Capacity threshold for the Ising perceptron

Brice Huang (MIT)

MIT Combinatorics Seminar

November 14, 2024

1 Introduction and main result

- \bigcirc Failure of direct moment method \rightarrow proof roadmap
- 3 1st/2nd moment in planted model
- 4 Justifying the TAP heuristic

Models of random, high-dimensional objective functions or distributions

Models of random, high-dimensional objective functions or distributions

- Hardcore model: independent sets $I \subseteq G$ and $\mu(I) \propto \lambda^{|I|}$
- Random k-SAT and $\mu = \text{unif(satisfying assignments)}$

2/31

Models of random, high-dimensional objective functions or distributions

- Hardcore model: independent sets $I \subseteq G$ and $\mu(I) \propto \lambda^{|I|}$
- Random k-SAT and $\mu = \mathsf{unif}(\mathsf{satisfying} \mathsf{ assignments})$
- Ising model Hamiltonian $H: \{\pm 1\}^N \to \mathbb{R}$ and Gibbs measure $\mu(\mathbf{x}) \propto e^{H(\mathbf{x})}$

Models of random, high-dimensional objective functions or distributions

- Hardcore model: independent sets $I \subseteq G$ and $\mu(I) \propto \lambda^{|I|}$
- Random k-SAT and $\mu = \text{unif}(\text{satisfying assignments})$
- Ising model Hamiltonian $H: \{\pm 1\}^N \to \mathbb{R}$ and Gibbs measure $\mu(\mathbf{x}) \propto e^{H(\mathbf{x})}$

Highly non-convex landscapes, often with exponentially many maxima

2/31

Applications:

ullet Statistical inference, e.g. community detection ($\mu=$ posterior distribution)

Applications:

- Statistical inference, e.g. community detection ($\mu = \text{posterior distribution}$)
- Random optimization problems, e.g. training a neural network (H = loss function)

Applications:

- Statistical inference, e.g. community detection ($\mu = posterior distribution$)
- Random optimization problems, e.g. training a neural network (H = loss function)
- Complex systems & emergent behavior: magnetic materials, protein folding, flocking birds, economics, . . .

Applications:

- ullet Statistical inference, e.g. community detection ($\mu=$ posterior distribution)
- Random optimization problems, e.g. training a neural network (H = loss function)
- Complex systems & emergent behavior: magnetic materials, protein folding, flocking birds, economics, . . .

What are the values of **key statistics** of a disordered system, such as the **maximum value**, **number of solutions**, or **satisfiability threshold**?

Applications:

- Statistical inference, e.g. community detection ($\mu = posterior distribution$)
- Random optimization problems, e.g. training a neural network (H = loss function)
- Complex systems & emergent behavior: magnetic materials, protein folding, flocking birds, economics, . . .

What are the values of **key statistics** of a disordered system, such as the **maximum value**, **number of solutions**, or **satisfiability threshold**?

Unified framework of physics **predictions** via replica / cavity methods

Applications:

- Statistical inference, e.g. community detection ($\mu = \text{posterior distribution}$)
- Random optimization problems, e.g. training a neural network (H = loss function)
- Complex systems & emergent behavior: magnetic materials, protein folding, flocking birds, economics, . . .

What are the values of **key statistics** of a disordered system, such as the **maximum value**, **number of solutions**, or **satisfiability threshold**?

Unified framework of physics predictions via replica / cavity methods

Goal: unified rigorous theory & broadly applicable tools

Intersection of $\Sigma_N = \{-1,1\}^N$ or $\sqrt{N}\mathbb{S}^{N-1}$ with M i.i.d. random half-spaces

Intersection of $\Sigma_N = \{-1,1\}^N$ or $\sqrt{N}\mathbb{S}^{N-1}$ with M i.i.d. random half-spaces

Formally: $\kappa \in \mathbb{R}$ fixed, $oldsymbol{g^1}, oldsymbol{g^2}, \ldots \sim \mathcal{N}(0, I_N)$,

$$S(M) = \left\{ \boldsymbol{x} \in \Sigma_N : \frac{\langle \boldsymbol{g}^a, \boldsymbol{x} \rangle}{\sqrt{N}} \ge \kappa, \quad \forall 1 \le a \le M \right\}$$

Intersection of $\Sigma_N = \{-1,1\}^N$ or $\sqrt{N}\mathbb{S}^{N-1}$ with M i.i.d. random half-spaces

Formally: $\kappa \in \mathbb{R}$ fixed, $oldsymbol{g^1}, oldsymbol{g^2}, \ldots \sim \mathcal{N}(0, I_N)$,

$$S(M) = \left\{ \boldsymbol{x} \in \Sigma_N : \frac{\langle \boldsymbol{g}^a, \boldsymbol{x} \rangle}{\sqrt{N}} \ge \kappa, \quad \forall 1 \le a \le M \right\}$$

Capacity: largest M such that $S(M) \neq \emptyset$

Intersection of $\Sigma_N = \{-1,1\}^N$ or $\sqrt{N}\mathbb{S}^{N-1}$ with M i.i.d. random half-spaces

Formally: $\kappa \in \mathbb{R}$ fixed, $oldsymbol{g^1}, oldsymbol{g^2}, \ldots \sim \mathcal{N}(0, I_N)$,

$$S(M) = \left\{ \boldsymbol{x} \in \Sigma_N : \frac{\langle \boldsymbol{g}^a, \boldsymbol{x} \rangle}{\sqrt{N}} \ge \kappa, \quad \forall 1 \le a \le M \right\}$$

Capacity: largest M such that $S(M) \neq \emptyset$

Main question: what is $\alpha_* = \alpha_*(\kappa) = \text{p-lim}_{N \to \infty} M/N$?

$$S(M) = \left\{ \boldsymbol{x} \in \Sigma_N : \frac{\langle \boldsymbol{g}^{\boldsymbol{a}}, \boldsymbol{x} \rangle}{\sqrt{N}} \ge \kappa, \quad \forall 1 \le \boldsymbol{a} \le M \right\}$$

Capacity: largest M such that $S(M) \neq \emptyset$

Satisfiability threshold of constraint satisfaction problem with **global** constraints

$$S(M) = \left\{ \boldsymbol{x} \in \Sigma_N : \frac{\langle \boldsymbol{g}^{\boldsymbol{a}}, \boldsymbol{x} \rangle}{\sqrt{N}} \ge \kappa, \quad \forall 1 \le \boldsymbol{a} \le M \right\}$$

Capacity: largest M such that $S(M) \neq \emptyset$

Satisfiability threshold of constraint satisfaction problem with global constraints

Toy model of single-layer neural network (Gardner 88):

ullet ${m x} \leftrightarrow$ synaptic weights. ${m g}^1, \dots, {m g}^M \leftrightarrow$ random patterns

$$S(M) = \left\{ \boldsymbol{x} \in \Sigma_N : \frac{\langle \boldsymbol{g}^a, \boldsymbol{x} \rangle}{\sqrt{N}} \ge \kappa, \quad \forall 1 \le a \le M \right\}$$

Capacity: largest M such that $S(M) \neq \emptyset$

Satisfiability threshold of constraint satisfaction problem with global constraints

Toy model of single-layer neural network (Gardner 88):

- $\mathbf{x} \leftrightarrow \text{synaptic weights. } \mathbf{g^1}, \dots, \mathbf{g^M} \leftrightarrow \text{random patterns}$
- $S(M) \leftrightarrow$ synaptic weights memorizing all M patterns

$$S(M) = \left\{ \boldsymbol{x} \in \Sigma_N : \frac{\langle \boldsymbol{g}^a, \boldsymbol{x} \rangle}{\sqrt{N}} \ge \kappa, \quad \forall 1 \le a \le M \right\}$$

Capacity: largest M such that $S(M) \neq \emptyset$

Satisfiability threshold of constraint satisfaction problem with global constraints

Toy model of single-layer **neural network** (Gardner 88):

- $\mathbf{x} \leftrightarrow \text{synaptic weights. } \mathbf{g^1}, \dots, \mathbf{g^M} \leftrightarrow \text{random patterns}$
- $S(M) \leftrightarrow$ synaptic weights memorizing all M patterns
- Capacity ↔ max # patterns neural network can memorize

Brice Huang (MIT)

Related model: **symmetric perceptron** with constraints $\langle \mathbf{g}^a, \mathbf{x} \rangle / \sqrt{N} \in [-\kappa, \kappa]$

(Aubin Perkins Zdeborová 19, Perkins Xu 21, Abbe Li Sly 22, ...)

Related model: symmetric perceptron with constraints $\langle \mathbf{g}^a, \mathbf{x} \rangle / \sqrt{N} \in [-\kappa, \kappa]$

(Aubin Perkins Zdeborová 19, Perkins Xu 21, Abbe Li Sly 22, ...)

 \leftrightarrow discrepancy minimization: given $G \in \mathbb{R}^{M \times N}$, find $\mathbf{x} \in \{\pm 1\}^N$ minimizing

$$\|\mathbf{G}\mathbf{x}\|_{\infty} = \left\| \mathbf{M} \left\{ \underbrace{\frac{\mathbf{N}}{\mathbf{g}^{s}}}_{\mathbf{G}} \right\} \mathbf{N} \right\|_{\infty}$$

(Spencer 85, Bansal 10, Lovett Meka 15, Rothvoss 17, Eldan Singh 18, ...)

Related model: **symmetric perceptron** with constraints $\langle \mathbf{g}^a, \mathbf{x} \rangle / \sqrt{N} \in [-\kappa, \kappa]$

(Aubin Perkins Zdeborová 19, Perkins Xu 21, Abbe Li Sly 22, ...)

 \leftrightarrow discrepancy minimization: given $G \in \mathbb{R}^{M \times N}$, find $\mathbf{x} \in \{\pm 1\}^N$ minimizing

$$\|\mathbf{G}\mathbf{x}\|_{\infty} = \left\| \mathbf{M} \left\{ \frac{\mathbf{S}^{2}}{\mathbf{G}} \right\} \right\|_{\infty}$$

(Spencer 85, Bansal 10, Lovett Meka 15, Rothvoss 17, Eldan Singh 18, ...)

Applications: randomized control trials, sparsification, differential privacy, ...

6/31

Related model: **symmetric perceptron** with constraints $\langle \mathbf{g}^a, \mathbf{x} \rangle / \sqrt{N} \in [-\kappa, \kappa]$

(Aubin Perkins Zdeborová 19, Perkins Xu 21, Abbe Li Sly 22, ...)

 \leftrightarrow discrepancy minimization: given $G \in \mathbb{R}^{M \times N}$, find $\mathbf{x} \in \{\pm 1\}^N$ minimizing

$$\|\mathbf{G}\mathbf{x}\|_{\infty} = \left\| \mathbf{M} \left\{ \underbrace{\left\| \mathbf{M} \right\|_{\infty}}_{\mathbf{G}} \right\|_{\infty}^{\mathbf{N}} \right\} \mathbf{M} \right\|_{\infty}$$

(Spencer 85, Bansal 10, Lovett Meka 15, Rothvoss 17, Eldan Singh 18, ...)

Applications: randomized control trials, sparsification, differential privacy, ...

6/31

Main result

Conjecture (Krauth Mézard 1989)

For the $\kappa = 0$ Ising perceptron, $\alpha_* = \alpha_{KM} \approx 0.833$.

Theorem (Ding Sun 2018)

 $\alpha_* \geq \alpha_{KM}$, under condition that an explicit univariate function is ≤ 0 .

Main result

Conjecture (Krauth Mézard 1989)

For the $\kappa = 0$ Ising perceptron, $\alpha_* = \alpha_{KM} \approx 0.833$.

Theorem (Ding Sun 2018)

 $\alpha_* \geq \alpha_{KM}$, under condition that an explicit univariate function is ≤ 0 .

Theorem (H. 2024)

 $\alpha_* \leq \alpha_{\text{KM}}$, under condition that an explicit 2-variable function (next slide) is ≤ 0 .

Main result

Conjecture (Krauth Mézard 1989)

For the $\kappa = 0$ Ising perceptron, $\alpha_* = \alpha_{KM} \approx 0.833$.

Theorem (Ding Sun 2018)

 $\alpha_* \geq \alpha_{KM}$, under condition that an explicit univariate function is ≤ 0 .

Theorem (H. 2024)

 $\alpha_* \leq \alpha_{\text{KM}},$ under condition that an explicit 2-variable function (next slide) is $\leq 0.$

(Also for general $\kappa \in \mathbb{R}$, under several numerical conditions depending on κ)

The function \mathscr{S}_* in our numerical condition

 $\mathscr{S}_*(1,0)=0$ local max, conjecturally unique global max

Plot of $(x, y) \mapsto \mathscr{S}_*(\tanh^{-1}(x), \tanh^{-1}(y))$:

Brice Huang (MIT)

Background: physics predictions

Gardner Derrida 88, Krauth Mézard 89:

• Volume formula $\frac{1}{N}\log |S(\alpha N)| \to_p \mathrm{Vol}(\kappa,\alpha)$ in terms of fixed point eqn (In "replica symmetric" regime of (κ,α) , which includes $\kappa=0$ Ising perceptron)

Background: physics predictions

Gardner Derrida 88, Krauth Mézard 89:

- Volume formula $\frac{1}{N}\log |S(\alpha N)| \to_p \mathrm{Vol}(\kappa,\alpha)$ in terms of fixed point eqn (In "replica symmetric" regime of (κ,α) , which includes $\kappa=0$ Ising perceptron)
- Capacity: $\alpha_* = \alpha_*(\kappa)$ solves $Vol(\kappa, \alpha_*) = 0$

Spherical perceptron, $\kappa \geq 0$

- Shcherbina Tirozzi 03: proof of volume limit $Vol(\kappa, \alpha)$ (and thus capacity)
- Stojnic 13: simple proof of capacity threshold

Crucial to proofs: $\kappa \ge 0$ spherical perceptron is **convex** problem!

• Talagrand 11, Xu 21, Nakajima Sun 23: sharp threshold **sequence** $\alpha_*(N)$ (non-explicit, doesn't imply $\alpha_* = \lim_{N \to \infty} \alpha_*(N)$ exists)

11/31

- Talagrand 11, Xu 21, Nakajima Sun 23: sharp threshold sequence $\alpha_*(N)$ (non-explicit, doesn't imply $\alpha_* = \lim_{N \to \infty} \alpha_*(N)$ exists)
- Trivial bound: $\mathbb{E}|S(N\alpha)| \leq 2^{(1-\alpha)N}$, so $\alpha_* \leq 1$

- Talagrand 11, Xu 21, Nakajima Sun 23: sharp threshold sequence $\alpha_*(N)$ (non-explicit, doesn't imply $\alpha_* = \lim_{N \to \infty} \alpha_*(N)$ exists)
- Trivial bound: $\mathbb{E}|S(N\alpha)| \leq 2^{(1-\alpha)N}$, so $\alpha_* \leq 1$
- Kim Roche 98, Talagrand 99 & 00: $\varepsilon \leq \alpha_* \leq 1 \varepsilon$

- Talagrand 11, Xu 21, Nakajima Sun 23: sharp threshold sequence $\alpha_*(N)$ (non-explicit, doesn't imply $\alpha_* = \lim_{N \to \infty} \alpha_*(N)$ exists)
- Trivial bound: $\mathbb{E}|S(N\alpha)| \leq 2^{(1-\alpha)N}$, so $\alpha_* \leq 1$
- Kim Roche 98, Talagrand 99 & 00: $\varepsilon \le \alpha_* \le 1 \varepsilon$
- Ding Sun 18: $\alpha_* > \alpha_{\rm KM} \approx 0.833$

- Talagrand 11, Xu 21, Nakajima Sun 23: sharp threshold sequence $\alpha_*(N)$ (non-explicit, doesn't imply $\alpha_* = \lim_{N \to \infty} \alpha_*(N)$ exists)
- Trivial bound: $\mathbb{E}|S(N\alpha)| \leq 2^{(1-\alpha)N}$, so $\alpha_* \leq 1$
- Kim Roche 98, Talagrand 99 & 00: $\varepsilon \le \alpha_* \le 1 \varepsilon$
- Ding Sun 18: $\alpha_* \ge \alpha_{\rm KM} \approx 0.833$
- Altschuler Tikhomirov 24: $\alpha_* \leq 0.847$

Ising perceptron, $\kappa = 0$

- Talagrand 11, Xu 21, Nakajima Sun 23: sharp threshold sequence $\alpha_*(N)$ (non-explicit, doesn't imply $\alpha_* = \lim_{N \to \infty} \alpha_*(N)$ exists)
- Trivial bound: $\mathbb{E}|S(N\alpha)| \leq 2^{(1-\alpha)N}$, so $\alpha_* \leq 1$
- Kim Roche 98, Talagrand 99 & 00: $\varepsilon \leq \alpha_* \leq 1 \varepsilon$
- Ding Sun 18: $\alpha_* > \alpha_{\rm KM} \approx 0.833$
- Altschuler Tikhomirov 24: $\alpha_* \leq 0.847$
- H. 24: $\alpha_* \le \alpha_{KM}$

Introduction and main result

- 2 Failure of direct moment method \rightarrow proof roadmap
- 3 1st/2nd moment in planted model
- 4 Justifying the TAP heuristic

First attempt: 1st/2nd moment method

$$\mathbb{E}|S(\textit{N}\alpha)|\ll 1 \Rightarrow \text{no solutions; } \mathbb{E}[|S(\textit{N}\alpha)|^2] \asymp (\mathbb{E}|S(\textit{N}\alpha)|)^2 \Rightarrow \text{solutions}$$

12/31

First attempt: 1st/2nd moment method

 $\mathbb{E}|S(\textit{N}\alpha)|\ll 1 \Rightarrow \text{no solutions; } \mathbb{E}[|S(\textit{N}\alpha)|^2] \asymp (\mathbb{E}|S(\textit{N}\alpha)|)^2 \Rightarrow \text{solutions}$

Identifies α_* in symmetric perceptron with constraints $\langle \mathbf{g}^a, \mathbf{x} \rangle / \sqrt{N} \in [-\kappa, \kappa]$

(Aubin Perkins Zdeborová 19, Perkins Xu 21, Abbe Li Sly 22, Altschuler 22, Sah Sawhney 23)

First attempt: 1st/2nd moment method

 $\mathbb{E}|S(\textit{N}\alpha)|\ll 1 \Rightarrow \text{no solutions; } \mathbb{E}[|S(\textit{N}\alpha)|^2] \asymp (\mathbb{E}|S(\textit{N}\alpha)|)^2 \Rightarrow \text{solutions}$

Identifies α_* in symmetric perceptron with constraints $\langle \mathbf{g}^a, \mathbf{x} \rangle / \sqrt{N} \in [-\kappa, \kappa]$

(Aubin Perkins Zdeborová 19, Perkins Xu 21, Abbe Li Sly 22, Altschuler 22, Sah Sawhney 23)

But fails in our model! $\mathbb{E}|S(N\alpha)|=2^{(1-\alpha)N}\ll 1$ only when $\alpha>1$

Failure of direct moment method

Failure of direct moment method

 $\mathbb{E}|S(N\alpha)|$ dominated by events where the g^a are atypically correlated

Solution set is not centered on origin:

Solution set is not centered on origin:

Each slice deletes half of solutions on average, but genuine fluctuations

Solution set is not centered on origin:

Each slice deletes half of solutions on average, but genuine fluctuations

Imagine simplified model: each slice deletes 1% or 99%. Then all solutions deleted much faster than 1st moment bound.

Solution set is not centered on origin:

Each slice deletes half of solutions on average, but genuine fluctuations

Imagine simplified model: each slice deletes 1% or 99%. Then all solutions deleted much faster than 1st moment bound.

Solution set is not centered on origin:

Each slice deletes half of solutions on average, but genuine fluctuations

Imagine simplified model: each slice deletes 1% or 99%. Then all solutions deleted much faster than 1st moment bound.

Solution set is not centered on origin:

Each slice deletes half of solutions on average, but genuine fluctuations

Imagine simplified model: each slice deletes 1% or 99%. Then all solutions deleted much faster than 1st moment bound.

Solution set is not centered on origin:

Each slice deletes half of solutions on average, but genuine fluctuations

Imagine simplified model: each slice deletes 1% or 99%. Then all solutions deleted much faster than 1st moment bound.

Next few slides: non-rigorous physics intuitions on how to remedy this.

Key intuition of Ding Sun 18, Bolthausen 19: 1st mt failure caused by large deviation events in **barycenter** of solution set $S(N\alpha)$

Key intuition of Ding Sun 18, Bolthausen 19: 1st mt failure caused by large deviation events in **barycenter** of solution set $S(N\alpha)$

That is, $\mathbb{E}(|S|) \gg \text{(typical } |S|\text{)}$ but we expect

 $(\mathsf{typical}\ |S|) \asymp \mathbb{E}(|S|\,|\,\mathsf{barycenter})$

Key intuition of Ding Sun 18, Bolthausen 19: 1st mt failure caused by large deviation events in **barycenter** of solution set $S(N\alpha)$

That is, $\mathbb{E}(|S|) \gg \text{(typical } |S|)$ but we expect

(typical
$$|S|$$
) $\times \mathbb{E}(|S| | \text{barycenter}) \times \mathbb{E}(|S|^2 | \text{barycenter})^{1/2}$

Key intuition of Ding Sun 18, Bolthausen 19: 1st mt failure caused by large deviation events in **barycenter** of solution set $S(N\alpha)$

That is, $\mathbb{E}(|S|) \gg \text{(typical } |S|)$ but we expect

(typical
$$|S|$$
) $\times \mathbb{E}(|S| | \text{barycenter}) \times \mathbb{E}(|S|^2 | \text{barycenter})^{1/2}$

This suggests plan: condition on typical behavior of barycenter, then 1st/2nd mt

Key intuition of Ding Sun 18, Bolthausen 19: 1st mt failure caused by large deviation events in **barycenter** of solution set $S(N\alpha)$

That is, $\mathbb{E}(|S|) \gg \text{(typical } |S|)$ but we expect

(typical
$$|S|$$
) $\times \mathbb{E}(|S| | \text{barycenter}) \times \mathbb{E}(|S|^2 | \text{barycenter})^{1/2}$

This suggests plan: condition on typical behavior of barycenter, then 1st/2nd mt

Barycenter is mathematically complicated, but can condition on physics proxy

TAP equation: nonlinear system in

- $G \in \mathbb{R}^{M \times N}$ matrix with rows g^1, \dots, g^M
- $m \in \mathbb{R}^N$ barycenter of S(M)
- $n \in \mathbb{R}^M$ average slacks of constraints: $n_a = \operatorname{avg}_{\mathbf{x} \in S(M)} \left\{ \frac{\langle \mathbf{g}^a, \mathbf{x} \rangle}{\sqrt{N}} \kappa \right\}$

TAP equation: nonlinear system in

- $G \in \mathbb{R}^{M \times N}$ matrix with rows g^1, \dots, g^M
- $m \in \mathbb{R}^N$ barycenter of S(M)
- $n \in \mathbb{R}^M$ average slacks of constraints: $n_a = \operatorname{avg}_{\mathbf{x} \in S(M)} \left\{ \frac{\langle \mathbf{g}^a, \mathbf{x} \rangle}{\sqrt{N}} \kappa \right\}$

For explicit nonlinearities \dot{F} , \hat{F} , constants b, d:

$$m = \dot{F} \left(\frac{G^{\top} n}{\sqrt{N}} - dm \right)$$
 $n = \hat{F} \left(\frac{Gm}{\sqrt{N}} - bn \right)$

TAP equation: nonlinear system in

- $G \in \mathbb{R}^{M \times N}$ matrix with rows g^1, \dots, g^M
- $m \in \mathbb{R}^N$ barycenter of S(M)
- $n \in \mathbb{R}^M$ average slacks of constraints: $n_a = \operatorname{avg}_{\mathbf{x} \in S(M)} \left\{ \frac{\langle \mathbf{g}^*, \mathbf{x} \rangle}{\sqrt{N}} \kappa \right\}$

For explicit nonlinearities \dot{F} , \hat{F} , constants b, d:

$$m = \dot{F} \left(\frac{G^{\top} n}{\sqrt{N}} - dm \right)$$
 $n = \hat{F} \left(\frac{Gm}{\sqrt{N}} - bn \right)$

$$\mathbf{n} = \widehat{F} \left(\frac{\mathbf{Gm}}{\sqrt{N}} - \mathbf{bn} \right)$$

(← dense graph limit of belief propagation)

$$egin{aligned} \mathbf{n}_{a
ightarrow i} &= \hat{f}((\mathbf{m}_{j
ightarrow a})_{j
eq i}) \ \mathbf{m}_{i
ightarrow a} &= \dot{f}((\mathbf{n}_{b
ightarrow i})_{b
eq a}) \end{aligned}$$

TAP equation: nonlinear system in

- $G \in \mathbb{R}^{M \times N}$ matrix with rows g^1, \dots, g^M
- $m \in \mathbb{R}^N$ barycenter of S(M)
- $n \in \mathbb{R}^M$ average slacks of constraints: $n_a = \operatorname{avg}_{\mathbf{x} \in S(M)} \left\{ \frac{\langle \mathbf{g}^*, \mathbf{x} \rangle}{\sqrt{N}} \kappa \right\}$

For explicit nonlinearities \dot{F} , \hat{F} , constants b, d:

$$m = \dot{F} \left(\frac{G^{\top} n}{\sqrt{N}} - dm \right)$$
 $n = \hat{F} \left(\frac{Gm}{\sqrt{N}} - bn \right)$

$$\mathbf{n} = \widehat{F} \left(\frac{\mathbf{Gm}}{\sqrt{N}} - \mathbf{bn} \right)$$

(← dense graph limit of belief propagation)

$$egin{aligned} \mathbf{n}_{\mathsf{a}
ightarrow i} &= \hat{f}((\mathbf{m}_{j
ightarrow a})_{j
eq i}) \ \mathbf{m}_{i
ightarrow a} &= \dot{f}((\mathbf{n}_{b
ightarrow i})_{b
eq a}) \end{aligned}$$

$$m = \dot{F} \left(\frac{G^{\top} n}{\sqrt{N}} - dm \right)$$
 $n = \hat{F} \left(\frac{Gm}{\sqrt{N}} - bn \right)$

Physics prediction: for typical G, unique soln (m, n). $m \approx$ barycenter, $n \approx$ slacks

$$m = \dot{F} \left(\frac{G^{\top} n}{\sqrt{N}} - dm \right)$$
 $n = \hat{F} \left(\frac{Gm}{\sqrt{N}} - bn \right)$

Physics prediction: for typical G, unique soln (m, n). $m \approx$ barycenter, $n \approx$ slacks

Key idea: planted model:

- **3** Sample (m, n) from its law (explicit physics prediction)
- ② Sample G conditioned on TAP(G, m, n)

Belief: planted \approx true model;

$$m = \dot{F} \left(\frac{G^{\top} n}{\sqrt{N}} - dm \right)$$
 $n = \hat{F} \left(\frac{Gm}{\sqrt{N}} - bn \right)$

Physics prediction: for typical G, unique soln (m, n). $m \approx$ barycenter, $n \approx$ slacks

Key idea: planted model:

- **3** Sample (m, n) from its law (explicit physics prediction)
- 2 Sample G conditioned on TAP(G, m, n)

Belief: planted \approx true model; 1st/2nd mt conditional on (m, n) locates threshold

$$m = \dot{F} \left(\frac{G^{\top} n}{\sqrt{N}} - dm \right)$$
 $n = \hat{F} \left(\frac{Gm}{\sqrt{N}} - bn \right)$

Physics prediction: for typical G, unique soln (m, n). $m \approx$ barycenter, $n \approx$ slacks

Key idea: **planted model**:

- \bigcirc Sample (m, n) from its law (explicit physics prediction)
- 2 Sample G conditioned on TAP(G, m, n)

Belief: planted \approx true model; 1st/2nd mt conditional on (m, n) locates threshold

 $oxed{0}$ existence/uniqueness of (m, n) is not proven, so planted \neq true possible

Ising perceptron

True model: **G** iid gaussian

Conjecturally similar under TAP heuristic
←------

Planted model: G cond on TAP(G, m, n)

True model: **G** iid gaussian

Planted model: G cond on TAP(G, m, n)

1st/2nd mt method (direct calculation, numerical cond enters here)

 $lpha_* = lpha_{\mathsf{KM}}$ in planted model

True model:

G iid gaussian

Planted model: **G** cond on TAP(**G**, **m**, **n**)

1st/2nd mt method (direct calculation, numerical cond enters here)

 $lpha_* = lpha_{\mathsf{KM}}$ in true model

Follows if TAP heuristic proven

 $\alpha_* = \alpha_{\text{KM}} \text{ in}$ planted model

True model:

G iid gaussian

Planted model: G cond on TAP(G, m, n)

1st/2nd mt method (direct calculation, numerical cond enters here)

 $lpha_* = lpha_{\mathsf{KM}}$ in true model

Follows if TAP heuristic proven

 $lpha_* = lpha_{\mathsf{KM}}$ in planted model

True model: **G** iid gaussian

 $lpha_* = lpha_{\mathsf{KM}}$ in true model

Brice Huang (MIT)

Conjecturally similar Planted model: under TAP heuristic True model: G cond on **G** iid gaussian TAP(G, m, n)Our work proves this... DS18: lower bd by 1st/2nd mt method conditional 1st/2nd (direct calculation, numerical cond mt on truncation of |S(M)|enters here) ... justifying this implication $\alpha_* = \alpha_{\rm KM}$ in $\alpha_* = \alpha_{\rm KM}$ in planted model true model Follows if TAP heuristic proven

Introduction and main result

- \bigcirc Failure of direct moment method \rightarrow proof roadmap
- 3 1st/2nd moment in planted model
- 4 Justifying the TAP heuristic

Properties making the planted model tractable

Recall planted model:

- Sample (m, n) from its law
- Sample G conditional on TAP(G, m, n), i.e.

$$m = \dot{F} \left(\frac{G^{\top} n}{\sqrt{N}} - dm \right)$$
 $n = \hat{F} \left(\frac{Gm}{\sqrt{N}} - bn \right)$

Properties making the planted model tractable

Recall planted model:

- Sample (m, n) from its law
- Sample G conditional on TAP(G, m, n), i.e.

$$m = \dot{F} \left(\frac{G^{\top} n}{\sqrt{N}} - dm \right)$$
 $n = \hat{F} \left(\frac{Gm}{\sqrt{N}} - bn \right)$

The coordinate profiles

$$\mu(\boldsymbol{m}) = \frac{1}{N} \sum_{i=1}^{N} \delta(m_i) \qquad \nu(\boldsymbol{n}) = \frac{1}{M} \sum_{a=1}^{M} \delta(\boldsymbol{n}_a) \qquad \in \mathcal{P}(\mathbb{R})$$

concentrate around explicit μ_* , ν_* . (Roughly, $m_i \stackrel{iid}{\sim} \mu_* \& n_a \stackrel{iid}{\sim} \nu_*$)

Properties making the planted model tractable

Recall planted model:

- Sample (m, n) from its law
- Sample G conditional on TAP(G, m, n), i.e.

$$m = \dot{F} \left(\frac{G^{\top} n}{\sqrt{N}} - dm \right)$$
 $n = \hat{F} \left(\frac{Gm}{\sqrt{N}} - bn \right)$

The coordinate profiles

$$\mu(\boldsymbol{m}) = \frac{1}{N} \sum_{i=1}^{N} \delta(m_i) \qquad \nu(\boldsymbol{n}) = \frac{1}{M} \sum_{a=1}^{M} \delta(\boldsymbol{n}_a) \qquad \in \mathcal{P}(\mathbb{R})$$

concentrate around explicit μ_* , ν_* . (Roughly, $m_i \stackrel{iid}{\sim} \mu_* \& n_a \stackrel{iid}{\sim} \nu_*$)

3 TAP(G, m, n) is linear constraint on $G \Rightarrow G$ conditionally gaussian!

Plan: 1st/2nd moment method on |S| = #(solutions) conditional on (m, n)

Plan: 1st/2nd moment method on |S| = #(solutions) conditional on (m, n)

G is spiked gaussian mtx

Plan: 1st/2nd moment method on |S| = #(solutions) conditional on (m, n)

G is spiked gaussian $mtx \Rightarrow Gx$ is gaussian vector whose law depends on only

$$a = \langle x, m \rangle$$
 $b = \langle x, H \rangle$ $(H = \dot{F}^{-1}(m))$

Plan: 1st/2nd moment method on |S| = #(solutions) conditional on (m, n)

G is spiked gaussian $mtx \Rightarrow Gx$ is gaussian vector whose law depends on only

$$a = \langle x, m \rangle$$
 $b = \langle x, H \rangle$ $(H = \dot{F}^{-1}(m))$

 $\Rightarrow \mathbb{P}(\mathbf{x} \text{ is solution}) = \mathbb{P}(\frac{G\mathbf{x}}{\sqrt{N}} \geq \kappa \vec{1}) \text{ is explicit function of } \mathbf{a}, \mathbf{b}$

Plan: 1st/2nd moment method on |S| = #(solutions) conditional on (m, n)

G is spiked gaussian $mtx \Rightarrow Gx$ is gaussian vector whose law depends on only

$$\mathbf{a} = \langle \mathbf{x}, \mathbf{m} \rangle$$
 $\mathbf{b} = \langle \mathbf{x}, \mathbf{H} \rangle$ $(\mathbf{H} = \dot{F}^{-1}(\mathbf{m}))$

 $\Rightarrow \mathbb{P}(\mathbf{x} \text{ is solution}) = \mathbb{P}(\frac{G\mathbf{x}}{\sqrt{N}} \geq \kappa \vec{1}) \text{ is explicit function of } \mathbf{a}, \mathbf{b}$

$$\mathbb{E}[|S||\boldsymbol{m},\boldsymbol{n}] = \sum_{(a,b)} \#(\boldsymbol{x} \in \{\pm 1\}^N \text{ with this } a,b) \times \mathbb{P}(\text{one such } \boldsymbol{x} \text{ is solution})$$

Plan: 1st/2nd moment method on |S| = #(solutions) conditional on (m, n)

G is spiked gaussian $mtx \Rightarrow Gx$ is gaussian vector whose law depends on only

$$a = \langle x, m \rangle$$
 $b = \langle x, H \rangle$ $(H = \dot{F}^{-1}(m))$

 $\Rightarrow \mathbb{P}(\mathbf{x} \text{ is solution}) = \mathbb{P}(\frac{G\mathbf{x}}{\sqrt{N}} \geq \kappa \vec{1}) \text{ is explicit function of } \mathbf{a}, \mathbf{b}$

$$\mathbb{E}[|S||\boldsymbol{m},\boldsymbol{n}] = \sum_{(a,b)} \underbrace{\#(\boldsymbol{x} \in \{\pm 1\}^N \text{ with this } \boldsymbol{a},\boldsymbol{b})}_{\text{explicit because } \boldsymbol{m} \text{ coordinate profile known}} \times \mathbb{P}(\text{one such } \boldsymbol{x} \text{ is solution})$$

Plan: 1st/2nd moment method on |S| = #(solutions) conditional on (m, n)

G is spiked gaussian $mtx \Rightarrow Gx$ is gaussian vector whose law depends on only

$$a = \langle x, m \rangle$$
 $b = \langle x, H \rangle$ $(H = \dot{F}^{-1}(m))$

 $\Rightarrow \mathbb{P}(\mathbf{x} \text{ is solution}) = \mathbb{P}(\frac{G\mathbf{x}}{\sqrt{N}} \geq \kappa \vec{1}) \text{ is explicit function of } \mathbf{a}, \mathbf{b}$

$$\mathbb{E}[|S||\boldsymbol{m},\boldsymbol{n}] = \sum_{(a,b)} \underbrace{\#(\boldsymbol{x} \in \{\pm 1\}^N \text{ with this } \boldsymbol{a},\boldsymbol{b})}_{\text{explicit because } \boldsymbol{m} \text{ coordinate profile known}} \times \mathbb{P}(\text{one such } \boldsymbol{x} \text{ is solution})$$

Summand varies on exponential scale: contribution(a, b) $\approx \exp(N \cdot f(a, b))$

Plan: 1st/2nd moment method on |S| = #(solutions) conditional on (m, n)

G is spiked gaussian $mtx \Rightarrow Gx$ is gaussian vector whose law depends on only

$$a = \langle x, m \rangle$$
 $b = \langle x, H \rangle$ $(H = \dot{F}^{-1}(m))$

 $\Rightarrow \mathbb{P}(x \text{ is solution}) = \mathbb{P}(\frac{Gx}{\sqrt{N}} \ge \kappa \vec{1}) \text{ is explicit function of } a, b$

$$\mathbb{E}[|S||\boldsymbol{m},\boldsymbol{n}] = \sum_{(a,b)} \underbrace{\#(\boldsymbol{x} \in \{\pm 1\}^N \text{ with this } \boldsymbol{a},\boldsymbol{b})}_{\text{explicit because } \boldsymbol{m} \text{ coordinate profile known}} \times \mathbb{P}(\text{one such } \boldsymbol{x} \text{ is solution})$$

Summand varies on exponential scale: contribution $(a, b) \approx \exp(N \cdot f(a, b))$

 $\Rightarrow \mathbb{E}[|S||m,n] \approx \exp(N \cdot \max f(a,b))$ essentially 2 variable maximization

1st/2nd moments are both explicit O(1)-variable maximizations.

21/31

1st/2nd moments are both explicit O(1)-variable maximizations.

1st/2nd moment works!! Conditional on typical (m, n),

$$\mathbb{E}[|S(\alpha N)||\boldsymbol{m},\boldsymbol{n}] \quad \approx \quad \mathbb{E}[|S(\alpha N)|^2|\boldsymbol{m},\boldsymbol{n}]^{1/2} \quad \approx \quad \exp(N\operatorname{Vol}(\alpha))$$

under our + DS18's numerical conditions

1st/2nd moments are both explicit O(1)-variable maximizations.

1st/2nd moment works!! Conditional on typical (m, n),

$$\mathbb{E}[|S(\alpha N)||m,n] \approx \mathbb{E}[|S(\alpha N)|^2|m,n]^{1/2} \approx \exp(N \operatorname{Vol}(\alpha))$$

under our + DS18's numerical conditions \Rightarrow typically $|S(\alpha N)| \approx \exp(N \operatorname{Vol}(\alpha))$

1st/2nd moments are both explicit O(1)-variable maximizations.

1st/2nd moment works!! Conditional on typical (m, n),

$$\mathbb{E}[|S(\alpha N)||\mathbf{m},\mathbf{n}] \approx \mathbb{E}[|S(\alpha N)|^2|\mathbf{m},\mathbf{n}]^{1/2} \approx \exp(N \operatorname{Vol}(\alpha))$$

under our + DS18's numerical conditions \Rightarrow typically $|S(\alpha N)| \approx \exp(N \operatorname{Vol}(\alpha))$

Since Vol has root α_{KM} , planted model has capacity α_{KM}

21 / 31

Introduction and main result

- \bigcirc Failure of direct moment method \rightarrow proof roadmap
- 3 1st/2nd moment in planted model

4 Justifying the TAP heuristic

Proof roadmap

True model: **G** iid gaussian Conjecturally similar under TAP heuristic

Planted model: G cond on

TAP(G, m, n)

1st/2nd mt method

 $\alpha_* = \alpha_{\rm KM}$ in planted model

 $\alpha_* = \alpha_{\rm KM}$ in true model

Follows if TAP heuristic proven

Proof roadmap

True model: *G* iid gaussian

Conjecturally similar under TAP heuristic ←------

We now explain how to make this step rigorous.

Planted model: **G** cond on TAP(**G**, **m**, **n**)

1st/2nd mt method

 $lpha_* = lpha_{\mathsf{KM}}$ in true model

Follows if TAP heuristic proven

 $lpha_* = lpha_{ extsf{KM}}$ in planted model

True model \leftrightarrow random row Planted model \leftrightarrow random col, then random \times in col

True model \leftrightarrow random row Planted model \leftrightarrow random col, then random \times in col

Under TAP prediction, most rows have exactly one \times so true \approx planted

True model \leftrightarrow random row Planted model \leftrightarrow random col, then random \times in col

Under TAP prediction, most rows have exactly one \times so true \approx planted

but...we don't actually know this 🕾

True model \leftrightarrow random row Planted model \leftrightarrow random col, then random \times in col

Under TAP prediction, most rows have exactly one \times so true \approx planted

but...we don't actually know this 🕾

True model \leftrightarrow random row Planted model \leftrightarrow random col, then random \times in col

Under TAP prediction, most rows have exactly one \times so true \approx planted

but...we don't actually know this $\ \ \Rightarrow \$ planted / true models can a priori be very different

 $T = \{(m, n) \text{ with } \approx \text{ideal coordinate profiles} \}$ (high-probability set)

 ${\it T} = \{({\it m}, {\it n}) \text{ with } pprox \text{ ideal coordinate profiles} \}$ (high-probability set)

We show, for $G \sim \text{true model}$:

Solution Solution $(m, n) \in T$ whp (most rows have a \times)

② Uniqueness: $\mathbb{E}[\#TAP \text{ solutions in } T] = 1 + o(1) \text{ (rows average } 1 + o(1) \times \text{'s})$

 $T = \{(m, n) \text{ with } \approx \text{ ideal coordinate profiles} \}$ (high-probability set)

G			×				?	?
	×						?	?
				×			?	?
		×					?	?
					×		?	?
						×	?	?
(m, n)								

We show, for $G \sim \text{true model}$:

Solution Solution $(m, n) \in T$ whp (most rows have a \times)

② Uniqueness: $\mathbb{E}[\#TAP \text{ solutions in } T] = 1 + o(1) \text{ (rows average } 1 + o(1) \times s)$

$$T = \{(m, n) \text{ with } \approx \text{ ideal coordinate profiles} \}$$
 (high-probability set)

We show, for $G \sim \text{true model}$:

Solution Solution $(m, n) \in T$ whp (most rows have a \times)

② Uniqueness: $\mathbb{E}[\#\mathsf{TAP} \text{ solutions in } T] = 1 + o(1) \text{ (rows average } 1 + o(1) \times \text{'s})$

This shows true \approx planted. That is, \forall event E,

$$\mathbb{P}_{\text{true}}(E) \leq C \sup_{(m,n) \in T} \mathbb{P}_{\text{planted}}(E|m,n) + o(1)$$

Want: $G \sim \text{true model}$, $G \text{ has TAP fixed pt } (m, n) \in T = \{\text{correct profiles}\} \text{ whp}$

Want: $G \sim \text{true model}$, $G \text{ has TAP fixed pt } (m, n) \in T = \{\text{correct profiles}\} \text{ whp}$

Will show approximate message passing (AMP) finds such a point:

$$m^{k+1} = \dot{F} \left(\frac{G^{\top} n^k}{\sqrt{N}} - dm^k \right)$$
 $n^k = \hat{F} \left(\frac{Gm^k}{\sqrt{N}} - bn^{k-1} \right)$

Want: $G \sim \text{true model}$, G has TAP fixed pt $(m, n) \in T = \{\text{correct profiles}\}$ whp

Will show approximate message passing (AMP) finds such a point:

$$m^{k+1} = \dot{F} \left(\frac{G^{\top} n^k}{\sqrt{N}} - dm^k \right)$$
 $n^k = \hat{F} \left(\frac{Gm^k}{\sqrt{N}} - bn^{k-1} \right)$

1 TAP fixed points are critical points of **TAP** free energy $\mathcal{F}_{TAP}(m, n; G)$

Want: $G \sim \text{true model}$, $G \text{ has TAP fixed pt } (m, n) \in T = \{\text{correct profiles}\}\ \text{whp}$

Will show approximate message passing (AMP) finds such a point:

$$\mathbf{m}^{k+1} = \dot{F} \left(\frac{\mathbf{G}^{\top} \mathbf{n}^k}{\sqrt{N}} - d\mathbf{m}^k \right)$$
 $\mathbf{n}^k = \widehat{F} \left(\frac{\mathbf{G} \mathbf{m}^k}{\sqrt{N}} - b\mathbf{n}^{k-1} \right)$

- **1** TAP fixed points are critical points of TAP free energy $\mathcal{F}_{TAP}(m, n; G)$
- **②** State evolution (Bolthausen 14, Bayati Montanari 11) \Rightarrow for large k = O(1),

$$(\mathbf{m}^k, \mathbf{n}^k) \in \mathbf{T}$$
 $\|\nabla \mathcal{F}_{\mathsf{TAP}}(\mathbf{m}^k, \mathbf{n}^k)\| = o_k(1)$

Want: $G \sim \text{true model}$, $G \text{ has TAP fixed pt } (m, n) \in T = \{\text{correct profiles}\} \text{ whp}$

Will show approximate message passing (AMP) finds such a point:

$$m^{k+1} = \dot{F} \left(\frac{G^{\top} n^k}{\sqrt{N}} - d m^k \right)$$
 $n^k = \hat{F} \left(\frac{G m^k}{\sqrt{N}} - b n^{k-1} \right)$

- **1** TAP fixed points are critical points of **TAP** free energy $\mathcal{F}_{TAP}(m, n; G)$
- **2** State evolution (Bolthausen 14, Bayati Montanari 11) \Rightarrow for large k = O(1),

$$(\boldsymbol{m}^k, \boldsymbol{n}^k) \in \boldsymbol{T}$$
 $\|\nabla \mathcal{F}_{\mathsf{TAP}}(\boldsymbol{m}^k, \boldsymbol{n}^k)\| = o_k(1)$

That is, AMP finds an approximate critical point in T

Celentano Fan Mei 21: if \mathcal{F}_{TAP} strongly concave near the approximate critical point (m^k, n^k) , exists exact critical point nearby

Celentano Fan Mei 21: if \mathcal{F}_{TAP} strongly concave near the approximate critical point (m^k, n^k) , exists exact critical point nearby

Celentano Fan Mei 21: if \mathcal{F}_{TAP} strongly concave near the approximate critical point (m^k, n^k) , exists exact critical point nearby

1 In our setting, $\mathcal{F}_{TAP}(m, n)$ not strongly concave near (m^k, n^k) ...

Celentano Fan Mei 21: if \mathcal{F}_{TAP} strongly concave near the approximate critical point (m^k, n^k) , exists exact critical point nearby

1 In our setting, $\mathcal{F}_{TAP}(m, n)$ not strongly concave near (m^k, n^k) ...

... but is strongly convex-concave, which also works

26 / 31

Existence: from approximate to exact critical point

Celentano Fan Mei 21: if \mathcal{F}_{TAP} strongly concave near the approximate critical point (m^k, n^k) , exists exact critical point nearby

1 In our setting, $\mathcal{F}_{TAP}(m, n)$ not strongly concave near (m^k, n^k) ...

... but is **strongly convex-concave**, which also works
Proof adapts AMP-conditioned gaussian comparison approach of Celentano 22

26 / 31

Want: for $G \sim \text{true model}$, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } T] = 1 + o(1)$

Want: for ${\it G}\sim$ true model, $\mathbb{E}[\#{\sf TAP}\ {\sf fixed}\ {\sf pts}\ {\sf of}\ {\it G}\ {\sf in}\ {\it T}]=1+o(1)$

This also has an algorithmic proof! Following claim implies uniqueness:

Want: for $G \sim \text{true model}$, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } T] = 1 + o(1)$

This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{correct profiles}\}$. Sample G conditioned on TAP(G, m, n).

AMP run on G finds the planted point (m, n) whp

Want: for $G \sim \text{true model}$, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } T] = 1 + o(1)$

P

This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{correct profiles}\}\$. Sample G conditioned on TAP(G, m, n).

AMP run on G finds the planted point (m, n) whp

Want: for $G \sim \text{true model}$, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } T] = 1 + o(1)$

Ŷ

This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{correct profiles}\}\$. Sample G conditioned on TAP(G, m, n).

AMP run on G finds the planted point (m, n) whp

Experiment: choose $(m, n) \in T$

Want: for $G \sim \text{true model}$, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } T] = 1 + o(1)$

This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{correct profiles}\}\$. Sample G conditioned on TAP(G, m, n).

AMP run on G finds the planted point (m, n) whp

Experiment: choose $(m, n) \in T$

Want: for $G \sim \text{true model}$, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } T] = 1 + o(1)$

P

This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{correct profiles}\}\$. Sample G conditioned on TAP(G, m, n).

AMP run on G finds the planted point (m, n) whp

Experiment: choose $(m, n) \in T$

Sample G conditional on TAP(G, m, n)

Want: for $G \sim \text{true model}$, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } T] = 1 + o(1)$

P

This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{correct profiles}\}\$. Sample G conditioned on TAP(G, m, n).

AMP run on G finds the planted point (m, n) whp

Experiment: choose $(m, n) \in T$

Sample G conditional on TAP(G, m, n)

Want: for $G \sim \text{true model}$, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } T] = 1 + o(1)$

P

This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{correct profiles}\}$. Sample G conditioned on TAP(G, m, n).

AMP run on G finds the planted point (m, n) whp

Experiment: choose $(m, n) \in T$

Sample G conditional on TAP(G, m, n)

Run AMP on disorder G

Want: for $G \sim \text{true model}$, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } T] = 1 + o(1)$

Ŷ

This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{correct profiles}\}$. Sample G conditioned on TAP(G, m, n).

AMP run on G finds the planted point (m, n) whp

Experiment: choose $(m, n) \in T$

Sample G conditional on TAP(G, m, n)

Run AMP on disorder G

Want: for $G \sim \text{true model}$, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } T] = 1 + o(1)$

P

This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{correct profiles}\}$. Sample G conditioned on $\mathsf{TAP}(G, m, n)$.

AMP run on G finds the planted point (m, n) whp

Experiment: choose $(m, n) \in T$

Sample G conditional on TAP(G, m, n)

Run AMP on disorder G

Want: for $G \sim \text{true model}$, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } T] = 1 + o(1)$

This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{correct profiles}\}$. Sample G conditioned on TAP(G, m, n).

AMP run on G finds the planted point (m, n) whp

Experiment: choose $(m, n) \in T$

Sample G conditional on TAP(G, m, n)

Run AMP on disorder G

Want: for $G \sim \text{true model}$, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } T] = 1 + o(1)$

P

This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{correct profiles}\}\$. Sample G conditioned on TAP(G, m, n).

AMP run on G finds the planted point (m, n) whp

Experiment: choose $(m, n) \in T$

Sample G conditional on TAP(G, m, n)

Run AMP on disorder G

Want: for $G \sim \text{true model}$, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } T] = 1 + o(1)$

Ŷ

This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{correct profiles}\}$. Sample G conditioned on TAP(G, m, n).

AMP run on G finds the planted point (m, n) whp

Experiment: choose $(m, n) \in T$

Sample G conditional on TAP(G, m, n)

Run AMP on disorder G

Want: for $G \sim \text{true model}$, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } T] = 1 + o(1)$

Ŷ

This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{correct profiles}\}$. Sample G conditioned on $\mathsf{TAP}(G, m, n)$.

AMP run on G finds the planted point (m, n) whp

Experiment: choose $(m, n) \in T$

Sample G conditional on TAP(G, m, n)

Run AMP on disorder G

Want: for $G \sim \text{true model}$, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } T] = 1 + o(1)$

This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{correct profiles}\}$. Sample G conditioned on TAP(G, m, n).

AMP run on G finds the planted point (m, n) whp

Experiment: choose $(m, n) \in T$

Sample G conditional on TAP(G, m, n)

Run AMP on disorder G

Want: for $G \sim \text{true model}$, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } T] = 1 + o(1)$

Ŷ

This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{correct profiles}\}$. Sample G conditioned on TAP(G, m, n).

AMP run on G finds the planted point (m, n) whp

Experiment: choose $(m, n) \in T$

Sample G conditional on TAP(G, m, n)

Run AMP on disorder G

Did AMP return to (m, n)?

Experiment succeeds for at most one \times per row

Want: for $G \sim \text{true model}$, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } T] = 1 + o(1)$

P

This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{correct profiles}\}\$. Sample G conditioned on TAP(G, m, n).

AMP run on G finds the planted point (m, n) whp

Experiment: choose $(m, n) \in T$

Sample G conditional on TAP(G, m, n)

Run AMP on disorder G

Did AMP return to (m, n)?

Experiment succeeds for at most one \times per row

If too many rows have $> 1 \times s$, claim cannot be true!

```
Want: for (m, n) \in T, G conditioned on TAP(G, m, n),
```

AMP run on G finds the planted point (m, n) whp

Want: for $(m, n) \in T$, G conditioned on TAP(G, m, n),

AMP run on G finds the planted point (m, n) whp

This can be proved by the same strategy!

Want: for $(m, n) \in T$, G conditioned on TAP(G, m, n),

AMP run on G finds the planted point (m, n) whp

This can be proved by the same strategy!

By adapting state evolution & gaussian comparison analyses to planted model:

Want: for $(m, n) \in T$, G conditioned on TAP(G, m, n),

AMP run on G finds the planted point (m, n) whp

This can be proved by the same strategy!

By adapting state evolution & gaussian comparison analyses to planted model:

$$\bullet \ (\boldsymbol{m}^k,\boldsymbol{n}^k) \in \boldsymbol{T}, \ \|\nabla \mathcal{F}_{\mathsf{TAP}}(\boldsymbol{m}^k,\boldsymbol{n}^k)\| = o_k(1), \ \mathsf{and} \ \|(\boldsymbol{m}^k,\boldsymbol{n}^k) - (\boldsymbol{m},\boldsymbol{n})\| = o_k(1)$$

28 / 31

Want: for $(m, n) \in T$, G conditioned on TAP(G, m, n),

AMP run on G finds the planted point (m, n) whp

This can be proved by the same strategy!

By adapting state evolution & gaussian comparison analyses to planted model:

- $(m^k, n^k) \in T$, $\|\nabla \mathcal{F}_{\mathsf{TAP}}(m^k, n^k)\| = o_k(1)$, and $\|(m^k, n^k) (m, n)\| = o_k(1)$
- $\mathcal{F}_{\mathsf{TAP}}$ strongly convex-concave near $(\boldsymbol{m}^k, \boldsymbol{n}^k)$

Recap: contiguity of true / planted models

$$T = \{(m, n) \text{ with } \approx \text{ideal coordinate profiles}\}$$

				=				
			×				?	?
,	×						?	?
				×			?	?
		×					?	?
					×		?	?
						×	?	?
(<i>m</i> , <i>n</i>)								

We show, for $G \sim \text{true model}$:

1 Existence: **G** has TAP solution $(m, n) \in T$ whp (most rows have a \times)

② Uniqueness: $\mathbb{E}[\#\mathsf{TAP} \text{ solutions in } T] = 1 + o(1) \text{ (rows average } 1 + o(1) \times s)$

This shows true \approx planted.

Recap: proof roadmap

True model: **G** iid gaussian

Conjecturally similar
under TAP heuristic
←----Our work proves this...

Planted model: G cond on TAP(G, m, n)

1st/2nd mt method

 $lpha_* = lpha_{\mathsf{KM}}$ in true model

...justifying this implication

Follows if TAP heuristic proven

 $lpha_* = lpha_{\mathsf{KM}}$ in planted model

- We develop method to link true model & model with planted TAP fixed point
- ullet Then 1st/2nd moment in planted model identifies capacity $lpha_*=lpha_{
 m KM}$

31 / 31

- We develop method to link true model & model with planted TAP fixed point
- ullet Then 1st/2nd moment in planted model identifies capacity $lpha_*=lpha_{
 m KM}$
- Contiguity follows from existence / uniqueness of TAP fixed point
- Algorithmic proof of uniqueness via "AMP returns home in planted model"

31 / 31

- We develop method to link true model & model with planted TAP fixed point
- ullet Then 1st/2nd moment in planted model identifies capacity $lpha_*=lpha_{\mathsf{KM}}$
- Contiguity follows from existence / uniqueness of TAP fixed point
- Algorithmic proof of uniqueness via "AMP returns home in planted model"

- We develop method to link true model & model with planted TAP fixed point
- ullet Then 1st/2nd moment in planted model identifies capacity $lpha_*=lpha_{\sf KM}$
- Contiguity follows from existence / uniqueness of TAP fixed point
- Algorithmic proof of uniqueness via "AMP returns home in planted model"

Thanks for your attention!

Earlier work: AMP-conditioned moment method

$$m^{k+1} = \dot{F} \left(\frac{G^{\top} n^k}{\sqrt{N}} - dm^k \right)$$
 $n^k = \hat{F} \left(\frac{Gm^k}{\sqrt{N}} - bn^{k-1} \right)$

Plan: for large k = O(1), condition on $m^1, n^1, \dots, m^k, n^k$, then 1st/2nd moment

No existence / uniqueness issue, but now $\mathbb{E}[|S(M)| | AMP]$ is k-dim optimization (Over codimension-k slices of $\{\pm 1\}^N$ orthogonal to m^1, \ldots, m^k)

DS18: for lower bound, tractable 1st/2nd moment on truncated count

 $|S(M) \cap \{\text{correct affine slice}\}|$

Upper bound: can't do truncation, optimization intractable