Capacity threshold for the Ising perceptron J

Brice Huang (MIT)

MIT Combinatorics Seminar

November 14, 2024

Brice Huang (MIT) Ising perceptron November 14, 2024 1/31



@ Introduction and main result

Ising perceptron November 14, 2024 2/31



High-dimensional disordered systems

Models of random, high-dimensional objective functions or distributions

Brice Huang (MIT) Ising perceptron November 14, 2024 2/31



High-dimensional disordered systems
Models of random, high-dimensional objective functions or distributions

o Hardcore model: independent sets | € G and (/) oc Al'l
@ Random k-SAT and p = unif(satisfying assignments)

Brice Huang (MIT) Ising perceptron November 14, 2024 2/31



High-dimensional disordered systems
Models of random, high-dimensional objective functions or distributions

o Hardcore model: independent sets | € G and (/) oc Al'l
@ Random k-SAT and p = unif(satisfying assignments)
o Ising model Hamiltonian H : {+1}N — R and Gibbs measure y(x) ox eH*)

Brice Huang (MIT) Ising perceptron November 14, 2024 2/31



High-dimensional disordered systems
Models of random, high-dimensional objective functions or distributions

o Hardcore model: independent sets | € G and (/) oc Al'l
@ Random k-SAT and p = unif(satisfying assignments)
o Ising model Hamiltonian H : {+1}N — R and Gibbs measure y(x) ox eH*)

Highly non-convex landscapes, often with exponentially many maxima
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High-dimensional disordered systems

Applications:
o Statistical inference, e.g. community detection (u = posterior distribution)
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High-dimensional disordered systems

Applications:
o Statistical inference, e.g. community detection (u = posterior distribution)

e Random optimization problems, e.g. training a neural network (H = loss
function)

o Complex systems & emergent behavior: magnetic materials, protein folding,
flocking birds, economics, ...

What are the values of key statistics of a disordered system, such as the
maximum value, number of solutions, or satisfiability threshold?

Unified framework of physics predictions via replica / cavity methods

Goal: unified rigorous theory & broadly applicable tools
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The perceptron model

Intersection of Xy = {—1,1}" or /NSN-?
with M i.i.d. random half-spaces

Ising Spherical
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Ising Spherical

Formally: « € R fixed, g1, g2,... ~ N (0, Iy),
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The perceptron model

Intersection of Xy = {—1,1}" or /NSN-?
with M i.i.d. random half-spaces

Ising Spherical

Formally: « € R fixed, g1, g2,... ~ N (0, Iy),

S(M) = {X EXpn:
Capacity: largest M such that S(M) # ()

Main question: what is ., = .(k) = p-limy_,.o M/N?
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Connections to other problems

S(M)_{XGZNZ<%>>H, V1<a<M}

Capacity: largest M such that S(M) # ()

Satisfiability threshold of constraint satisfaction problem with global constraints
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Connections to other problems

Satisfiability threshold of constraint satisfaction problem with global constraints

Toy model of single-layer neural network (Gardner 88):
@ x « synaptic weights. g!,..., g™ « random patterns
@ S(M) < synaptic weights memorizing all M patterns

o Capacity <> max # patterns neural network can memorize
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Connections to other problems

Related model: symmetric perceptron with constraints (g2, x)/v/N € [, x]

(Aubin Perkins Zdeborova 19, Perkins Xu 21, Abbe Li Sly 22, ...)
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Connections to other problems

Related model: symmetric perceptron with constraints (g2, x)/v/N € [, x]

(Aubin Perkins Zdeborova 19, Perkins Xu 21, Abbe Li Sly 22, ...)
<+ discrepancy minimization: given G € RM*N find x € {£1}" minimizing

N
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(Spencer 85, Bansal 10, Lovett Meka 15, Rothvoss 17, Eldan Singh 18, ...)
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Main result

Conjecture (Krauth Mézard 1989) J

For the x = 0 Ising perceptron, a.. = axu =~ 0.833.

Theorem (Ding Sun 2018)
o, > akm, under condition that an explicit univariate function is < 0. J
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Main result

Conjecture (Krauth Mézard 1989)

For the x = 0 Ising perceptron, a.. = axu =~ 0.833.

Theorem (Ding Sun 2018)

o, > akm, under condition that an explicit univariate function is < 0.

Theorem (H. 2024)

a. < akwm, under condition that an explicit 2-variable function (next slide) is < 0.
v

(Also for general x € R, under several numerical conditions depending on «)
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The function .%, in our numerical condition

7.(1,0) = 0 local max, conjecturally unique global max

Plot of (x,y) + .7, (tanh™(x), tanh "} (y)):

-1.0
1.0

x,y €[-1,1] &, > —0.01
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Background: physics predictions

Gardner Derrida 88, Krauth Mézard 89:

e Volume formula £ log |S(cN)| =, Vol(r, o) in terms of fixed point eqn
(In “replica symmetric” regime of (x, «), which includes x = 0 Ising perceptron)
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Background: physics predictions

Gardner Derrida 88, Krauth Mézard 89:

e Volume formula £ log |S(cN)| =, Vol(r, o) in terms of fixed point eqn
(In “replica symmetric” regime of (x, «), which includes x = 0 Ising perceptron)

e Capacity: o, = a..(k) solves Vol(r, ) =0

L log S(aV)
= Vol(r, a)
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Spherical perceptron, x > 0

@ Shcherbina Tirozzi 03: proof of volume limit Vol(x, @) (and thus capacity)
@ Stojnic 13: simple proof of capacity threshold

Crucial to proofs: x > 0 spherical perceptron is convex problem!

o
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Ising perceptron, v = 0

@ Talagrand 11, Xu 21, Nakajima Sun 23: sharp threshold sequence «..(N)
(non-explicit, doesn't imply cv.. = limpy_,o0 v, (V) exists)
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Ising perceptron, v = 0

@ Talagrand 11, Xu 21, Nakajima Sun 23: sharp threshold sequence «..(N)
(non-explicit, doesn't imply cv.. = limpy_,o0 v, (V) exists)

Trivial bound: E|S(Na)| < 20=9N so o, <1

Kim Roche 98, Talagrand 99 & 00: e <, <1-—¢

@ Ding Sun 18: a.. > axm = 0.833

Altschuler Tikhomirov 24: o, < 0.847

e H. 24: o, < akm
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© Failure of direct moment method — proof roadmap
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First attempt: 1st/2nd moment method

E|S(Na)| < 1 = no solutions; E[|S(Na)|?] < (E|S(Na)|)? = solutions
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First attempt: 1st/2nd moment method

E|S(Na)| < 1 = no solutions; E[|S(Na)|?] < (E|S(Na)|)? = solutions

Identifies .. in symmetric perceptron with constraints (g2, x)/vV N € [—x, K]

(Aubin Perkins Zdeborova 19, Perkins Xu 21, Abbe Li Sly 22, Altschuler 22,
Sah Sawhney 23)
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First attempt: 1st/2nd moment method

E|S(Na)| < 1 = no solutions; E[|S(Na)|?] < (E|S(Na)|)? = solutions

Identifies .. in symmetric perceptron with constraints (g2, x)/vV N € [—x, K]

(Aubin Perkins Zdeborova 19, Perkins Xu 21, Abbe Li Sly 22, Altschuler 22,
Sah Sawhney 23)

But fails in our model! E|S(Na)| =20~V <« 1 only when o > 1
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Failure of direct moment method

% log E|S(Na)|
=(1—-a)log2

T >
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Failure of direct moment method

% log E|S(Na)|
=(1—-a)log2

QKM
~0.833 1

E|S(N«)| dominated by events where the g? are atypically correlated

Typically: g2 orthogonal Atypically: g2 correlated,
which inflates # solutions
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Another perspective on 1st moment failure

Solution set is not centered on origin:
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Another perspective on 1st moment failure

Solution set is not centered on origin:

N

Each slice deletes half of solutions on average, but genuine fluctuations

Imagine simplified model: each slice deletes 1% or 99%. Then all solutions deleted
much faster than 1st moment bound.

Next few slides: non-rigorous physics intuitions on how to remedy this.
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Conditional moment method

Key intuition of Ding Sun 18, Bolthausen 19: 1st mt failure caused by large
deviation events in barycenter of solution set S(N«)

O

barycenter
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(typical |S|) < E(]S] | barycenter)

Brice Huang (MIT) Ising perceptron November 14, 2024 15 /31



Conditional moment method

Key intuition of Ding Sun 18, Bolthausen 19: 1st mt failure caused by large
deviation events in barycenter of solution set S(N«)

o barycenter

That is, E(|S]) > (typical |S]) but we expect

(typical |S|) = E(|S| | barycenter) < E(|S|? | barycenter)!/?

Brice Huang (MIT) Ising perceptron November 14, 2024 15 /31



Conditional moment method

Key intuition of Ding Sun 18, Bolthausen 19: 1st mt failure caused by large
deviation events in barycenter of solution set S(N«)

O

barycenter

That is, E(|S]) > (typical |S]) but we expect

(typical |S|) = E(|S| | barycenter) < E(|S|? | barycenter)!/?

This suggests plan: condition on typical behavior of barycenter, then 1st/2nd mt

Brice Huang (MIT) Ising perceptron November 14, 2024 15 /31



Conditional moment method

Key intuition of Ding Sun 18, Bolthausen 19: 1st mt failure caused by large
deviation events in barycenter of solution set S(N«)

O

barycenter

That is, E(|S]) > (typical |S]) but we expect

(typical |S|) = E(|S| | barycenter) < E(|S|? | barycenter)!/?

This suggests plan: condition on typical behavior of barycenter, then 1st/2nd mt

Barycenter is mathematically complicated, but can condition on physics proxy
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(Heuristic) physics description of barycenter

TAP equation: nonlinear system in

e G € RM*N matrix with rows gt,..., g

o m € R" barycenter of S(M)

o n € RM average slacks of constraints: 1, = avg,csm){ <g\/ﬁ> -k}
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e G € RM*N matrix with rows gt,..., g
o m € R" barycenter of S(M)

o n € RM average slacks of constraints: 1, = avg,csm){ <g\/ﬁ> -k}

For explicit nonlinearities F, I? constants b, d:
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e G € RM*N matrix with rows gt,..., g
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o n € RM average slacks of constraints: 1, = avg,csm){ <g\/ﬁ> -k}

For explicit nonlinearities F, I? constants b, d:
. T ~
m:F(Gn—dm) n:F(Gm—bn)
VN VN
(+> dense graph limit of belief propagation)

M constraints .
\ Masi = F((Mja)j)
mj :f. n i
N variables —a ((Mb—1)ba)
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Physics predictions for TAP & planted model

. T o~
m:F<fFA7dm) n:F(Gmbn>

Physics prediction: for typical G, unique soln (m, n). m = barycenter, n = slacks
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m:F<C\;/TNndm) n:ﬁ(%bn)

Physics prediction: for typical G, unique soln (m, n). m = barycenter, n = slacks

Key idea: planted model:
@ Sample (m, n) from its law (explicit physics prediction)
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Belief: planted ~ true model;
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Physics predictions for TAP & planted model

m:F<c\;/TNndm) n:ﬁ(%bn)

Physics prediction: for typical G, unique soln (m, n). m = barycenter, n = slacks

Key idea: planted model:
@ Sample (m, n) from its law (explicit physics prediction)
@ Sample G conditioned on TAP(G, m, n)

Belief: planted =~ true model; 1st/2nd mt conditional on (m, n) locates threshold

O existence/uniqueness of (m, n) is not proven, so planted # true possible
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Proof roadmap

Conjecturally similar .

True model: under TAP heuristic Planted model:
G iid gaussian €ommTTmTT oo > G cond on

TAP(G, m, n)
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Proof roadmap

True model:
G iid gaussian

Brice Huang (MIT)
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(direct calculation,
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Proof roadmap

Oy = KM in

true model Follows if TAP heuristic proven

Brice Huang (MIT) Ising perceptron
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Proof roadmap

Conjecturally similar )
True model: under TAP heuristic Planted model:
G iid gaussian ittt ’ G cond on
& Our work proves this. .. TAP(G, m, n)
DS18: lower bd by 1st/2nd mt method
conditional 1st/2nd (direct calculation,
mt on truncation numerical cond
of |S(M)] enters here)
. .. Justifying this implication .
Oy = K 1IN Qe = QKM 1IN
true model Follows if TAP heuristic proven planted model
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© 1st/2nd moment in planted model
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Properties making the planted model tractable

Recall planted model:
e Sample (m, n) from its law
@ Sample G conditional on TAP(G, m, n), i.e.

m—p<‘f/%"_dm) n—ﬁ(%—bn)
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Properties making the planted model tractable
Recall planted model:

e Sample (m, n) from its law
@ Sample G conditional on TAP(G, m, n), i.e.

m—p<‘f/%"_dm) n—ﬁ(%—bn)

© The coordinate profiles

N

pu(m) = %Z5(m;) v(n) = % Zd(na) € P(R)

i=1

i

. id jid
concentrate around explicit i, V4. (Roughly, m; ~ . & n, ~ Vy)
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Properties making the planted model tractable
Recall planted model:

e Sample (m, n) from its law
@ Sample G conditional on TAP(G, m, n), i.e.

m—p<‘f/%"_dm) n—ﬁ(%—bn)

© The coordinate profiles

N

pu(m) = %Z5(m;) v(n) = % Z5(na) € P(R)

. id jid
concentrate around explicit i, V4. (Roughly, m; ~ . & n, ~ Vy)

@ TAP(G, m,n) is linear constraint on G = G conditionally gaussian!
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Moment calculation in planted model

Plan: 1st/2nd moment method on |S| = #(solutions) conditional on (m, n)
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a=(x,m) b= (x,H) (H = F~Y(m))
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Plan: 1st/2nd moment method on |S| = #(solutions) conditional on (m, n)

G is spiked gaussian mtx = Gx is gaussian vector whose law depends on only
a=(x,m) b= (x,H) (H=F~Y(m))

= P(x is solution) = P(% > 1) is explicit function of a, b

E[|S||m,n] =Y #(x € {£1}" with this 3,b) x P(one such x is solution)

a,b .. . X
(2,0) explicit because m coordinate profile known
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Moment calculation in planted model

Plan: 1st/2nd moment method on |S| = #(solutions) conditional on (m, n)

G is spiked gaussian mtx = Gx is gaussian vector whose law depends on only
a=(x,m) b= (x,H) (H=F~Y(m))

= P(x is solution) = P(% > 1) is explicit function of a, b

E[|S||m,n] =Y #(x € {£1}" with this 3,b) x P(one such x is solution)
(2,0

explicit because m coordinate profile known

Summand varies on exponential scale: contribution(a, b) = exp(N - f(a, b))
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Moment calculation in planted model

Plan: 1st/2nd moment method on |S| = #(solutions) conditional on (m, n)

G is spiked gaussian mtx = Gx is gaussian vector whose law depends on only
a=(x,m) b= (x,H) (H=F~Y(m))

= P(x is solution) = P(% > 1) is explicit function of a, b

E[|S||m,n] =Y #(x € {£1}" with this 3,b) x P(one such x is solution)
(2,0

explicit because m coordinate profile known

Summand varies on exponential scale: contribution(a, b) = exp(N - f(a, b))

= E[|S||m, n] =~ exp(N - max f(a, b)) essentially 2 variable maximization
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Ist/2nd moment in planted model

1st/2nd moments are both explicit O(1)-variable maximizations.
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Ist/2nd moment in planted model

1st/2nd moments are both explicit O(1)-variable maximizations.

1st/2nd moment works!! Conditional on typical (m, n),
E[|S(aN)|jm,n] =~ E[S(aN)|?|m,n]*? =~ exp(NVol(a))

under our + DS18’s numerical conditions
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Ist/2nd moment in planted model

1st/2nd moments are both explicit O(1)-variable maximizations.

1st/2nd moment works!! Conditional on typical (m, n),
E[|S(aN)|jm,n] =~ E[S(aN)|?|m,n]*? =~ exp(NVol(a))

under our + DS18’s numerical conditions = typically |S(aN)| = exp(N Vol(«))

T (6
KM

Since Vol has root akp, planted model has capacity axum
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@ Justifying the TAP heuristic
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Proof roadmap

Conjecturally similar )
True model: under TAP heuristic Planted model:

G iid gaussian Tttt ’ G cond on
TAP(G, m, n)

1st/2nd mt
method
Oy = OKM in Oy = QKM in
é __________________

true model Follows if TAP heuristic proven planted model
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Proof roadmap

Conjecturally similar .
True model: under TAP heuristic Planted model:
G iid gaussian ittt > G cond on
& We now explain how to TAP(G, m, n)
make this step rigorous.
1st/2nd mt
method
e = QKM N vy = Qi N
é __________________
true model Follows if TAP heuristic proven planted model

Brice Huang (MIT) Ising perceptron November 14, 2024 22 /31



Key issue: linking true and planted models

(m,n)
X
» True model <+ random row
Planted model ++ random col, then random x in col
X
X
X
G
X
X
X
X
X
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Key issue: linking true and planted models

(m, n)
» True model <+ random row

Planted model ++ random col, then random x in col

X

X
c x x | x Under TAP prediction, most rows have exactly one x
X X so true ~ planted
X
X , .
but...we don’t actually know this ®
= planted / true models can a priori be very different
Ising perceptron November 14, 2024 23 /31



This work: contiguity of true / planted models

T = {(m, n) with = ideal coordinate profiles} (high-probability set)

(m, n)
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This work: contiguity of true / planted models

T = {(m, n) with = ideal coordinate profiles} (high-probability set)

(m, n)

We show, for G ~ true model:
@ Existence: G has TAP solution (m, n) € T whp (most rows have a x)
@ Uniqueness:  E[#TAP solutions in T] =1+ 0(1) (rows average 1 + o(1) x's)
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We show, for G ~ true model:
@ Existence: G has TAP solution (m, n) € T whp (most rows have a x)

@ Uniqueness:  E[#TAP solutions in T] =1+ 0(1) (rows average 1 + o(1) x's)
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This work: contiguity of true / planted models

T = {(m, n) with = ideal coordinate profiles} (high-probability set)

X 77
X 707
x 707
G

x 707
X 707
x| 7|7

(m, n)

We show, for G ~ true model:
@ Existence: G has TAP solution (m, n) € T whp (most rows have a x)
@ Uniqueness:  E[#TAP solutions in T] =1+ 0(1) (rows average 1 + o(1) x's)

This shows true ~ planted. That is, V event E,
Ptrue(E) § C sup IP>p|anted(E|n17 I’I)+O(1)

(m,n)eT
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Existence: algorithmic proof

Want: G ~ true model, G has TAP fixed pt (m,n) € T = {correct profiles} whp
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Existence: algorithmic proof

Want: G ~ true model, G has TAP fixed pt (m,n) € T = {correct profiles} whp

Will show approximate message passing (AMP) finds such a point:

mk — (G\;%k _ dmk) ok — ﬁ(G\/’%k B bnk—l)
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Want: G ~ true model, G has TAP fixed pt (m,n) € T = {correct profiles} whp

Will show approximate message passing (AMP) finds such a point:

mk — (G\;—%k _ dmk) ok — ﬁ(G\/’%k B bnk—l)

@ TAP fixed points are critical points of TAP free energy Frap(m, n; G)
@ State evolution (Bolthausen 14, Bayati Montanari 11) = for large k = O(1),

(m*,n*)eT IV Frap(m*, n)|| = ox(1)
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Existence: algorithmic proof

Want: G ~ true model, G has TAP fixed pt (m,n) € T = {correct profiles} whp

Will show approximate message passing (AMP) finds such a point:

mk — (G\;—%k _ dmk) ok — ﬁ(G\/’%k B bnk—l)

@ TAP fixed points are critical points of TAP free energy Frap(m, n; G)
@ State evolution (Bolthausen 14, Bayati Montanari 11) = for large k = O(1),
(m*,n*)eT |V Frap(m*, n*)|| = o(1)

That is, AMP finds an approximate critical point in T
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Existence: from approximate to exact critical point

Celentano Fan Mei 21: if Frap strongly concave near the approximate critical
point (m*, n*), exists exact critical point nearby
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Existence: from approximate to exact critical point

Celentano Fan Mei 21: if Frap strongly concave near the approximate critical
point (m*, n*), exists exact critical point nearby

(m?, n?) = {correct profile pts}

./.
N W

strongly concave zone

O In our setting, Frap(m, n) not strongly concave near (m*, n). ..

|
1
|
|

.. but is strongly convex-concave, which also works
Proof adapts AMP-conditioned gaussian comparison approach of Celentano 22
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Uniqueness: double-counting argument

Want: for G ~ true model, E[#TAP fixed pts of G in T] =1+ o(1)
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Uniqueness: double-counting argument

Want: for G ~ true model, E[#TAP fixed pts of G in T] =1+ o(1)
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Uniqueness: double-counting argument

Want: for G ~ true model, E[#TAP fixed pts of G in T] =1+ o(1)

This also has an algorithmic proof! Following claim implies uniqueness:

Fix (m,n) € T = {correct profiles}. Sample G conditioned on TAP(G, m, n).

AMP run on G finds the planted point (m, n) whp

(m,n)eT
X Experiment: choose (m,n) € T
X .
Sample G conditional on TAP(G, m, n)

X X | X

« Run AMP on disorder G

G
X Did AMP return to (m, n)?
< < Experiment succeeds for at most one X per row
X If too many rows have > 1 Xs, claim cannot be true!
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Uniqueness: AMP returns home in planted model

Want: for (m,n) € T, G conditioned on TAP(G, m, n),

AMP run on G finds the planted point (m, n) whp
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Uniqueness: AMP returns home in planted model

Want: for (m,n) € T, G conditioned on TAP(G, m, n),

AMP run on G finds the planted point (m, n) whp

This can be proved by the same strategy!

(m?, n?) (m, n) T = {correct profile pts}
. \./ (
(m*, n*) e D
’ . X K strongly convex-
(m", n®) concave zone
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Uniqueness: AMP returns home in planted model

Want: for (m,n) € T, G conditioned on TAP(G, m, n),

AMP run on G finds the planted point (m, n) whp

This can be proved by the same strategy!

(m?, n?) (m, n) T = {correct profile pts}

L] L] \:
(m*, n*) e
O strongly convex-
concave zone

(m*, n)

By adapting state evolution & gaussian comparison analyses to planted model:

o (m¥,nk) € T, [V Frap(m¥, n¥)| = ok(1), and [|(m*, n*) — (m, n)]| = o (1)

e Frap strongly convex-concave near (m*, n*)
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Recap: contiguity of true / planted models

T = {(m, n) with = ideal coordinate profiles}

X 717
X 207
X 7207
G

X 707
X 707
x|7?2|7

(m,n)

We show, for G ~ true model:
@ Existence: G has TAP solution (m, n) € T whp (most rows have a x)
@ Uniqueness:  E[#TAP solutions in T] =1+ o(1) (rows average 1 + o(1) x's)

This shows true ~ planted.
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Recap: proof roadmap

Conjecturally similar )
True model: under TAP heuristic Planted model:
G iid gaussian ittt ’ G cond on
& Our work proves this. . . TAP(G, m, n)
1st/2nd mt
method
. .. .justifying this implication .
Ay = KM IN Ay = QKM IN
true model Follows if TAP heuristic proven planted model
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Conclusion

@ We develop method to link true model & model with planted TAP fixed point
@ Then 1st/2nd moment in planted model identifies capacity «v.. = akwm
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Conclusion

@ We develop method to link true model & model with planted TAP fixed point
@ Then 1st/2nd moment in planted model identifies capacity «v.. = akwm

o Contiguity follows from existence / uniqueness of TAP fixed point
@ Algorithmic proof of uniqueness via “AMP returns home in planted model”
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Conclusion

We develop method to link true model & model with planted TAP fixed point

Then 1st/2nd moment in planted model identifies capacity «. = akm

Contiguity follows from existence / uniqueness of TAP fixed point

Algorithmic proof of uniqueness via “AMP returns home in planted model”

Open Q: capacity of non replica symmetric models? E.g. spherical x <0
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Conclusion

We develop method to link true model & model with planted TAP fixed point

Then 1st/2nd moment in planted model identifies capacity «. = akm

Contiguity follows from existence / uniqueness of TAP fixed point

Algorithmic proof of uniqueness via “AMP returns home in planted model”

Open Q: capacity of non replica symmetric models? E.g. spherical x <0

Thanks for your attention!
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Earlier work: AMP-conditioned moment method

. GTnk =~ Gmk
T R
VN VN

Plan: for large k = O(1), condition on m*, n' ... m* n* then 1st/2nd moment

No existence / uniqueness issue, but now E[|5( )\ |AMP] is k-dim optimization
(Over codimension-k slices of {#1}" orthogonal to m? m*)

DS18: for lower bound, tractable 1st/2nd moment on truncated count
|S(M) N {correct affine slice}|

Upper bound: can’t do truncation, optimization intractable
Ising perceptron November 14, 2024 1/1
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