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The perceptron model

Intersection of ¥y = {—1,1}" or /NSN-1
with M i.i.d. random half-spaces

Ising Spherical
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The perceptron model

Intersection of ¥y = {—1,1}" or /NSN-1
with M = aN i.i.d. random half-spaces

« = constraint density
Ising Spherical

Formally: for gt,..., g™ ~ N(0, Iy),

S={xeXy:(g?%x)>0, Vi<a<M}

Capacity problem: is there a critical density «. where S goes from nonempty to
empty (whp)? If so, what is it?
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Application: linear classification

Given labeled dataset (g, 1),...,(gM,yM) € RN x {—1,1}, is there a
separating hyperplane?
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separating hyperplane?

That is, does there exist x such that

yi(g?x)>0 Vi<a<M?
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Application: linear classification

Given labeled dataset (g, 1),...,(gM,yM) € RN x {—1,1}, is there a
separating hyperplane?

That is, does there exist x such that
V(g% x)>0  Vi<a<M?
Consider random labels model:
g? ~N(0,ly) independent of y? ~ unif(+1).

This is equivalent to capacity problem! Hyperplane exists < M/N < a..
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Application: discrepancy minimization

Related model: symmetric perceptron with constraints (g2, x)/vV/N € [, x]

(Aubin Perkins Zdeborova 19, Perkins Xu 21, Abbe Li Sly 22, ...)
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Application: discrepancy minimization

Related model: symmetric perceptron with constraints (g2, x)/vV/N € [, x]

(Aubin Perkins Zdeborova 19, Perkins Xu 21, Abbe Li Sly 22, ...)
<+ discrepancy minimization: given G € RM*N find x € {£1}" minimizing

N

a

—g?—

1Gxfloe = M{ — i

G

o0

(Spencer 85, Bansal 10, Lovett Meka 15, Rothvoss 17, Eldan Singh 18, ...)
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Application: discrepancy minimization

Related model: symmetric perceptron with constraints (g2, x)/vV/N € [, x]

(Aubin Perkins Zdeborova 19, Perkins Xu 21, Abbe Li Sly 22, ...)
+» discrepancy minimization: given G € RM*N find x € {+1}" minimizing

N

a

—g?—

1Gxfloe = M{ — i

G

o0

(Spencer 85, Bansal 10, Lovett Meka 15, Rothvoss 17, Eldan Singh 18, ...)

Applications: randomized control trials, sparsification, differential privacy, ...
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Problem restatement: Ising perceptron

Intersection of ¥y = {—1,1}" with
M = aN i.i.d. random half-spaces

« = constraint density

Formally: for gt,..., g™ ~ N(0, Iy),
S={xeXy:(g%x)>0, V1<a<M}

Capacity problem: is there a critical density o, where S goes from nonempty to
empty (whp)? If so, what is it?
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Main result

Conjecture (Krauth Mézard 1989)

For the Ising perceptron, . = akm ~ 0.833. J
Theorem (Ding Sun 2018)

a, > akm, under condition that an explicit univariate function is < 0. J
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Main result

Conjecture (Krauth Mézard 1989)

For the Ising perceptron, . = akm ~ 0.833.

Theorem (Ding Sun 2018)

a, > akm, under condition that an explicit univariate function is < 0.

Theorem (H. 2024)

o < akwm, under condition that an explicit 2-variable function (next slide) is < 0.
v

Both results hold for more general model with margin x € R:

VN

for suitable threshold akwi(%), under further numerical conditions depending on .

SZ{XEZN:(g’X)ZH, ‘v’lgagM}
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The function .%, in our numerical condition

.(1,0) = 0 local max, conjecturally unique global max

Plot of .. (domain R? reparametrized to [—1, 1]?):

-1.0
1.0

x,y € [-1,1] <, > —0.01
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Background: physics predictions

Gardner Derrida 88, Krauth Mézard 89:

e Volume formula £ log |S(«N constraints)| £ Vol(«) in terms of fixed pt eqn
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Background: physics predictions

Gardner Derrida 88, Krauth Mézard 89:
e Volume formula £ log |S(«N constraints)| £ Vol(«) in terms of fixed pt eqn

o Capacity: axy solves Vol(akm) =0

KM
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Rigorous results: positive spherical perceptron

For constraints (g2, x)/v/N > «, where 1 > 0:

@ Shcherbina Tirozzi 03: proof of volume limit Vol,.(«) (and thus capacity)
@ Stojnic 13: simple proof of capacity threshold
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Rigorous results: positive spherical perceptron

For constraints (g2, x)/v/N > «, where 1 > 0:

@ Shcherbina Tirozzi 03: proof of volume limit Vol,.(«) (and thus capacity)
@ Stojnic 13: simple proof of capacity threshold

Crucial to proofs: x > 0 spherical perceptron is convex problem

intersection nonempty intersection nonempty
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Rigorous results: Ising perceptron, x = 0

@ Talagrand 11, Xu 21, Nakajima Sun 23: sharp threshold sequence «..(N)
(non-explicit, doesn't imply cv.. = limpy_,o0 v, (V) exists)
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Rigorous results: Ising perceptron, x = 0

@ Talagrand 11, Xu 21, Nakajima Sun 23: sharp threshold sequence «..(N)
(non-explicit, doesn't imply cv.. = limpy_,o0 v, (V) exists)

Simple bound: «., <1 (more later)

Kim Roche 98, Talagrand 99 & 00: e <, <1-—¢

@ Ding Sun 18: o > axm =~ 0.833

Altschuler Tikhomirov 24: o, < 0.847

e H. 24: o, < akm
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© Direct approach: 1st/2nd moment method
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1Ist/2nd moment method

e E|S(Na)| < 1 = no solution at constriant density o (whp)

e E[|S(Na)|?] = O(1) - (E|S(Na)|)? = 3 soln at density o (with (1) prob)
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e E|S(Na)| < 1 = no solution at constriant density o (whp)

e E[|S(Na)|?] = O(1) - (E|S(Na)|)? = 3 soln at density o (with (1) prob)
This provides a simple strategy to (try to) locate capacity:

@ Let aym be solution to E|S(Naym:)| = 1. (So no solns whp for o > avypme)

log E|S(Na)|

A1mt

Brice Huang (MIT) Ising perceptron April 29, 2025 11 /29



1Ist/2nd moment method

e E|S(Na)| < 1 = no solution at constriant density o (whp)

e E[|S(Na)|?] = O(1) - (E|S(Na)|)? = 3 soln at density o (with (1) prob)
This provides a simple strategy to (try to) locate capacity:

@ Let aym be solution to E|S(Naym:)| = 1. (So no solns whp for o > avypme)

log E|S(Na)|

> O
A1mt

@ (Hope to) show E[|S(Naimi)|?] < (E|S(Naim)])? = 1. If so, o = ayme
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Ist/2nd moment method: a success story

This locates v, in symmetric Ising perceptron with constraints I(gi\/%)l <k

(Aubin Perkins Zdeborova 19, Perkins Xu 21, Abbe Li Sly 22, ...)
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Ist/2nd moment method: a success story

This locates v, in symmetric Ising perceptron with constraints L\/ﬁ)l <k
(Aubin Perkins Zdeborova 19, Perkins Xu 21, Abbe Li Sly 22, ...)

In this model, S(M) = {x € {+1}": I(g\/%)l <k Vi<a< M}

E|S(M)| = 2N . P(a fixed x is in S(M))

_2N.ﬁp(|(g;,ﬁx)| S)
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Ist/2nd moment method: a success story

This locates v, in symmetric Ising perceptron with constraints L\/ﬁ)l <k
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In this model, S(M) = {x € {+1}": I(g\/%)l <k Vi<a< M}
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Ist/2nd moment method: a success story

This locates v, in symmetric Ising perceptron with constraints L\/ﬁ)l <k
(Aubin Perkins Zdeborova 19, Perkins Xu 21, Abbe Li Sly 22, ...)

In this model, S(M) = {x € {+1}": I(g\/%)l <k Vi<a< M}

E|S(M)| = 2N . P(a fixed x is in S(M))

M
(g2, x)|
=2V T]p <w | =2N . P(N(0,1)| < x)M
()

E|S(M)|? can be calculated similarly, and moment method works.
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Direct moment method fails in asymmetric model

In our model, S(aN) = {x € {+1}": (g?,x) >0 V1<a<aN}
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Direct moment method fails in asymmetric model

In our model, S(aN) = {x € {+1}": (g?,x) >0 V1<a<aN}

E[S(aN)| =2N. 27N so oy, = 1. This proves o, < 1.
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Direct moment method fails in asymmetric model

In our model, S(aN) = {x € {+1}": (g?,x) >0 V1<a<aN}

E[S(aN)| =2N. 27N so oy, = 1. This proves o, < 1.

But. . . this doesn’t locate true threshold axy ~ 0.833 @

log 2

+ log E|S(Nov)|
=(1—a)log2

T >
QKM Qamt

~0.833 1
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What goes wrong? Asymmetric vs. symmetric models

Solution set is not centered on origin:

Qe
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What goes wrong? Asymmetric vs. symmetric models
Solution set is not centered on origin:

N

Each constraint deletes half of solutions on average, but genuine fluctuations

Thought experiment: each constraint deletes 1% or 99%. Then all solutions
deleted faster than 1st moment bound would suggest.
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What goes wrong? A large deviations perspective

% log E|S(Na)|
=(1—-a)log2

T >
QKM Camt

~0.833 1

E|S(N«)| dominated by events where the g? are atypically correlated

Typically: g2 orthogonal Atypically: g2 correlated,
which inflates # solutions

Brice Huang (MIT) Ising perceptron April 29, 2025 15 /29



© Physics intuitions and proof roadmap
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Conditional moment method

Key intuition of Ding Sun 18, Bolthausen 19: 1st mt failure caused by large
deviation events in barycenter of solution set S

[ Ll

barycenter
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Conditional moment method

Key intuition of Ding Sun 18, Bolthausen 19: 1st mt failure caused by large
deviation events in barycenter of solution set S

[ Ll

barycenter

That is, E(]S|) > (typical |S|) but we expect, for typical realization of barycenter:

(typical |S]) = E(|S]]|barycenter)
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That is, E(]S|) > (typical |S|) but we expect, for typical realization of barycenter:
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Conditional moment method

Key intuition of Ding Sun 18, Bolthausen 19: 1st mt failure caused by large
deviation events in barycenter of solution set S

[ Ll

barycenter

That is, E(]S|) > (typical |S|) but we expect, for typical realization of barycenter:

(typical |S|) = E(|S||barycenter) = E(|S|?|barycenter)/?

Suggests plan: condition on typical realization of barycenter, then 1st/2nd mt

Barycenter is mathematically complicated, but can condition on physics proxy
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(Heuristic) physics description of barycenter

TAP equation: nonlinear system in

o G € RM*N matrix with rows gt,..., g

o m € RV barycenter of S

e n € RM average slacks of constraints: 1, = avgxes{ <g\;ﬁ>}
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o G € RM*N matrix with rows gt,..., g

o m € RV barycenter of S

e n € RM average slacks of constraints: 1, = avgxes{ <g\;ﬁ>}

For explicit nonlinearities F, F:R — R, constants b, d:

m_F<c\;/TNndm) n_ﬁ(%bn>

(+> dense graph limit of belief propagation)

M constraints .
= F((mMj-.)jx)
m; = f((n i 2
N variables —a = F((Nb—i)ba)
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Physics predictions for TAP & planted model

m_l-"<cj/TNn—dm) n_l/:\<f}l\rl'—bn>

Physics prediction: for typical G, there is a unique solution (m, n)
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1Ist/2nd moment works in planted model

Recall planted model:
e Sample (m, n) from its law

e Sample G conditional on m = F (GT" - dm), n= /?(Gim _ bn)

VN VN
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This is linear constraint on G = conditional on (m, n), G remains gaussian!
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1Ist/2nd moment works in planted model

Recall planted model:
e Sample (m, n) from its law

@ Sample G conditional on m = F ((\;/TN" — dm), n= 'E(GT% _ bn)

This is linear constraint on G = conditional on (m, n), G remains gaussian!
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@ Sample G conditional on m = F ((\;/TN" — dm), n= 'E(GT% _ bn)

This is linear constraint on G = conditional on (m, n), G remains gaussian!
= conditional moments of |S(«N)| remain tractable. For typical (m, n),
E[IS(aN)l|m,n] ~ E[IS(aN)|m,n]'/? =~ exp(NVol(c))

= planted model has capacity axn  (under our + DS18's numerical conditions)

Brice Huang (MIT) Ising perceptron April 29, 2025 19 /29



Proof roadmap
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True model: under TAP heuristic Planted model:
G iid gaussian €ommTTmTT oo > G cond on

TAP(G, m, n)
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& Our work proves this. .. TAP(G, m, n)

1st/2nd mt method

(direct calculation,
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Proof roadmap

Conjecturally similar )
True model: under TAP heuristic Planted model:
G iid gaussian ittt ’ G cond on
& We now explain how to TAP(G, m, n)
make this step rigorous.
Oy = KM in Oy = OKM in
é __________________
true model Follows if TAP heuristic proven planted model
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@ Justifying the TAP heuristic
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Key issue: linking true and planted models

(m,n)
X
» True model <+ random row
Planted model ++ random col, then random x in col
X
X
X
G
X
X
X
X
X
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Key issue: linking true and planted models

(m, n)
» True model <> random row

Planted model ++ random col, then random x in col

X

X
c x x | x Under TAP prediction, most rows have exactly one x
X X so true ~ planted
X
X , .
but...we don’t actually know this ®
= planted / true models can a priori be very different
Ising perceptron
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This work: contiguity of true / planted models

T = {"typical” (m, n)} (suitably defined set; whp in planted model)

(m, n)
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T = {"typical” (m, n)} (suitably defined set; whp in planted model)

X 77
X 707
x 707
G

x 707
X 707
x| 7|7

(m, n)

We show, for G ~ true model:
© Existence: G has TAP solution (m, n) € T whp (most rows have a x in T)
@ Uniqueness: E[#TAP solutions in T] = 1+ 0(1) (rows average 1 +o0(1) x'sin T)

This shows true ~ planted. Formally, V event E,

Piwe(E) < O(1)- sup Ppiantea(E|m, n) + o(1)

(m,n)eT

Brice Huang (MIT) Ising perceptron April 29, 2025 22 /29



Existence: algorithmic proof

Want: G ~ true model, G has TAP fixed pt (m,n) € T = {typical pts} whp
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Existence: algorithmic proof

Want: G ~ true model, G has TAP fixed pt (m,n) € T = {typical pts} whp

Will show approximate message passing (AMP) finds such a point:

mk+1 _ F <GTnk B dmk) nk _ i_:(Gmk B bnk—l)
VN VN

@ TAP fixed points are critical points of TAP free energy Frap(m, n; G)
@ AMP state evolution (Bolthausen 14, Bayati Montanari 11) implies
(m“,n*)eT IV Frap(m*, n¥)|| = ox(1)
That is, AMP finds an approximate critical point in T

O This holds for k fixed as N — co. Does not imply AMP finds exact crit pt
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Existence: from approximate to exact critical point

Celentano Fan Mei 21: if Frap strongly concave near the approx critical
point (m*, n¥), exists exact critical point nearby
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Existence: from approximate to exact critical point

Celentano Fan Mei 21: if Frap strongly concave near the approx critical
point (m*, n¥), exists exact critical point nearby

(m?, n?) = {typical pts}
./ \./ \
(m*, n*) —" ;)

O In our setting, Frap(m, n) not strongly concave near (m*, n). ..

strongly
concave zone

.. but is strongly convex-concave, which also works

Proof adapts AMP-conditioned gaussian comparison approach of Celentano 22
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Uniqueness: double-counting argument

Want: for G ~ true model, E[#TAP fixed pts of G in T] =1+ o(1)
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Uniqueness: double-counting argument

Want: for G ~ true model, E[#TAP fixed pts of G in T] =1+ o(1)

This also has an algorithmic proof! Following claim implies uniqueness:

Fix (m,n) € T = {typical pts}. Sample G conditioned on TAP(G, m, n).

AMP run on G finds the planted point (m, n) whp

(m,n)eT
X

X x | X

Brice Huang (MIT)

Experiment: choose (m,n) € T
Sample G conditional on TAP(G, m, n)
Run AMP on disorder G

Did AMP return to (m, n)?

Experiment succeeds for at most one X per row
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Uniqueness: double-counting argument

Want: for G ~ true model, E[#TAP fixed pts of G in T] =1+ o(1)

This also has an algorithmic proof! Following claim implies uniqueness:

Fix (m,n) € T = {typical pts}. Sample G conditioned on TAP(G, m, n).

AMP run on G finds the planted point (m, n) whp

(m,n)eT
X

X x | X

Brice Huang (MIT)

Experiment: choose (m,n) € T

Sample G conditional on TAP(G, m, n)

Run AMP on disorder G

Did AMP return to (m, n)?

Experiment succeeds for at most one X per row

If too many rows have > 1 Xs, claim cannot be true!

Ising perceptron April 29, 2025
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Uniqueness: AMP returns home in planted model

Want: for (m,n) € T, G conditioned on TAP(G, m, n),

AMP run on G finds the planted point (m, n) whp
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Uniqueness: AMP returns home in planted model

Want: for (m,n) € T, G conditioned on TAP(G, m, n),
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This can be proved by the same strategy!

(m?, n?) (m, n) T = {typical pts}
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By adapting state evolution & gaussian comparison to planted model:

o (mk, n*) e T, ||VFrap(mk, n¥)|| = ox(1)
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Uniqueness: AMP returns home in planted model

Want: for (m,n) € T, G conditioned on TAP(G, m, n),

AMP run on G finds the planted point (m, n) whp

This can be proved by the same strategy!

(m?, n?) (m, n) T = {typical pts}

/.\ /. : )
. A “‘ (\
(m*, n%) \ T
O P strongly convex-
(m*, n") concave zone

By adapting state evolution & gaussian comparison to planted model:

o (mk, n*) e T, ||VFrap(mk, n¥)|| = ox(1)
e Frap strongly convex-concave near (m*, n¥)
o [[(m*,n*) — (m, n)|| = or(1)
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Recap: contiguity of true / planted models

T = {typical (m,n)}

X 7|7
X 212
X 217
G

X 202
X i
x| 717

(m,n)

We show, for G ~ true model:
@ Existence: G has TAP solution (m, n) € T whp (most rows have a x)
@ Uniqueness:  E[#TAP solutions in T] =1+ o(1) (rows average 1 + o(1) x's)

This shows true ~ planted.
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Recap: proof roadmap

Conjecturally similar )
True model: under TAP heuristic Planted model:
G iid gaussian ittt ’ G cond on
& Our work proves this. . . TAP(G, m, n)
1st/2nd mt
method
. .. .justifying this implication .
Ay = KM IN Ay = QKM IN
true model Follows if TAP heuristic proven planted model
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Conclusion

@ We show contiguity of true model & model with planted TAP fixed point

@ Then, 1st/2nd moment in planted model locates capacity o, = axu
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Conclusion

@ We show contiguity of true model & model with planted TAP fixed point

@ Then, 1st/2nd moment in planted model locates capacity o, = axu

@ Open Q: capacity of non “replica symmetric’ models? E.g. spherical x < 0
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Conclusion

@ We show contiguity of true model & model with planted TAP fixed point

@ Then, 1st/2nd moment in planted model locates capacity o, = axu

@ Open Q: capacity of non “replica symmetric’ models? E.g. spherical x < 0

Thank you!
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Choice of typical set T

Define the coordinate profiles

N
pm) = 5D 8(m) )= 323000 € PE®)
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Choice of typical set T

Define the coordinate profiles

1 & 1Y
p(m) = NZa(m,) v(n) = MZa(na) € P(R)

Under planted model, these concentrate around explicit /1., V..
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Define the coordinate profiles

1 & 1Y
p(m) = NZa(m,) v(n) = MZa(na) € P(R)

Under planted model, these concentrate around explicit /1., V..

Choice: T={(m,n) : p(m) = v(n)=v.}

Arises in proof steps:
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Choice of typical set T

Define the coordinate profiles

1 & 1Y
p(m) = NZé(m;) v(n) = MZa(na) € P(R)

Under planted model, these concentrate around explicit /1., V..

Choice: T={(m,n) : p(m) = v(n)=v.}

Arises in proof steps:

e For (m,n) € T, 1st/2nd mt method works conditional on (m, n).
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Choice of typical set T

Define the coordinate profiles

1 1 &
pu(m) = N Z 5(m;) v(n) = v Z 8(n.) € P(R)

Under planted model, these concentrate around explicit /1., V..

Choice: T={(m,n) : p(m) = v(n)=v.}

Arises in proof steps:
e For (m,n) € T, 1st/2nd mt method works conditional on (m, n).

@ AMP state evolution characterizes coordinate profile of iterates m*, n*.
This allows us to show (m*, n¥) € T.
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Earlier work: AMP-conditioned moment method

. GTnk =~ Gmk
T R
VN VN

Plan: for large k = O(1), condition on m*, n' ... m* n* then 1st/2nd moment

No existence / uniqueness issue, but now E[|5( )\ |AMP] is k-dim optimization
(Over codimension-k slices of {#1}" orthogonal to m? m*)

DS18: for lower bound, tractable 1st/2nd moment on truncated count
|S(M) N {correct affine slice}|

Upper bound: can’t do truncation, optimization intractable
Ising perceptron April 20, 2025  2/2
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