Capacity threshold for the Ising perceptron

Brice Huang (MIT)

Brown Probability Seminar

April 29, 2025

Direct approach: 1st/2nd moment method

3 Physics intuitions and proof roadmap

Justifying the TAP heuristic

Intersection of $\Sigma_N = \{-1, 1\}^N$ or $\sqrt{N}\mathbb{S}^{N-1}$ with M i.i.d. random half-spaces

Intersection of $\Sigma_N = \{-1, 1\}^N$ or $\sqrt{N} \mathbb{S}^{N-1}$ with M i.i.d. random half-spaces

Formally: for $g^1, \ldots, g^M \sim \mathcal{N}(0, I_N)$,

$$S = \{ \boldsymbol{x} \in \Sigma_N : (\boldsymbol{g}^a, \boldsymbol{x}) \ge 0, \quad \forall 1 \le a \le M \}$$

Intersection of $\Sigma_N = \{-1, 1\}^N$ or $\sqrt{N}\mathbb{S}^{N-1}$ with $M = \alpha N$ i.i.d. random half-spaces

Formally: for $g^1, \ldots, g^M \sim \mathcal{N}(0, I_N)$,

$$S = \{ \boldsymbol{x} \in \Sigma_N : (\boldsymbol{g}^a, \boldsymbol{x}) \ge 0, \quad \forall 1 \le a \le M \}$$

Intersection of $\Sigma_N = \{-1, 1\}^N$ or $\sqrt{N}\mathbb{S}^{N-1}$ with $M = \alpha N$ i.i.d. random half-spaces

 $\alpha = \text{constraint density}$

Formally: for $g^1, \ldots, g^M \sim \mathcal{N}(0, I_N)$,

$$S = \{ \mathbf{x} \in \Sigma_N : (\mathbf{g}^a, \mathbf{x}) \ge 0, \quad \forall 1 \le a \le M \}$$

Intersection of $\Sigma_N = \{-1, 1\}^N$ or $\sqrt{N}\mathbb{S}^{N-1}$ with $M = \alpha N$ i.i.d. random half-spaces $\alpha = \text{constraint density}$

Formally: for $g^1, \dots, g^M \sim \mathcal{N}(0, I_N)$, $S = \{ \mathbf{x} \in \Sigma_N : (g^a, \mathbf{x}) \ge 0, \quad \forall 1 \le a \le M \}$

Capacity problem: is there a critical density α_* where *S* goes from nonempty to empty (whp)? If so, what is it?

Application: linear classification

Given labeled dataset $(g^1, y^1), \ldots, (g^M, y^M) \in \mathbb{R}^N \times \{-1, 1\}$, is there a separating hyperplane?

Application: linear classification

Given labeled dataset $(g^1, y^1), \ldots, (g^M, y^M) \in \mathbb{R}^N \times \{-1, 1\}$, is there a separating hyperplane?

That is, does there exist \boldsymbol{x} such that

$$\mathbf{y}^{\mathbf{a}}(\mathbf{g}^{\mathbf{a}},\mathbf{x})\geq 0 \qquad \forall 1\leq \mathbf{a}\leq M?$$

Application: linear classification

Given labeled dataset $(g^1, y^1), \ldots, (g^M, y^M) \in \mathbb{R}^N \times \{-1, 1\}$, is there a separating hyperplane?

That is, does there exist \boldsymbol{x} such that

$$y^a(g^a, \mathbf{x}) \ge 0 \qquad \forall 1 \le a \le M?$$

Consider random labels model:

 $\mathbf{g}^{a} \sim \mathcal{N}(0, I_{N})$ independent of $\mathbf{y}^{a} \sim \text{unif}(\pm 1)$.

This is equivalent to capacity problem! Hyperplane exists $\Leftrightarrow M/N < \alpha_*$.

Application: discrepancy minimization

Related model: symmetric perceptron with constraints $(\mathbf{g}^a, \mathbf{x})/\sqrt{N} \in [-\kappa, \kappa]$

(Aubin Perkins Zdeborová 19, Perkins Xu 21, Abbe Li Sly 22, ...)

Application: discrepancy minimization

Related model: symmetric perceptron with constraints $(g^a, x)/\sqrt{N} \in [-\kappa, \kappa]$

(Aubin Perkins Zdeborová 19, Perkins Xu 21, Abbe Li Sly 22, ...)

 \leftrightarrow discrepancy minimization: given $G \in \mathbb{R}^{M \times N}$, find $\mathbf{x} \in \{\pm 1\}^N$ minimizing

$$\|\boldsymbol{G}\boldsymbol{x}\|_{\infty} = \left\| M\left\{ \boxed{\underbrace{\boldsymbol{g}^{\ast}}_{\boldsymbol{g}^{\ast}}}_{\boldsymbol{G}} \left\| \mathbf{x} \right\} \right\} \right\|_{\infty}$$

(Spencer 85, Bansal 10, Lovett Meka 15, Rothvoss 17, Eldan Singh 18, ...)

Application: discrepancy minimization

Related model: symmetric perceptron with constraints $(\mathbf{g}^a, \mathbf{x})/\sqrt{N} \in [-\kappa, \kappa]$

(Aubin Perkins Zdeborová 19, Perkins Xu 21, Abbe Li Sly 22, ...)

 \leftrightarrow discrepancy minimization: given $G \in \mathbb{R}^{M \times N}$, find $\mathbf{x} \in \{\pm 1\}^N$ minimizing

$$\|\mathbf{G}\mathbf{x}\|_{\infty} = \left\| M\left\{ \underbrace{\boxed{\begin{array}{|c|c|}} & \mathbf{x} \\ \hline & \mathbf{g}^{*} \\ \hline$$

(Spencer 85, Bansal 10, Lovett Meka 15, Rothvoss 17, Eldan Singh 18, ...)

Applications: randomized control trials, sparsification, differential privacy, ...

Problem restatement: Ising perceptron

Intersection of $\Sigma_N = \{-1, 1\}^N$ with $M = \alpha N$ i.i.d. random half-spaces

 $\alpha = \text{constraint density}$

Formally: for $\mathbf{g}^1, \ldots, \mathbf{g}^M \sim \mathcal{N}(0, I_N)$,

$$S = \{ \boldsymbol{x} \in \Sigma_N : (\boldsymbol{g}^a, \boldsymbol{x}) \ge 0, \quad \forall 1 \le a \le M \}$$

Capacity problem: is there a critical density α_* where *S* goes from nonempty to empty (whp)? If so, what is it?

Main result

Conjecture (Krauth Mézard 1989)

For the Ising perceptron, $\alpha_* = \alpha_{\rm KM} \approx 0.833$.

Theorem (Ding Sun 2018)

 $\alpha_* \geq \alpha_{\rm KM}$, under condition that an explicit univariate function is ≤ 0 .

Main result

Conjecture (Krauth Mézard 1989)

For the Ising perceptron, $\alpha_* = \alpha_{\rm KM} \approx 0.833$.

Theorem (Ding Sun 2018)

 $\alpha_* \geq \alpha_{\rm KM}$, under condition that an explicit univariate function is ≤ 0 .

Theorem (H. 2024)

 $\alpha_* \leq \alpha_{KM}$, under condition that an explicit 2-variable function (next slide) is ≤ 0 .

Main result

Conjecture (Krauth Mézard 1989)

For the Ising perceptron, $\alpha_* = \alpha_{\rm KM} \approx 0.833$.

Theorem (Ding Sun 2018)

 $\alpha_* \geq \alpha_{\rm KM}$, under condition that an explicit univariate function is ≤ 0 .

Theorem (H. 2024)

 $\alpha_* \leq \alpha_{KM}$, under condition that an explicit 2-variable function (next slide) is ≤ 0 .

Both results hold for more general model with margin $\kappa \in \mathbb{R}$:

$$S = \left\{ \boldsymbol{x} \in \Sigma_N : \frac{(\boldsymbol{g}^a, \boldsymbol{x})}{\sqrt{N}} \ge \kappa, \quad \forall 1 \le a \le M \right\}$$

for suitable threshold $\alpha_{\rm KM}(\kappa)$, under further numerical conditions depending on κ .

The function \mathscr{S}_* in our numerical condition

 $\mathscr{S}_*(1,0)=0$ local max, conjecturally unique global max

Plot of \mathscr{S}_* (domain \mathbb{R}^2 reparametrized to $[-1,1]^2$):

Background: physics predictions

Gardner Derrida 88, Krauth Mézard 89:

• Volume formula $\frac{1}{N} \log |S(\alpha N \text{ constraints})| \xrightarrow{P} \text{Vol}(\alpha)$ in terms of fixed pt eqn

Background: physics predictions

Gardner Derrida 88, Krauth Mézard 89:

- Volume formula $\frac{1}{N} \log |S(\alpha N \text{ constraints})| \xrightarrow{P} \text{Vol}(\alpha)$ in terms of fixed pt eqn
- Capacity: α_{KM} solves $Vol(\alpha_{KM}) = 0$

Rigorous results: positive spherical perceptron

For constraints $(\mathbf{g}^a, \mathbf{x})/\sqrt{N} \ge \kappa$, where $\kappa \ge 0$:

- Shcherbina Tirozzi 03: proof of volume limit $Vol_{\kappa}(\alpha)$ (and thus capacity)
- Stojnic 13: simple proof of capacity threshold

Rigorous results: positive spherical perceptron

For constraints $(\mathbf{g}^a, \mathbf{x})/\sqrt{N} \ge \kappa$, where $\kappa \ge 0$:

- Shcherbina Tirozzi 03: proof of volume limit $Vol_{\kappa}(\alpha)$ (and thus capacity)
- Stojnic 13: simple proof of capacity threshold

Crucial to proofs: $\kappa \geq 0$ spherical perceptron is **convex** problem

 Talagrand 11, Xu 21, Nakajima Sun 23: sharp threshold sequence α_{*}(N) (non-explicit, doesn't imply α_{*} = lim_{N→∞} α_{*}(N) exists)

- Talagrand 11, Xu 21, Nakajima Sun 23: sharp threshold sequence α_{*}(N) (non-explicit, doesn't imply α_{*} = lim_{N→∞} α_{*}(N) exists)
- Simple bound: $\alpha_* \leq 1$ (more later)
- Kim Roche 98, Talagrand 99 & 00: $\varepsilon \leq \alpha_* \leq 1 \varepsilon$

- Talagrand 11, Xu 21, Nakajima Sun 23: sharp threshold sequence α_{*}(N) (non-explicit, doesn't imply α_{*} = lim_{N→∞} α_{*}(N) exists)
- Simple bound: $\alpha_* \leq 1$ (more later)
- Kim Roche 98, Talagrand 99 & 00: $\varepsilon \leq \alpha_* \leq 1 \varepsilon$
- Ding Sun 18: $\alpha_* \geq \alpha_{\text{KM}} \approx 0.833$

- Talagrand 11, Xu 21, Nakajima Sun 23: sharp threshold sequence α_{*}(N) (non-explicit, doesn't imply α_{*} = lim_{N→∞} α_{*}(N) exists)
- Simple bound: $\alpha_* \leq 1$ (more later)
- Kim Roche 98, Talagrand 99 & 00: $\varepsilon \leq \alpha_* \leq 1 \varepsilon$
- Ding Sun 18: $\alpha_* \geq \alpha_{\text{KM}} \approx 0.833$
- Altschuler Tikhomirov 24: $\alpha_* \leq 0.847$

- Talagrand 11, Xu 21, Nakajima Sun 23: sharp threshold sequence α_{*}(N) (non-explicit, doesn't imply α_{*} = lim_{N→∞} α_{*}(N) exists)
- Simple bound: $\alpha_* \leq 1$ (more later)
- Kim Roche 98, Talagrand 99 & 00: $\varepsilon \leq \alpha_* \leq 1 \varepsilon$
- Ding Sun 18: $\alpha_* \geq \alpha_{\text{KM}} \approx 0.833$
- Altschuler Tikhomirov 24: $\alpha_* \leq 0.847$
- H. 24: α_∗ ≤ α_{KM}

2 Direct approach: 1st/2nd moment method

3 Physics intuitions and proof roadmap

- $\mathbb{E}|S(N\alpha)| \ll 1 \Rightarrow$ no solution at constriant density α (whp)
- $\mathbb{E}[|S(N\alpha)|^2] = O(1) \cdot (\mathbb{E}|S(N\alpha)|)^2 \Rightarrow \exists \text{ soln at density } \alpha \text{ (with } \Omega(1) \text{ prob})$

- $\mathbb{E}|S(N\alpha)| \ll 1 \Rightarrow$ no solution at constriant density α (whp)
- $\mathbb{E}[|S(N\alpha)|^2] = O(1) \cdot (\mathbb{E}|S(N\alpha)|)^2 \Rightarrow \exists \text{ soln at density } \alpha \text{ (with } \Omega(1) \text{ prob)}$

This provides a simple strategy to (try to) locate capacity:

- $\mathbb{E}|S(N\alpha)| \ll 1 \Rightarrow$ no solution at constriant density α (whp)
- $\mathbb{E}[|S(N\alpha)|^2] = O(1) \cdot (\mathbb{E}|S(N\alpha)|)^2 \Rightarrow \exists \text{ soln at density } \alpha \text{ (with } \Omega(1) \text{ prob})$

This provides a simple strategy to (try to) locate capacity:

• Let $\alpha_{1\text{mt}}$ be solution to $\mathbb{E}|S(N\alpha_{1\text{mt}})| = 1$. (So no solns whp for $\alpha > \alpha_{1\text{mt}}$)

- $\mathbb{E}|S(N\alpha)| \ll 1 \Rightarrow$ no solution at constriant density α (whp)
- $\mathbb{E}[|S(N\alpha)|^2] = O(1) \cdot (\mathbb{E}|S(N\alpha)|)^2 \Rightarrow \exists \text{ soln at density } \alpha \text{ (with } \Omega(1) \text{ prob})$

This provides a simple strategy to (try to) locate capacity:

• Let $\alpha_{1\text{mt}}$ be solution to $\mathbb{E}[S(N\alpha_{1\text{mt}})] = 1$. (So no solns whp for $\alpha > \alpha_{1\text{mt}}$)

• (Hope to) show $\mathbb{E}[|S(N\alpha_{1mt})|^2] \asymp (\mathbb{E}|S(N\alpha_{1mt})|)^2 = 1$. If so, $\alpha_* = \alpha_{1mt}$

This locates α_* in symmetric Ising perceptron with constraints $\frac{|(g^*, \mathbf{x})|}{\sqrt{N}} \leq \kappa$ (Aubin Perkins Zdeborová 19, Perkins Xu 21, Abbe Li Sly 22, ...)

This locates α_* in symmetric Ising perceptron with constraints $\frac{|(g^*, \mathbf{x})|}{\sqrt{N}} \leq \kappa$ (Aubin Perkins Zdeborová 19, Perkins Xu 21, Abbe Li Sly 22, ...)

In this model, $S(M) = \{ \boldsymbol{x} \in \{\pm 1\}^N : \frac{|(\boldsymbol{g}^a, \boldsymbol{x})|}{\sqrt{N}} \le \kappa \quad \forall 1 \le a \le M \}$

This locates α_* in symmetric Ising perceptron with constraints $\frac{|(g^*, x)|}{\sqrt{N}} \leq \kappa$ (Aubin Perkins Zdeborová 19, Perkins Xu 21, Abbe Li Sly 22, ...)

In this model,
$$S(M) = \{ \mathbf{x} \in \{\pm 1\}^N : \frac{|(\mathbf{g}^a, \mathbf{x})|}{\sqrt{N}} \le \kappa \quad \forall 1 \le a \le M \}$$

 $\mathbb{E}|S(M)| = 2^N \cdot \mathbb{P}(a \text{ fixed } \boldsymbol{x} \text{ is in } S(M))$

This locates α_* in symmetric Ising perceptron with constraints $\frac{|(g^a, \mathbf{x})|}{\sqrt{N}} \leq \kappa$ (Aubin Perkins Zdeborová 19, Perkins Xu 21, Abbe Li Sly 22, ...)

In this model,
$$S(M) = \{ \mathbf{x} \in \{\pm 1\}^N : \frac{|(\mathbf{g}^a, \mathbf{x})|}{\sqrt{N}} \le \kappa \quad \forall 1 \le a \le M \}$$

$$\mathbb{E}|S(M)| = 2^{N} \cdot \mathbb{P}(\text{a fixed } \boldsymbol{x} \text{ is in } S(M))$$
$$= 2^{N} \cdot \prod_{a=1}^{M} \mathbb{P}\left(\frac{|(\boldsymbol{g}^{a}, \boldsymbol{x})|}{\sqrt{N}} \leq \kappa\right)$$
1st/2nd moment method: a success story

This locates α_* in symmetric Ising perceptron with constraints $\frac{|(g^a, \mathbf{x})|}{\sqrt{N}} \leq \kappa$ (Aubin Perkins Zdeborová 19, Perkins Xu 21, Abbe Li Sly 22, ...)

In this model,
$$S(M) = \{ \mathbf{x} \in \{\pm 1\}^N : \frac{|(\mathbf{g}^a, \mathbf{x})|}{\sqrt{N}} \le \kappa \quad \forall 1 \le a \le M \}$$

$$\mathbb{E}|S(M)| = 2^{N} \cdot \mathbb{P}(\text{a fixed } \boldsymbol{x} \text{ is in } S(M))$$
$$= 2^{N} \cdot \prod_{a=1}^{M} \mathbb{P}\left(\frac{|(\boldsymbol{g}^{a}, \boldsymbol{x})|}{\sqrt{N}} \leq \kappa\right) = 2^{N} \cdot \mathbb{P}(|\mathcal{N}(0, 1)| \leq \kappa)^{M}$$

1st/2nd moment method: a success story

This locates α_* in symmetric Ising perceptron with constraints $\frac{|(g^a, x)|}{\sqrt{N}} \leq \kappa$ (Aubin Perkins Zdeborová 19, Perkins Xu 21, Abbe Li Sly 22, ...)

In this model,
$$S(M) = \{ \mathbf{x} \in \{\pm 1\}^N : \frac{|(\mathbf{g}^a, \mathbf{x})|}{\sqrt{N}} \le \kappa \quad \forall 1 \le a \le M \}$$

$$\mathbb{E}|S(M)| = 2^{N} \cdot \mathbb{P}(\text{a fixed } \boldsymbol{x} \text{ is in } S(M))$$
$$= 2^{N} \cdot \prod_{a=1}^{M} \mathbb{P}\left(\frac{|(\boldsymbol{g}^{a}, \boldsymbol{x})|}{\sqrt{N}} \leq \kappa\right) = 2^{N} \cdot \mathbb{P}(|\mathcal{N}(0, 1)| \leq \kappa)^{M}$$

 $\mathbb{E}|S(M)|^2$ can be calculated similarly, and moment method works.

In our model, $S(\alpha N) = \{ \mathbf{x} \in \{\pm 1\}^N : (\mathbf{g}^a, \mathbf{x}) \ge 0 \quad \forall 1 \le a \le \alpha N \}$

In our model, $S(\alpha N) = \{ \mathbf{x} \in \{\pm 1\}^N : (\mathbf{g}^a, \mathbf{x}) \ge 0 \quad \forall 1 \le a \le \alpha N \}$

 $\mathbb{E}|S(\alpha N)| = 2^N \cdot 2^{-\alpha N}$, so $\alpha_{1mt} = 1$. This proves $\alpha_* \leq 1$.

In our model, $S(\alpha N) = \{ \mathbf{x} \in \{\pm 1\}^N : (\mathbf{g}^a, \mathbf{x}) \ge 0 \quad \forall 1 \le a \le \alpha N \}$

 $\mathbb{E}|S(\alpha N)| = 2^N \cdot 2^{-\alpha N}$, so $\alpha_{1mt} = 1$. This proves $\alpha_* \leq 1$.

But. . . this doesn't locate true threshold $\alpha_{\rm KM} pprox$ 0.833 \oplus

In our model, $S(\alpha N) = \{ \mathbf{x} \in \{\pm 1\}^N : (\mathbf{g}^a, \mathbf{x}) \ge 0 \quad \forall 1 \le a \le \alpha N \}$

 $\mathbb{E}|S(\alpha N)| = 2^N \cdot 2^{-\alpha N}$, so $\alpha_{1mt} = 1$. This proves $\alpha_* \leq 1$.

But. . . this doesn't locate true threshold $lpha_{\mathsf{KM}}pprox$ 0.833 \oplus

Solution set is not centered on origin:

Solution set is not centered on origin:

Each constraint deletes half of solutions on average, but genuine fluctuations

Solution set is not centered on origin:

Each constraint deletes half of solutions on average, but genuine fluctuations

Solution set is not centered on origin:

Each constraint deletes half of solutions on average, but genuine fluctuations

Solution set is not centered on origin:

Each constraint deletes half of solutions on average, but genuine fluctuations

Solution set is not centered on origin:

Each constraint deletes half of solutions on average, but genuine fluctuations

What goes wrong? A large deviations perspective

 $\mathbb{E}|S(N\alpha)|$ dominated by events where the g^a are atypically correlated

Operation of the second sec

4 Justifying the TAP heuristic

Key intuition of Ding Sun 18, Bolthausen 19: 1st mt failure caused by large deviation events in **barycenter** of solution set S

Key intuition of Ding Sun 18, Bolthausen 19: 1st mt failure caused by large deviation events in **barycenter** of solution set S

That is, $\mathbb{E}(|S|) \gg (\text{typical } |S|)$ but we expect, for **typical** realization of barycenter: (typical $|S|) \approx \mathbb{E}(|S|| \text{ barycenter})$

Key intuition of Ding Sun 18, Bolthausen 19: 1st mt failure caused by large deviation events in **barycenter** of solution set S

That is, $\mathbb{E}(|S|) \gg (\text{typical } |S|)$ but we expect, for **typical** realization of barycenter: (typical $|S|) \approx \mathbb{E}(|S|| \text{ barycenter}) \approx \mathbb{E}(|S|^2 | \text{ barycenter})^{1/2}$

Key intuition of Ding Sun 18, Bolthausen 19: 1st mt failure caused by large deviation events in **barycenter** of solution set S

That is, $\mathbb{E}(|S|) \gg (\text{typical } |S|)$ but we expect, for **typical** realization of barycenter: (typical $|S|) \approx \mathbb{E}(|S|| \text{ barycenter}) \approx \mathbb{E}(|S|^2 | \text{ barycenter})^{1/2}$

Suggests plan: condition on typical realization of barycenter, then 1st/2nd mt

Key intuition of Ding Sun 18, Bolthausen 19: 1st mt failure caused by large deviation events in **barycenter** of solution set S

That is, $\mathbb{E}(|S|) \gg (\text{typical } |S|)$ but we expect, for **typical** realization of barycenter: (typical $|S|) \approx \mathbb{E}(|S|| \text{ barycenter}) \approx \mathbb{E}(|S|^2 | \text{ barycenter})^{1/2}$

Suggests plan: **condition** on typical realization of barycenter, then 1st/2nd mt Barycenter is mathematically complicated, but can condition on **physics proxy**

TAP equation: nonlinear system in

- $\boldsymbol{G} \in \mathbb{R}^{M imes N}$ matrix with rows $\boldsymbol{g^1}, \dots, \boldsymbol{g^M}$
- $m \in \mathbb{R}^N$ barycenter of S

• $n \in \mathbb{R}^M$ average slacks of constraints: $n_a = \operatorname{avg}_{x \in S} \left\{ \frac{\langle g^a, x \rangle}{\sqrt{N}} \right\}$

TAP equation: nonlinear system in

- $\boldsymbol{G} \in \mathbb{R}^{M \times N}$ matrix with rows $\boldsymbol{g}^1, \dots, \boldsymbol{g}^M$
- $m \in \mathbb{R}^N$ barycenter of S
- $n \in \mathbb{R}^{M}$ average slacks of constraints: $n_{a} = \operatorname{avg}_{x \in S} \left\{ \frac{\langle g^{a}, x \rangle}{\sqrt{N}} \right\}$

For explicit nonlinearities $\dot{F}, \hat{F} : \mathbb{R} \to \mathbb{R}$, constants b, d:

$$\boldsymbol{m} = \dot{F} \left(\frac{\boldsymbol{G}^{\top} \boldsymbol{n}}{\sqrt{N}} - d\boldsymbol{m} \right) \qquad \boldsymbol{n} = \widehat{F} \left(\frac{\boldsymbol{G} \boldsymbol{m}}{\sqrt{N}} - b\boldsymbol{n} \right)$$

TAP equation: nonlinear system in

- $\boldsymbol{G} \in \mathbb{R}^{M imes N}$ matrix with rows $\boldsymbol{g^1}, \dots, \boldsymbol{g^M}$
- $m \in \mathbb{R}^N$ barycenter of S
- $n \in \mathbb{R}^{M}$ average slacks of constraints: $n_{a} = \operatorname{avg}_{x \in S} \left\{ \frac{\langle g^{a}, x \rangle}{\sqrt{N}} \right\}$

For explicit nonlinearities $\dot{F}, \hat{F} : \mathbb{R} \to \mathbb{R}$, constants b, d:

$$\boldsymbol{m} = \dot{F} \left(\frac{\boldsymbol{G}^{\top} \boldsymbol{n}}{\sqrt{N}} - d\boldsymbol{m} \right) \qquad \boldsymbol{n} = \widehat{F} \left(\frac{\boldsymbol{G} \boldsymbol{m}}{\sqrt{N}} - b\boldsymbol{n} \right)$$

(\leftrightarrow dense graph limit of **belief propagation**)

TAP equation: nonlinear system in

- $\boldsymbol{G} \in \mathbb{R}^{M imes N}$ matrix with rows $\boldsymbol{g}^1, \dots, \boldsymbol{g}^M$
- $m \in \mathbb{R}^N$ barycenter of S
- $n \in \mathbb{R}^M$ average slacks of constraints: $n_a = \operatorname{avg}_{x \in S} \left\{ \frac{\langle g^a, x \rangle}{\sqrt{N}} \right\}$

For explicit nonlinearities $\dot{F}, \hat{F} : \mathbb{R} \to \mathbb{R}$, constants b, d:

$$\boldsymbol{m} = \dot{F} \left(\frac{\boldsymbol{G}^{\top} \boldsymbol{n}}{\sqrt{N}} - d\boldsymbol{m} \right) \qquad \boldsymbol{n} = \widehat{F} \left(\frac{\boldsymbol{G} \boldsymbol{m}}{\sqrt{N}} - b\boldsymbol{n} \right)$$

(\leftrightarrow dense graph limit of **belief propagation**)

$$\boldsymbol{m} = \dot{F} \left(\frac{\boldsymbol{G}^{\top} \boldsymbol{n}}{\sqrt{N}} - d\boldsymbol{m} \right) \qquad \boldsymbol{n} = \widehat{F} \left(\frac{\boldsymbol{G} \boldsymbol{m}}{\sqrt{N}} - b\boldsymbol{n} \right)$$

Physics prediction: for typical G, there is a unique solution (m, n)

$$\boldsymbol{m} = \dot{F} \left(\frac{\boldsymbol{G}^{\top} \boldsymbol{n}}{\sqrt{N}} - d\boldsymbol{m} \right) \qquad \boldsymbol{n} = \widehat{F} \left(\frac{\boldsymbol{G} \boldsymbol{m}}{\sqrt{N}} - b\boldsymbol{n} \right)$$

Physics prediction: for typical G, there is a unique solution (m, n)

Key idea: planted model:

- Sample (*m*, *n*) from its law (explicit physics prediction)
- Sample **G** conditioned on TAP(G, m, n)

Belief: planted \approx true model;

$$\boldsymbol{m} = \dot{F} \left(\frac{\boldsymbol{G}^{\top} \boldsymbol{n}}{\sqrt{N}} - d\boldsymbol{m} \right) \qquad \boldsymbol{n} = \widehat{F} \left(\frac{\boldsymbol{G} \boldsymbol{m}}{\sqrt{N}} - b\boldsymbol{n} \right)$$

Physics prediction: for typical G, there is a unique solution (m, n)

Key idea: planted model:

- Sample (*m*, *n*) from its law (explicit physics prediction)
- **2** Sample **G** conditioned on TAP(G, m, n)

Belief: planted \approx true model; 1st/2nd mt conditional on (m, n) finds threshold

$$\boldsymbol{m} = \dot{F} \left(\frac{\boldsymbol{G}^{\top} \boldsymbol{n}}{\sqrt{N}} - d\boldsymbol{m} \right) \qquad \boldsymbol{n} = \widehat{F} \left(\frac{\boldsymbol{G} \boldsymbol{m}}{\sqrt{N}} - b\boldsymbol{n} \right)$$

Physics prediction: for typical G, there is a unique solution (m, n)

Key idea: planted model:

- Sample (*m*, *n*) from its law (explicit physics prediction)
- **2** Sample **G** conditioned on TAP(G, m, n)

Belief: planted \approx true model; 1st/2nd mt conditional on (m, n) finds threshold

Q existence/uniqueness of (m, n) is not proven. Not known that planted \approx true!

$$\boldsymbol{m} = \dot{F} \left(\frac{\boldsymbol{G}^{\top} \boldsymbol{n}}{\sqrt{N}} - d\boldsymbol{m} \right) \qquad \boldsymbol{n} = \widehat{F} \left(\frac{\boldsymbol{G} \boldsymbol{m}}{\sqrt{N}} - b\boldsymbol{n} \right)$$

Physics prediction: for typical G, there is a unique solution (m, n)

Key idea: planted model:

- Sample (*m*, *n*) from its law (explicit physics prediction)
- **2** Sample **G** conditioned on TAP(G, m, n)

Belief: planted \approx true model; 1st/2nd mt conditional on (m, n) finds threshold

Q existence/uniqueness of (m, n) is not proven. Not known that planted \approx true!

Recall planted model:

• Sample (*m*, *n*) from its law

• Sample **G** conditional on
$$\mathbf{m} = \dot{F} \left(\frac{\mathbf{G}^{\top} \mathbf{n}}{\sqrt{N}} - d\mathbf{m} \right), \ \mathbf{n} = \widehat{F} \left(\frac{\mathbf{G} \mathbf{m}}{\sqrt{N}} - b\mathbf{n} \right)$$

Recall planted model:

- Sample (*m*, *n*) from its law
- Sample **G** conditional on $m = \dot{F} \left(\frac{\mathbf{G}^{\top} \mathbf{n}}{\sqrt{N}} dm \right)$, $\mathbf{n} = \hat{F} \left(\frac{\mathbf{G}m}{\sqrt{N}} b\mathbf{n} \right)$

This is **linear** constraint on **G**

Recall planted model:

• Sample (*m*, *n*) from its law

• Sample **G** conditional on
$$m = \dot{F} \left(\frac{G^{\top} n}{\sqrt{N}} - dm \right)$$
, $n = \hat{F} \left(\frac{Gm}{\sqrt{N}} - bn \right)$

This is linear constraint on $G \Rightarrow$ conditional on (m, n), G remains gaussian!

Recall planted model:

• Sample (*m*, *n*) from its law

• Sample **G** conditional on
$$m = \dot{F} \left(\frac{G^{\top} n}{\sqrt{N}} - dm \right)$$
, $n = \hat{F} \left(\frac{Gm}{\sqrt{N}} - bn \right)$

This is linear constraint on $G \Rightarrow$ conditional on (m, n), G remains gaussian!

 \Rightarrow conditional moments of $|S(\alpha N)|$ remain tractable.

Recall planted model:

• Sample (*m*, *n*) from its law

• Sample **G** conditional on
$$m = \dot{F} \left(\frac{G^{\top} n}{\sqrt{N}} - dm \right)$$
, $n = \hat{F} \left(\frac{Gm}{\sqrt{N}} - bn \right)$

This is **linear** constraint on $G \Rightarrow$ conditional on (m, n), G remains gaussian!

 \Rightarrow conditional moments of $|S(\alpha N)|$ remain tractable. For typical (m, n),

$$\mathbb{E}[|S(\alpha N)||\boldsymbol{m}, \boldsymbol{n}] \quad \approx \quad \mathbb{E}[|S(\alpha N)|^2|\boldsymbol{m}, \boldsymbol{n}]^{1/2} \quad \approx \quad \exp(N \operatorname{Vol}(\alpha))$$

Recall planted model:

• Sample (*m*, *n*) from its law

• Sample **G** conditional on
$$m = \dot{F} \left(\frac{G^{\top} n}{\sqrt{N}} - dm \right)$$
, $n = \hat{F} \left(\frac{Gm}{\sqrt{N}} - bn \right)$

This is **linear** constraint on $G \Rightarrow$ conditional on (m, n), G remains gaussian!

 \Rightarrow conditional moments of $|S(\alpha N)|$ remain tractable. For typical (m, n),

 $\mathbb{E}[|S(\alpha N)||\boldsymbol{m},\boldsymbol{n}] \quad \approx \quad \mathbb{E}[|S(\alpha N)|^2|\boldsymbol{m},\boldsymbol{n}]^{1/2} \quad \approx \quad \exp(N\operatorname{Vol}(\alpha))$

 \Rightarrow planted model has capacity $\alpha_{\rm KM}$

$$\frac{\frac{1}{N} \log |S(\alpha N)|}{= \operatorname{Vol}(\alpha)}$$

Recall planted model:

• Sample (*m*, *n*) from its law

• Sample **G** conditional on
$$m = \dot{F} \left(\frac{G^{\top} n}{\sqrt{N}} - dm \right)$$
, $n = \hat{F} \left(\frac{Gm}{\sqrt{N}} - bn \right)$

This is **linear** constraint on $G \Rightarrow$ conditional on (m, n), G remains gaussian!

 \Rightarrow conditional moments of $|S(\alpha N)|$ remain tractable. For typical (m, n),

 $\mathbb{E}[|S(\alpha N)||m,n] \approx \mathbb{E}[|S(\alpha N)|^2|m,n]^{1/2} \approx \exp(N \operatorname{Vol}(\alpha))$

 \Rightarrow planted model has capacity α_{KM} (under our + DS18's numerical conditions)

$$\frac{1}{N} \log |S(\alpha N)|$$

$$= \operatorname{Vol}(\alpha)$$

Proof roadmap

3 Physics intuitions and proof roadmap

True model \leftrightarrow random row Planted model \leftrightarrow random col, then random \times in col

True model \leftrightarrow random row Planted model \leftrightarrow random col, then random \times in col

Under TAP prediction, most rows have exactly one \times so true \approx planted

True model \leftrightarrow random row Planted model \leftrightarrow random col, then random \times in col

Under TAP prediction, most rows have exactly one \times so true \approx planted

but... we don't actually know this 😊

True model \leftrightarrow random row Planted model \leftrightarrow random col, then random \times in col

Under TAP prediction, most rows have exactly one \times so true \approx planted

but... we don't actually know this 😊

True model \leftrightarrow random row Planted model \leftrightarrow random col, then random \times in col

Under TAP prediction, most rows have exactly one \times so true \approx planted

but...we don't actually know this 🙁

 \Rightarrow planted / true models can a priori be very different

 $T = \{\text{"typical"}(m, n)\}$ (suitably defined set; whp in planted model)

We show, for $G \sim$ true model:

Sexistence: G has TAP solution $(m, n) \in T$ whp (most rows have a \times in T)

We show, for $G \sim$ true model:

- Sexistence: **G** has TAP solution $(m, n) \in T$ whp (most rows have a \times in T)
- **3** Uniqueness: $\mathbb{E}[\#\text{TAP solutions in } T] = 1 + o(1) \text{ (rows average } 1 + o(1) \times \text{'s in } T)$

 $T = \{$ "typical" $(m, n)\}$ (suitably defined set; whp in planted model)

We show, for $G \sim$ true model:

- Sexistence: G has TAP solution $(m, n) \in T$ whp (most rows have a \times in T)
- **3** Uniqueness: $\mathbb{E}[\#\text{TAP solutions in } T] = 1 + o(1) \text{ (rows average } 1 + o(1) \times \text{'s in } T)$

 $T = \{$ "typical" $(m, n)\}$ (suitably defined set; whp in planted model)

We show, for $G \sim$ true model:

- Existence: **G** has TAP solution $(m, n) \in T$ whp (most rows have a \times in T)
- **3** Uniqueness: $\mathbb{E}[\#\text{TAP solutions in } T] = 1 + o(1) \text{ (rows average } 1 + o(1) \times \text{'s in } T)$

This shows true \approx planted. Formally, \forall event *E*,

$$\mathbb{P}_{true}(E) \leq O(1) \cdot \sup_{(m,n) \in T} \mathbb{P}_{planted}(E|m,n) + o(1)$$

Want: $G \sim \text{true model}$, G has TAP fixed pt $(m, n) \in T = \{\text{typical pts}\}$ whp

Want: $G \sim \text{true model}$, G has TAP fixed pt $(m, n) \in T = \{\text{typical pts}\}$ whp

 ${ig
angle}$ Will show approximate message passing (AMP) finds such a point:

$$\boldsymbol{m}^{k+1} = \dot{F}\left(\frac{\boldsymbol{G}^{\top}\boldsymbol{n}^{k}}{\sqrt{N}} - d\boldsymbol{m}^{k}\right) \qquad \boldsymbol{n}^{k} = \widehat{F}\left(\frac{\boldsymbol{G}\boldsymbol{m}^{k}}{\sqrt{N}} - b\boldsymbol{n}^{k-1}\right)$$

Want: $G \sim \text{true model}, G \text{ has TAP fixed pt } (m, n) \in T = \{\text{typical pts}\} \text{ whp}$

 $ec{V}$ Will show approximate message passing (AMP) finds such a point:

$$\mathbf{m}^{k+1} = \dot{F}\left(\frac{\mathbf{G}^{\top}\mathbf{n}^{k}}{\sqrt{N}} - d\mathbf{m}^{k}\right) \qquad \mathbf{n}^{k} = \widehat{F}\left(\frac{\mathbf{G}\mathbf{m}^{k}}{\sqrt{N}} - b\mathbf{n}^{k-1}\right)$$

1 TAP fixed points are critical points of TAP free energy $\mathcal{F}_{TAP}(m, n; G)$

Want: $G \sim \text{true model}, G \text{ has TAP fixed pt } (m, n) \in T = \{\text{typical pts}\} \text{ whp}$

 $ec{V}$ Will show approximate message passing (AMP) finds such a point:

$$\mathbf{m}^{k+1} = \dot{F}\left(\frac{\mathbf{G}^{\top}\mathbf{n}^{k}}{\sqrt{N}} - d\mathbf{m}^{k}\right)$$
 $\mathbf{n}^{k} = \widehat{F}\left(\frac{\mathbf{G}\mathbf{m}^{k}}{\sqrt{N}} - b\mathbf{n}^{k-1}\right)$

1 TAP fixed points are critical points of TAP free energy $\mathcal{F}_{TAP}(m, n; G)$

AMP state evolution (Bolthausen 14, Bayati Montanari 11) implies

$$(\boldsymbol{m}^k, \boldsymbol{n}^k) \in \boldsymbol{T} \qquad \|\nabla \mathcal{F}_{\mathsf{TAP}}(\boldsymbol{m}^k, \boldsymbol{n}^k)\| = o_k(1)$$

Want: $G \sim \text{true model}, G \text{ has TAP fixed pt } (m, n) \in T = \{\text{typical pts}\} \text{ whp}$

 $ec{V}$ Will show approximate message passing (AMP) finds such a point:

$$\mathbf{m}^{k+1} = \dot{F}\left(\frac{\mathbf{G}^{\top}\mathbf{n}^{k}}{\sqrt{N}} - d\mathbf{m}^{k}\right)$$
 $\mathbf{n}^{k} = \widehat{F}\left(\frac{\mathbf{G}\mathbf{m}^{k}}{\sqrt{N}} - b\mathbf{n}^{k-1}\right)$

1 TAP fixed points are critical points of TAP free energy $\mathcal{F}_{TAP}(m, n; G)$

AMP state evolution (Bolthausen 14, Bayati Montanari 11) implies

$$(\boldsymbol{m}^k, \boldsymbol{n}^k) \in \boldsymbol{T} \qquad \| \nabla \mathcal{F}_{\mathsf{TAP}}(\boldsymbol{m}^k, \boldsymbol{n}^k) \| = o_k(1)$$

That is, AMP finds an **approximate** critical point in **T**

Want: $G \sim \text{true model}$, G has TAP fixed pt $(m, n) \in T = \{\text{typical pts}\}$ whp

 $ec{V}$ Will show approximate message passing (AMP) finds such a point:

$$\mathbf{m}^{k+1} = \dot{F}\left(\frac{\mathbf{G}^{\top}\mathbf{n}^{k}}{\sqrt{N}} - d\mathbf{m}^{k}\right)$$
 $\mathbf{n}^{k} = \widehat{F}\left(\frac{\mathbf{G}\mathbf{m}^{k}}{\sqrt{N}} - b\mathbf{n}^{k-1}\right)$

3 TAP fixed points are critical points of TAP free energy $\mathcal{F}_{TAP}(m, n; G)$

AMP state evolution (Bolthausen 14, Bayati Montanari 11) implies

$$(\boldsymbol{m}^k, \boldsymbol{n}^k) \in \boldsymbol{T}$$
 $\|\nabla \mathcal{F}_{\mathsf{TAP}}(\boldsymbol{m}^k, \boldsymbol{n}^k)\| = o_k(1)$

That is, AMP finds an **approximate** critical point in **T**

() This holds for k fixed as $N \to \infty$. Does not imply AMP finds exact crit pt

Celentano Fan Mei 21: if \mathcal{F}_{TAP} strongly concave near the approx critical point (m^k, n^k) , exists exact critical point nearby

Celentano Fan Mei 21: if \mathcal{F}_{TAP} strongly concave near the approx critical point (m^k, n^k) , exists exact critical point nearby

Celentano Fan Mei 21: if \mathcal{F}_{TAP} strongly concave near the approx critical point (m^k, n^k) , exists exact critical point nearby

1 In our setting, $\mathcal{F}_{TAP}(m, n)$ not strongly concave near (m^k, n^k) ...

Celentano Fan Mei 21: if \mathcal{F}_{TAP} strongly concave near the approx critical point (m^k, n^k) , exists exact critical point nearby

() In our setting, $\mathcal{F}_{TAP}(m, n)$ not strongly concave near (m^k, n^k) ...

... but is strongly convex-concave, which also works

Celentano Fan Mei 21: if \mathcal{F}_{TAP} strongly concave near the approx critical point (m^k, n^k) , exists exact critical point nearby

() In our setting, $\mathcal{F}_{TAP}(m, n)$ not strongly concave near (m^k, n^k) ...

... but is strongly convex-concave, which also works

Proof adapts AMP-conditioned gaussian comparison approach of Celentano 22

Want: for $G \sim$ true model, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } T] = 1 + o(1)$

Want: for $G \sim$ true model, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } T] = 1 + o(1)$

 ${}^{igsymbol{arget}}$ This also has an algorithmic proof! Following claim implies uniqueness:

Want: for $G \sim$ true model, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } T] = 1 + o(1)$

 \bigcirc This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{ \text{typical pts} \}$. Sample **G** conditioned on TAP(G, m, n).

AMP run on **G** finds the planted point (m, n) whp

Want: for $G \sim$ true model, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } \mathbf{T}] = 1 + o(1)$

V This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{typical pts}\}$. Sample **G** conditioned on TAP(G, m, n).

AMP run on G finds the planted point (m, n) whp

Want: for $G \sim$ true model, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } \mathbf{T}] = 1 + o(1)$

 $rac{1}{2}$ This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{typical pts}\}$. Sample **G** conditioned on TAP(G, m, n).

AMP run on **G** finds the planted point (m, n) whp

Experiment: choose $(m, n) \in T$

Want: for $G \sim$ true model, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } \mathbf{T}] = 1 + o(1)$

 $rac{1}{2}$ This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{typical pts}\}$. Sample **G** conditioned on TAP(G, m, n).

AMP run on **G** finds the planted point (m, n) whp

Experiment: choose $(m, n) \in T$
Want: for $G \sim$ true model, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } \mathbf{T}] = 1 + o(1)$

 $rac{1}{2}$ This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{typical pts}\}$. Sample **G** conditioned on TAP(G, m, n).

AMP run on **G** finds the planted point (m, n) whp

Experiment: choose $(m, n) \in T$

Sample **G** conditional on TAP(G, m, n)

Want: for $G \sim$ true model, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } \mathbf{T}] = 1 + o(1)$

 $rac{1}{2}$ This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{typical pts}\}$. Sample **G** conditioned on TAP(G, m, n).

AMP run on **G** finds the planted point (m, n) whp

Experiment: choose $(m, n) \in T$

Sample **G** conditional on TAP(G, m, n)

Want: for $G \sim$ true model, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } \mathbf{T}] = 1 + o(1)$

 $ec{V}$ This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{typical pts}\}$. Sample **G** conditioned on TAP(G, m, n).

AMP run on **G** finds the planted point (m, n) whp

Experiment: choose $(m, n) \in T$

Sample **G** conditional on TAP(G, m, n)

Run AMP on disorder G

Want: for $G \sim$ true model, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } \mathbf{T}] = 1 + o(1)$

 $ec{V}$ This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{typical pts}\}$. Sample **G** conditioned on TAP(G, m, n).

AMP run on **G** finds the planted point (m, n) whp

Experiment: choose $(m, n) \in T$

Sample **G** conditional on TAP(G, m, n)

Run AMP on disorder G

Want: for $G \sim$ true model, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } \mathbf{T}] = 1 + o(1)$

 $ec{V}$ This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{typical pts}\}$. Sample *G* conditioned on TAP(G, m, n). AMP run on *G* finds the planted point (m, n) whp

Experiment: choose $(m, n) \in T$

Sample G conditional on TAP(G, m, n)

Run AMP on disorder G

Want: for $G \sim$ true model, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } \mathbf{T}] = 1 + o(1)$

 $rac{1}{2}$ This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{typical pts}\}$. Sample *G* conditioned on TAP(G, m, n). AMP run on *G* finds the planted point (m, n) whp

Experiment: choose $(m, n) \in T$

Sample G conditional on TAP(G, m, n)

Run AMP on disorder G

Want: for $G \sim$ true model, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } \mathbf{T}] = 1 + o(1)$

 $ec{V}$ This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{typical pts}\}$. Sample *G* conditioned on TAP(G, m, n). AMP run on *G* finds the planted point (m, n) whp

Experiment: choose $(m, n) \in T$

Sample G conditional on TAP(G, m, n)

Run AMP on disorder G

Want: for $G \sim$ true model, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } \mathbf{T}] = 1 + o(1)$

 $ec{V}$ This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{typical pts}\}$. Sample *G* conditioned on TAP(G, m, n). AMP run on *G* finds the planted point (m, n) whp

Experiment: choose $(m, n) \in T$

Sample G conditional on TAP(G, m, n)

Run AMP on disorder G

Want: for $G \sim$ true model, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } \mathbf{T}] = 1 + o(1)$

 $ec{V}$ This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{typical pts}\}$. Sample *G* conditioned on TAP(G, m, n). AMP run on *G* finds the planted point (m, n) whp

Experiment: choose $(m, n) \in T$

Sample G conditional on TAP(G, m, n)

Run AMP on disorder G

Want: for $G \sim$ true model, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } \mathbf{T}] = 1 + o(1)$

 $rac{1}{2}$ This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{typical pts}\}$. Sample *G* conditioned on TAP(G, m, n). AMP run on *G* finds the planted point (m, n) whp

Experiment: choose $(m, n) \in T$

Sample G conditional on TAP(G, m, n)

Run AMP on disorder G

Want: for $G \sim$ true model, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } \mathbf{T}] = 1 + o(1)$

 $rac{1}{2}$ This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{typical pts}\}$. Sample *G* conditioned on TAP(G, m, n). AMP run on *G* finds the planted point (m, n) whp

Experiment: choose $(m, n) \in T$

Sample G conditional on TAP(G, m, n)

Run AMP on disorder G

Did AMP return to (m, n)?

Experiment succeeds for at most one \times per row

Want: for $G \sim$ true model, $\mathbb{E}[\#\text{TAP fixed pts of } G \text{ in } \mathbf{T}] = 1 + o(1)$

 $ec{V}$ This also has an algorithmic proof! Following claim implies uniqueness:

Fix $(m, n) \in T = \{\text{typical pts}\}$. Sample *G* conditioned on TAP(G, m, n). AMP run on *G* finds the planted point (m, n) whp

Experiment: choose $(m, n) \in T$

Sample **G** conditional on TAP(G, m, n)

Run AMP on disorder G

Did AMP return to (m, n)?

Experiment succeeds for at most one \times per row

If too many rows have $> 1 \times s$, claim cannot be true!

Want: for $(m, n) \in T$, **G** conditioned on TAP(G, m, n),

AMP run on **G** finds the planted point (m, n) whp

Want: for $(m, n) \in T$, **G** conditioned on TAP(G, m, n),

AMP run on **G** finds the planted point (m, n) whp

This can be proved by the same strategy!

Want: for $(m, n) \in T$, **G** conditioned on TAP(G, m, n),

AMP run on G finds the planted point (m, n) whp

This can be proved by the same strategy!

By adapting state evolution & gaussian comparison to planted model:

Want: for $(m, n) \in T$, **G** conditioned on TAP(G, m, n),

AMP run on G finds the planted point (m, n) whp

This can be proved by the same strategy!

By adapting state evolution & gaussian comparison to planted model:

•
$$(\boldsymbol{m}^k, \boldsymbol{n}^k) \in \boldsymbol{T}, \|\nabla \mathcal{F}_{\mathsf{TAP}}(\boldsymbol{m}^k, \boldsymbol{n}^k)\| = o_k(1)$$

Want: for $(m, n) \in T$, **G** conditioned on TAP(G, m, n),

AMP run on G finds the planted point (m, n) whp

This can be proved by the same strategy!

By adapting state evolution & gaussian comparison to planted model:

•
$$(\boldsymbol{m}^k, \boldsymbol{n}^k) \in \boldsymbol{T}, \|\nabla \mathcal{F}_{\mathsf{TAP}}(\boldsymbol{m}^k, \boldsymbol{n}^k)\| = o_k(1)$$

• \mathcal{F}_{TAP} strongly convex-concave near $(\boldsymbol{m}^k, \boldsymbol{n}^k)$

Want: for $(m, n) \in T$, **G** conditioned on TAP(G, m, n),

AMP run on **G** finds the planted point (m, n) whp

This can be proved by the same strategy!

By adapting state evolution & gaussian comparison to planted model:

• $(\boldsymbol{m}^k, \boldsymbol{n}^k) \in \boldsymbol{T}$, $\| \nabla \mathcal{F}_{\mathsf{TAP}}(\boldsymbol{m}^k, \boldsymbol{n}^k) \| = o_k(1)$

• $\mathcal{F}_{\mathsf{TAP}}$ strongly convex-concave near $(\boldsymbol{m}^k, \boldsymbol{n}^k)$

• $\|(\boldsymbol{m}^k, \boldsymbol{n}^k) - (\boldsymbol{m}, \boldsymbol{n})\| = o_k(1)$

Recap: contiguity of true / planted models

We show, for $G \sim$ true model:

- Existence: **G** has TAP solution $(m, n) \in T$ whp (most rows have a \times)
- **2** Uniqueness: $\mathbb{E}[\#\text{TAP solutions in } T] = 1 + o(1) \text{ (rows average } 1 + o(1) \times \text{'s})$

This shows true \approx planted.

Recap: proof roadmap

Conclusion

- We show contiguity of true model & model with planted TAP fixed point
- $\bullet\,$ Then, 1st/2nd moment in planted model locates capacity $\alpha_*=\alpha_{\mathsf{KM}}$

Conclusion

- We show contiguity of true model & model with planted TAP fixed point
- Then, 1st/2nd moment in planted model locates capacity $lpha_* = lpha_{\mathsf{KM}}$
- **Open Q**: capacity of non "replica symmetric" models? E.g. spherical $\kappa < 0$

Conclusion

- We show contiguity of true model & model with planted TAP fixed point
- Then, 1st/2nd moment in planted model locates capacity $\alpha_* = \alpha_{\mathsf{KM}}$
- **Open Q**: capacity of non "replica symmetric" models? E.g. spherical $\kappa < 0$

Define the coordinate profiles

$$\mu(\boldsymbol{m}) = \frac{1}{N} \sum_{i=1}^{N} \delta(m_i) \qquad \nu(\boldsymbol{n}) = \frac{1}{M} \sum_{a=1}^{M} \delta(n_a) \qquad \in \mathcal{P}(\mathbb{R})$$

Define the coordinate profiles

$$\mu(\boldsymbol{m}) = \frac{1}{N} \sum_{i=1}^{N} \delta(m_i) \qquad \nu(\boldsymbol{n}) = \frac{1}{M} \sum_{a=1}^{M} \delta(n_a) \qquad \in \mathcal{P}(\mathbb{R})$$

Under planted model, these concentrate around explicit μ_* , ν_* .

Define the coordinate profiles

$$\mu(\boldsymbol{m}) = \frac{1}{N} \sum_{i=1}^{N} \delta(m_i) \qquad \nu(\boldsymbol{n}) = \frac{1}{M} \sum_{a=1}^{M} \delta(n_a) \qquad \in \mathcal{P}(\mathbb{R})$$

Under planted model, these concentrate around explicit μ_* , ν_* .

Choice:
$$\mathbf{T} = \{ (\mathbf{m}, \mathbf{n}) : \mu(\mathbf{m}) \approx \mu_*, \nu(\mathbf{n}) \approx \nu_* \}$$

Define the coordinate profiles

$$\mu(\boldsymbol{m}) = \frac{1}{N} \sum_{i=1}^{N} \delta(m_i) \qquad \nu(\boldsymbol{n}) = \frac{1}{M} \sum_{a=1}^{M} \delta(n_a) \qquad \in \mathcal{P}(\mathbb{R})$$

Under planted model, these concentrate around explicit μ_* , ν_* .

Choice:
$$\mathbf{T} = \{ (\mathbf{m}, \mathbf{n}) : \mu(\mathbf{m}) \approx \mu_*, \nu(\mathbf{n}) \approx \nu_* \}$$

Arises in proof steps:

Define the coordinate profiles

$$\mu(\boldsymbol{m}) = \frac{1}{N} \sum_{i=1}^{N} \delta(m_i) \qquad \nu(\boldsymbol{n}) = \frac{1}{M} \sum_{a=1}^{M} \delta(n_a) \qquad \in \mathcal{P}(\mathbb{R})$$

Under planted model, these concentrate around explicit μ_* , ν_* .

Choice:
$$\mathbf{T} = \{ (\mathbf{m}, \mathbf{n}) : \mu(\mathbf{m}) \approx \mu_*, \nu(\mathbf{n}) \approx \nu_* \}$$

Arises in proof steps:

• For $(m, n) \in T$, 1st/2nd mt method works conditional on (m, n).

Define the coordinate profiles

$$\mu(\boldsymbol{m}) = \frac{1}{N} \sum_{i=1}^{N} \delta(m_i) \qquad \nu(\boldsymbol{n}) = \frac{1}{M} \sum_{a=1}^{M} \delta(n_a) \qquad \in \mathcal{P}(\mathbb{R})$$

Under planted model, these concentrate around explicit μ_* , ν_* .

Choice:
$$\mathbf{T} = \{ (\mathbf{m}, \mathbf{n}) : \mu(\mathbf{m}) \approx \mu_*, \nu(\mathbf{n}) \approx \nu_* \}$$

Arises in proof steps:

- For $(m, n) \in T$, 1st/2nd mt method works conditional on (m, n).
- AMP state evolution characterizes coordinate profile of iterates m^k, n^k . This allows us to show $(m^k, n^k) \in T$.

Earlier work: AMP-conditioned moment method

$$\boldsymbol{m}^{k+1} = \dot{F}\left(\frac{\boldsymbol{G}^{\top}\boldsymbol{n}^{k}}{\sqrt{N}} - d\boldsymbol{m}^{k}\right) \qquad \boldsymbol{n}^{k} = \widehat{F}\left(\frac{\boldsymbol{G}\boldsymbol{m}^{k}}{\sqrt{N}} - b\boldsymbol{n}^{k-1}\right)$$

Plan: for large k = O(1), condition on $m^1, n^1, \dots, m^k, n^k$, then 1st/2nd moment

No existence / uniqueness issue, but now $\mathbb{E}[|S(M)| | AMP]$ is k-dim optimization (Over codimension-k slices of $\{\pm 1\}^N$ orthogonal to m^1, \ldots, m^k)

 $rac{1}{2}$ DS18: for lower bound, tractable 1st/2nd moment on truncated count

 $|S(M) \cap \{$ correct affine slice $\}|$

Upper bound: can't do truncation, optimization intractable