington-Kirkpatrick 75,...)

Fix constants $\gamma_1, \gamma_2, \ldots, \gamma_K \ge 0$. The mixed *p*-spin Hamiltonian $H_N : \mathbb{R}^N \to \mathbb{R}$ is a random degree *K* polynomial defined by

$$H_N(\sigma_1,\ldots,\sigma_N)=\sum_{k=1}^K N^{-\frac{k-1}{2}}\gamma_k\sum_{1\leq i_1,\ldots,i_k\leq N}J_{i_1,\ldots,i_k}\sigma_{i_1}\ldots\sigma_{i_k}.$$

Here $J_{i_1,...,i_k}$ are IID standard gaussians.

• Equivalently: let $\xi(t) = \sum_{k=1}^{K} \gamma_k^2 t^k$. Then H_N is the centered Gaussian process with covariance

$$\mathbb{E}[H_N(\sigma)H_N(\sigma')] = N\xi(\langle \sigma, \sigma' \rangle / N).$$

- Two input sets will be considered:
 - Ising $\boldsymbol{\sigma} \in \{-1,1\}^N$
 - Spherical $||\boldsymbol{\sigma}|| = \sqrt{N}$.

Motivations for the Model

- The Sherrington-Kirkpatrick model (K = 2) was introduced to study diluted magnetic alloys such as Copper Manganese.
- Magnetic interaction rapidly oscillates with distance, so use an Ising model with random weights: $H_N = \sum_{i,j} J_{i,j}\sigma_i\sigma_j$.

Motivations for the Model

- The Sherrington-Kirkpatrick model (K = 2) was introduced to study diluted magnetic alloys such as Copper Manganese.
- Magnetic interaction rapidly oscillates with distance, so use an Ising model with random weights: $H_N = \sum_{i,j} J_{i,j}\sigma_i\sigma_j$.
- Mean field: forget the 3-D structure, make all $J_{i,j}$ IID.
- Higher degree interactions and spherical inputs are mathematically natural extensions.

Motivations for the Model

- The Sherrington-Kirkpatrick model (K = 2) was introduced to study diluted magnetic alloys such as Copper Manganese.
- Magnetic interaction rapidly oscillates with distance, so use an Ising model with random weights: $H_N = \sum_{i,j} J_{i,j}\sigma_i\sigma_j$.
- Mean field: forget the 3-D structure, make all $J_{i,j}$ IID.
- Higher degree interactions and spherical inputs are mathematically natural extensions.
- Also arises as high-degree limit of random MaxCut, MaxSAT (Dembo-Montanari-Sen 17, Panchenko 18).
- Rich source of random non-convex functions, related to some neural network models (Gardner-Derrida 80s, Amit-Gutfreund-Sompolinsky 85, Choromanska-Henaff-Mathieu-Ben Arous-LeCun 15).

Theorem (Parisi 82, Talagrand 06/10, Panchenko 14, Auffinger-Chen 17)

In both the Ising and spherical settings, the limit

$$\mathsf{OPT} \equiv \operatorname{p-lim}_{N \to \infty} \max_{x} \frac{H_N(x)}{N} = \inf_{\zeta \in \mathcal{U}} \mathcal{P}_{\xi}(\zeta)$$

holds for explicit Parisi functionals $\mathcal{P}^{\mathrm{Is}}_{\xi}, \mathcal{P}^{\mathrm{Sp}}_{\xi}$. Here \mathcal{U} is the set of **non-decreasing** functions $\zeta : [0, 1] \to \mathbb{R}^+$.

Theorem (Parisi 82, Talagrand 06/10, Panchenko 14, Auffinger-Chen 17)

In both the Ising and spherical settings, the limit

$$\mathsf{OPT} \equiv \operatorname{p-lim}_{N \to \infty} \max_{x} \frac{H_N(x)}{N} = \inf_{\zeta \in \mathcal{U}} \mathcal{P}_{\xi}(\zeta)$$

holds for explicit Parisi functionals $\mathcal{P}^{\mathrm{Is}}_{\xi}, \mathcal{P}^{\mathrm{Sp}}_{\xi}$. Here \mathcal{U} is the set of **non-decreasing** functions $\zeta : [0, 1] \to \mathbb{R}^+$.

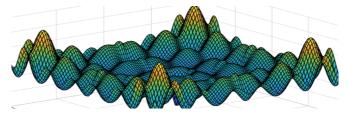
- Question: can efficient algorithms reach (OPT $-\varepsilon$)N?
- If not, what can be done efficiently?
- Goal: compute $\sigma = \mathcal{A}(H_N)$ with $H_N(\sigma)$ as large as possible.

A Look at the Landscape

- If H_N is close to convex, maybe gradient descent works.
- Not the case! On the sphere, H_N can have:

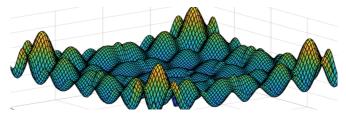
A Look at the Landscape

- If H_N is close to convex, maybe gradient descent works.
 Not the case! On the sphere, H_N can have:
 - Exponentially many near-optimal local maxima. 🙂
 - Exponentially *more* suboptimal local maxima. 😇
 - Exponentially *more* suboptimal saddle points.
 (Auffinger-Ben Arous 13, A-BA-Černý 13, Subag 17, Ben Arous-Mei-Montanari-Nica 19, Subag-Zeitouni 21)



A Look at the Landscape

- If H_N is close to convex, maybe gradient descent works.
 Not the case! On the sphere, H_N can have:
 - Exponentially many near-optimal local maxima. 🙂
 - Exponentially *more* suboptimal local maxima. 😕
 - Exponentially *more* suboptimal saddle points.
 (Auffinger-Ben Arous 13, A-BA-Černý 13, Subag 17, Ben Arous-Mei-Montanari-Nica 19, Subag-Zeitouni 21)



• Adversarial H_N : reaching $\frac{OPT}{\log(N)^c}$ is hard (Arora-Berger-Hazan-Kindler-Safra 05, Barak-Brandao-Harrow-Kelner-Steurer-Zhou 12).

AMP Algorithms Succeed under No Overlap Gap

Theorem (Subag 18, Montanari 19, El Alaoui-Montanari-S 20, S 21)

The asymptotic value

$$\mathsf{ALG} = \inf_{\zeta \in \mathcal{L}} \mathcal{P}_{\xi}(\zeta)$$

is achievable by AMP (assuming a minimizer $\zeta_* \in \mathcal{L}$ exists). $\mathcal{L} \supseteq \mathcal{U}$ contains all bounded variation functions $\zeta : [0, 1] \to \mathbb{R}^+$.

AMP Algorithms Succeed under No Overlap Gap

Theorem (Subag 18, Montanari 19, El Alaoui-Montanari-S 20, S 21)

The asymptotic value

$$\mathsf{ALG} = \inf_{\zeta \in \mathcal{L}} \mathcal{P}_{\xi}(\zeta)$$

is achievable by AMP (assuming a minimizer $\zeta_* \in \mathcal{L}$ exists). $\mathcal{L} \supseteq \mathcal{U}$ contains all bounded variation functions $\zeta : [0, 1] \to \mathbb{R}^+$.

- Approximate message passing (AMP) is really efficient.
 - Uses only O(1) queries of ∇H_N . Great for tons of problems.
 - (Bolthausen 14, Donoho-Maleki-Montanari 09, Bayati-Montanari 11, Javanmard-Montanari 13, Bayati-Lelarge-Montanari 15, Rush-Venkataramanan 18, Montanari-Venkataramanan 21,...)

AMP Algorithms Succeed under No Overlap Gap

Theorem (Subag 18, Montanari 19, El Alaoui-Montanari-S 20, S 21)

The asymptotic value

$$\mathsf{ALG} = \inf_{\zeta \in \mathcal{L}} \mathcal{P}_{\xi}(\zeta)$$

is achievable by AMP (assuming a minimizer $\zeta_* \in \mathcal{L}$ exists). $\mathcal{L} \supseteq \mathcal{U}$ contains all bounded variation functions $\zeta : [0, 1] \to \mathbb{R}^+$.

- Approximate message passing (AMP) is really efficient.
 - Uses only O(1) queries of ∇H_N . Great for tons of problems.
 - (Bolthausen 14, Donoho-Maleki-Montanari 09, Bayati-Montanari 11, Javanmard-Montanari 13, Bayati-Lelarge-Montanari 15, Rush-Venkataramanan 18, Montanari-Venkataramanan 21,...)
- In brief: take small steps to simulate an SDE related to \mathcal{P}_{ξ} .
 - (AMS 20, roughly): No SDE-based AMP can reach ALG + ε .
- Equality case ALG = OPT corresponds to *no overlap gap*.

Algorithmic Hardness from the Overlap Gap Property

Theorem (Gamarnik-Jagannath 20, G-J-Wein 20&21, S 21)

No stable algorithm can achieve OPT unless aforementioned AMP algorithms succeed (in even models with $\gamma_3 = \gamma_5 = \cdots = 0$).

Algorithmic Hardness from the Overlap Gap Property

Theorem (Gamarnik-Jagannath 20, G-J-Wein 20&21, S 21)

No stable algorithm can achieve OPT unless aforementioned AMP algorithms succeed (in even models with $\gamma_3 = \gamma_5 = \cdots = 0$).

- Stable algorithms include:
 - O(1) iterations of gradient descent or AMP
 - ... or any "constant-order method" querying $\nabla^{O(1)}H_N$
 - Langevin dynamics run for O(1) time
 - Low degree polynomials
 - Poly-size circuits with depth at most $\frac{\log N}{2 \log \log N}$.

Algorithmic Hardness from the Overlap Gap Property

Theorem (Gamarnik-Jagannath 20, G-J-Wein 20&21, S 21)

No stable algorithm can achieve OPT unless aforementioned AMP algorithms succeed (in even models with $\gamma_3 = \gamma_5 = \cdots = 0$).

- Stable algorithms include:
 - O(1) iterations of gradient descent or AMP
 - ... or any "constant-order method" querying $\nabla^{O(1)}H_N$
 - Langevin dynamics run for O(1) time
 - Low degree polynomials
 - Poly-size circuits with depth at most $\frac{\log N}{2 \log \log N}$.
- Proof based on overlap gap property (OGP): a family of topological hardness criteria.

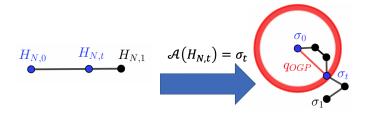
(Achlioptas-Coja Oghlan 08, Gamarnik-Sudan 14, Gamarnik-Sudan 17

Rahman-Virag 17, Gamarnik-Zadik 17, Chen-Gamarnik-Panchenko-

Rahman 17, Gamarnik-Jagannath-Sen 19, Wein 20, ...)

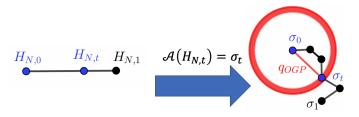
Overlap Gap Property for Spin Glasses: A Cartoon

- Consider path $H_{N,t} = \sqrt{1-t}H_{N,0} + \sqrt{t}H_{N,1}$.
- $\sigma_t = \mathcal{A}(H_{N,t})$ is morally continuous in t.



Overlap Gap Property for Spin Glasses: A Cartoon

- Consider path $H_{N,t} = \sqrt{1-t}H_{N,0} + \sqrt{t}H_{N,1}$.
- $\sigma_t = \mathcal{A}(H_{N,t})$ is morally continuous in t.



• Overlap gap property: for some $q_{OGP} \in (0, 1)$, if $||\sigma_0 - \sigma_t|| \approx q_{OGP} \sqrt{N}$, then either σ_0 or σ_t is suboptimal.

$$\min \left(H_{N,0}(\boldsymbol{\sigma}_0), H_{N,t}(\boldsymbol{\sigma}_t) \right) \leq (\mathsf{OPT} - \varepsilon) N.$$

• "Continuity" implies $||\sigma_t - \sigma_0|| \approx q_{\mathsf{OGP}} \sqrt{N}$ for some $t \in [0, 1]$.

New Result: An Algorithmic Threshold

Theorem (Huang-**S**. 21+)

No overlap concentrated algorithm can <u>beat ALG</u> (in even models).

- Overlap concentrated algorithms include:
 - O(1) iterations of gradient descent or AMP
 - ... or any constant-order method querying $\nabla^{O(1)}H_N$
 - Langevin dynamics run for O(1) time
 - Low degree polynomials
 - Poly-size circuits with depth $\frac{\log N}{2 \log \log N}$.

New Result: An Algorithmic Threshold

Theorem (Huang-**S**. 21+)

No overlap concentrated algorithm can <u>beat ALG</u> (in even models).

- Overlap concentrated algorithms include:
 - O(1) iterations of gradient descent or AMP
 - ... or any constant-order method querying $\nabla^{O(1)}H_N$
 - Langevin dynamics run for O(1) time
 - Low degree polynomials
 - Poly-size circuits with depth $\frac{\log N}{2 \log \log N}$.

• For the algorithms listed above, result holds in a strong sense:

 $\mathbb{P}[H_N(\mathcal{A}(H_N)) \geq (\mathsf{ALG} + \varepsilon)N] \leq O(e^{-c(\varepsilon)N}).$

Theorem (Huang-**S**. 21+)

No overlap concentrated algorithm can <u>beat ALG</u> (in even models).

- Overlap concentrated algorithms include:
 - O(1) iterations of gradient descent or AMP
 - ... or any constant-order method querying $\nabla^{O(1)}H_N$
 - Langevin dynamics run for O(1) time
 - Low degree polynomials
 - Poly-size circuits with depth $\frac{\log N}{2 \log \log N}$.

• For the algorithms listed above, result holds in a strong sense:

$$\mathbb{P}[H_N(\mathcal{A}(H_N)) \geq (\mathsf{ALG} + \varepsilon)N] \leq O(e^{-c(\varepsilon)N}).$$

- Proof relies on a new branching OGP.
- In spherical models, branching OGP is in some sense necessary to rule out ALG + ε. Simpler OGPs cannot.

Ultrametric Spaces and Trees

• Recall: ultrametric spaces X satisfy the ultrametric triangle inequality

$$d(x,y) \leq \max(d(x,z),d(y,z)), \quad \forall x,y,z \in X.$$

Equivalent to hierarchical clustering, or graph metrics of leaves of a rooted tree.

(All ultrametrics will be finite with sensible diameter.)

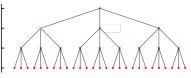
Ultrametric Spaces and Trees

• Recall: ultrametric spaces X satisfy the ultrametric triangle inequality

$$d(x,y) \leq \max(d(x,z),d(y,z)), \quad \forall x,y,z \in X.$$

Equivalent to hierarchical clustering, or graph metrics of leaves of a rooted tree.

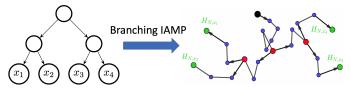
(All ultrametrics will be finite with sensible diameter.)



• For all $\beta > 0$, Gibbs measure $e^{\beta H_N(\sigma)} d\sigma/Z$ is " \approx ultrametric". (Parisi 82, Mézard-Parisi-Sourlas-Toulouse-Virasoro 84, Derrida 85, Ruelle 87, Panchenko 13, Jagannath 17, Chatterjee-Sloman 20,...)

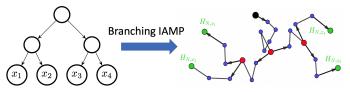
Algorithms and Ultrametrics

- Turns out algorithms can build ultrametric spaces!
- AMP algorithms for this problem explore using many small steps. Branch to get a multi-valued algorithm.



Algorithms and Ultrametrics

- Turns out algorithms can build ultrametric spaces!
- AMP algorithms for this problem explore using many small steps. Branch to get a multi-valued algorithm.



 Result: for any finite ultrametric X, branching IAMP can output a configuration (σ_x)_{x∈X} approximating X:

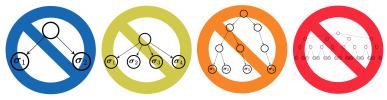
$$H_N(\sigma_x) pprox ALG \cdot N, \quad \forall x \in X, \ ||\sigma_x - \sigma_y|| pprox d_X(x, y) \sqrt{N}, \quad \forall x, y \in X.$$

(Subag 18, El Alaoui-Montanari 20, **S** 21)

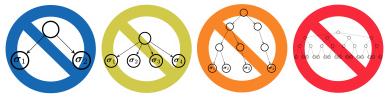
• If algorithms can recreate any ultrametric, we should use a stronger OGP.

- If algorithms can recreate any ultrametric, we should use a stronger OGP.
- Classic OGP: rule out pairs (σ_1, σ_2) at distance $q_{\text{OGP}}\sqrt{N}$.
- 1 layer OGP: tuples $(\sigma_1, \ldots, \sigma_m)$ with all distances $q_{\text{OGP}}\sqrt{N}$.
- Ladder OGP: $Dist(\sigma_{i+1}, span(\sigma_1, \ldots, \sigma_i)) = \delta \sqrt{N}$.

- If algorithms can recreate any ultrametric, we should use a stronger OGP.
- Classic OGP: rule out pairs (σ_1, σ_2) at distance $q_{\text{OGP}}\sqrt{N}$.
- 1 layer OGP: tuples $(\sigma_1, \ldots, \sigma_m)$ with all distances $q_{\text{OGP}}\sqrt{N}$.
- Ladder OGP: $Dist(\sigma_{i+1}, span(\sigma_1, \ldots, \sigma_i)) = \delta \sqrt{N}$.
- Branching OGP: rule out configurations (σ_x)_{x∈X} approximating an arbitrarily complicated ultrametric space.



- If algorithms can recreate any ultrametric, we should use a stronger OGP.
- Classic OGP: rule out pairs (σ_1, σ_2) at distance $q_{\text{OGP}}\sqrt{N}$.
- 1 layer OGP: tuples $(\sigma_1, \ldots, \sigma_m)$ with all distances $q_{\text{OGP}}\sqrt{N}$.
- Ladder OGP: $Dist(\sigma_{i+1}, span(\sigma_1, \ldots, \sigma_i)) = \delta \sqrt{N}$.
- Branching OGP: rule out configurations (σ_x)_{x∈X} approximating an arbitrarily complicated ultrametric space.



But...why would branching OGP imply hardness?

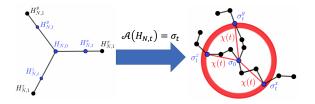
Overlap Concentrated Algorithms

Definition

An algorithm $\ensuremath{\mathcal{A}}$ is overlap concentrated if the random distance

$$\frac{||\mathcal{A}(H_{N,0}) - \mathcal{A}(H_{N,t})||}{\sqrt{N}}$$

tightly concentrates around its mean $\chi(t)$, uniformly over $t \in [0, 1]$.



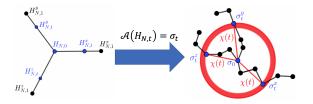
Overlap Concentrated Algorithms

Definition

An algorithm ${\mathcal A}$ is overlap concentrated if the random distance

$$\frac{||\mathcal{A}(H_{N,0}) - \mathcal{A}(H_{N,t})||}{\sqrt{N}}$$

tightly concentrates around its mean $\chi(t)$, uniformly over $t \in [0, 1]$.

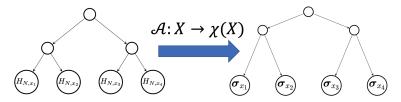


- Holds by concentration of measure if A is Lipschitz in H_N .
- \implies gradient descent, AMP, ... are overlap concentrated.

Ultrametric Transformations from Overlap Concentration

- For ultrametric X, create correlated Hamiltonians $(H_{N,x})_{x \in X}$.
- Outputs $\sigma_x = \mathcal{A}(H_{N,x})$ form a new ultrametric space $\chi(X)$:

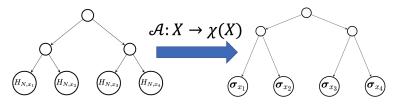
$$rac{||oldsymbol{\sigma}_{x_1}-oldsymbol{\sigma}_{x_2}||}{\sqrt{N}}pprox \chi(d_X(x_1,x_2)), \quad x_1,x_2\in X.$$



Ultrametric Transformations from Overlap Concentration

- For ultrametric X, create correlated Hamiltonians $(H_{N,x})_{x \in X}$.
- Outputs $\sigma_x = \mathcal{A}(H_{N,x})$ form a new ultrametric space $\chi(X)$:

$$rac{||oldsymbol{\sigma}_{x_1}-oldsymbol{\sigma}_{x_2}||}{\sqrt{\mathcal{N}}}pprox \chi(d_X(x_1,x_2)), \quad x_1,x_2\in X.$$



- χ is continuous, so we can make $\chi(X)$ any ultrametric.
- \implies if \mathcal{A} achieves $(ALG + \varepsilon)N$, then there is a configuration $(\sigma_x)_{x \in X}$ approximating any desired ultrametric $\chi(X)$ with

$$H_{N,x}(\boldsymbol{\sigma}_x) \geq (\mathsf{ALG} + \varepsilon)N, \quad \forall x \in X.$$

- Take $\chi(X)$ a k-ary tree branching at depths $[0, \delta, 2\delta, \dots, 1]$.
 - These are "universal" for finite ultrametrics as $\delta \rightarrow 0$.

- Take χ(X) a k-ary tree branching at depths [0, δ, 2δ, ..., 1].
 These are "universal" for finite ultrametrics as δ → 0.
- Parisi formula upper bound generalizes to richer settings. Control average of H_{N,x}(σ_x) over all χ(X)-configurations:

$$\max_{(\boldsymbol{\sigma}_{x})_{x\in X}}\left\{\frac{1}{|X|}\sum_{x\in X}H_{N,x}(\boldsymbol{\sigma}_{x}):\frac{||\boldsymbol{\sigma}_{x_{1}}-\boldsymbol{\sigma}_{x_{2}}||}{\sqrt{N}}\approx d_{\chi(X)}(x_{1},x_{2}) \quad \forall x_{1},x_{2}\in X\right\}.$$

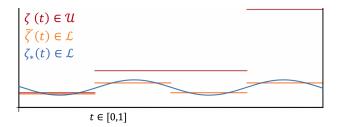
• Upper bounds from any increasing function $\zeta : [0, 1] \to \mathbb{R}^+$, expressed as multi-dimensional generalizations $\mathcal{P}_{\varepsilon}^{\chi}$ of \mathcal{P}_{ξ} .

- Take χ(X) a k-ary tree branching at depths [0, δ, 2δ, ..., 1].
 These are "universal" for finite ultrametrics as δ → 0.
- Parisi formula upper bound generalizes to richer settings. Control average of H_{N,x}(σ_x) over all χ(X)-configurations:

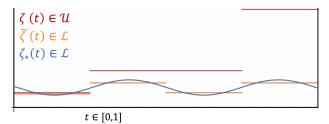
$$\max_{(\boldsymbol{\sigma}_{x})_{x\in X}}\left\{\frac{1}{|X|}\sum_{x\in X}H_{N,x}(\boldsymbol{\sigma}_{x}):\frac{||\boldsymbol{\sigma}_{x_{1}}-\boldsymbol{\sigma}_{x_{2}}||}{\sqrt{N}}\approx d_{\chi(X)}(x_{1},x_{2}) \quad \forall x_{1},x_{2}\in X\right\}.$$

- Upper bounds from any **increasing** function $\zeta : [0, 1] \to \mathbb{R}^+$, expressed as multi-dimensional generalizations \mathcal{P}_{ξ}^X of \mathcal{P}_{ξ} .
- Eventually, obtain upper bound $\mathcal{P}_{\xi}(\widetilde{\zeta})$ in terms of the original Parisi functional.
- Increasing ζ transforms into no-longer increasing $\tilde{\zeta}$.

- The ratio $\tilde{\zeta}/\zeta$ is piece-wise constant, shrinks at each $j\delta$.
- Hence $\overline{\zeta}$ approximates any $\zeta_* \in \mathcal{L}$, get upper bound ALG + ε .

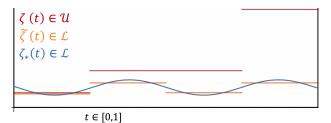


- The ratio $\tilde{\zeta}/\zeta$ is piece-wise constant, shrinks at each $j\delta$.
- Hence $\overline{\zeta}$ approximates any $\zeta_* \in \mathcal{L}$, get upper bound ALG + ε .



- Classic OGP: tree branches once, so ζ decreases once.
 - Cannot approximate general functions, cannot reach ALG.
 - This limitation is fundamental:

- The ratio $\tilde{\zeta}/\zeta$ is piece-wise constant, shrinks at each $j\delta$.
- Hence ζ approximates any $\zeta_* \in \mathcal{L}$, get upper bound ALG + ε .



- Classic OGP: tree branches once, so ζ decreases once.
 - Cannot approximate general functions, cannot reach ALG.
 - This limitation is fundamental:

Theorem (Huang-S 21+)

On the sphere, to rule out $(ALG + \varepsilon)$ with forbidden ultrametric trees, the trees must contain full binary subtrees of unbounded size (as $\varepsilon \rightarrow 0$).

Conclusion

- Problem: optimize a mean field spin glass Hamiltonian.
- Result: ALG is the best asymptotic value achievable by overlap concentrated algorithms, so existing AMP algorithms are optimal within this class (modulo technical points).

Conclusion

- Problem: optimize a mean field spin glass Hamiltonian.
- Result: ALG is the best asymptotic value achievable by overlap concentrated algorithms, so existing AMP algorithms are optimal within this class (modulo technical points).
- Overlap concentrated algorithms include constant-order methods such as GD and AMP with O(1) iterations.
- Proof uses a **branching** OGP based on general ultrametric trees, which is in some sense necessary.

Conclusion

- Problem: optimize a mean field spin glass Hamiltonian.
- Result: ALG is the best asymptotic value achievable by overlap concentrated algorithms, so existing AMP algorithms are optimal within this class (modulo technical points).
- Overlap concentrated algorithms include constant-order methods such as GD and AMP with O(1) iterations.
- Proof uses a **branching** OGP based on general ultrametric trees, which is in some sense necessary.
- A natural open direction: how generally does branching OGP identify the exact algorithmic threshold?