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High-dimensional disordered systems

Models of random, high-dimensional objective functions or distributions

Hardcore model: independent sets I ⊆ G and µ(I ) ∝ λ|I |

Random k-SAT and µ = unif(satisfying assignments)
Ising model Hamiltonian H : {±1}N → R and Gibbs measure µ(x) ∝ eH(x)

Highly non-convex landscapes, often with exponentially many maxima
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High-dimensional disordered systems

Applications:
Statistical inference, e.g. community detection (µ = posterior distribution)

Random optimization problems, e.g. training a neural network (H = loss
function)
Complex systems & emergent behavior: magnetic materials, protein folding,
flocking birds, economics, . . .

What are the values of key statistics of a disordered system, such as the
maximum value, number of solutions, or satisfiability threshold?

Unified framework of physics predictions via replica / cavity methods

Goal: unified rigorous theory & broadly applicable tools
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The perceptron model

Ising Spherical

Intersection of ΣN = {−1, 1}N or
√
NSN−1

with M i.i.d. random half-spaces

Formally: κ ∈ R fixed, g1, g2, . . . ∼ N (0, IN),

S(M) =

{
x ∈ ΣN :

〈g a, x〉√
N
≥ κ, ∀1 ≤ a ≤ M

}
Capacity: largest M such that S(M) 6= ∅

Main question: what is α∗ = α∗(κ) = p-limN→∞M/N?
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Connections to other problems

S(M) =

{
x ∈ ΣN :

〈g a, x〉√
N
≥ κ, ∀1 ≤ a ≤ M

}
Capacity: largest M such that S(M) 6= ∅

Satisfiability threshold of constraint satisfaction problem with global constraints

Toy model of single-layer neural network (Gardner 88):
x ↔ synaptic weights. g1, . . . , gM ↔ random patterns
S(M) ↔ synaptic weights memorizing all M patterns
Capacity ↔ max # patterns neural network can memorize
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Connections to other problems

Related model: symmetric perceptron with constraints 〈g a, x〉/
√
N ∈ [−κ, κ]

(Aubin Perkins Zdeborová 19, Perkins Xu 21, Abbe Li Sly 22, . . . )

↔ discrepancy minimization: given G ∈ RM×N , find x ∈ {±1}N minimizing

‖Gx‖∞ = x

G

NM

N

g a

∞

(Spencer 85, Bansal 10, Lovett Meka 15, Rothvoss 17, Eldan Singh 18, . . . )

Applications: randomized control trials, sparsification, differential privacy, . . .
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Main result

Conjecture (Krauth Mézard 1989)

For the κ = 0 Ising perceptron, α∗ = αKM ≈ 0.833.

Theorem (Ding Sun 2018)

α∗ ≥ αKM, under condition that an explicit univariate function is ≤ 0.

Theorem (H. 2024)

α∗ ≤ αKM, under condition that an explicit 2-variable function (next slide) is ≤ 0.

(Also for general κ ∈ R, under several numerical conditions depending on κ)
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The function S∗ in our numerical condition

S∗(1, 0) = 0 local max, conjecturally unique global max

Plot of (x , y) 7→ S∗(tanh
−1(x), tanh−1(y)):
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Background: physics predictions

Gardner Derrida 88, Krauth Mézard 89:
Volume formula 1

N log |S(αN)| →p Vol(κ, α) in terms of fixed point eqn
(In “replica symmetric” regime of (κ, α), which includes κ = 0 Ising perceptron)

Capacity: α∗ = α∗(κ) solves Vol(κ, α∗) = 0

α
α∗

1
N
log |S(αN)|

= Vol(κ, α)
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Spherical perceptron, κ ≥ 0

Shcherbina Tirozzi 03: proof of volume limit Vol(κ, α) (and thus capacity)
Stojnic 13: simple proof of capacity threshold

Crucial to proofs: κ ≥ 0 spherical perceptron is convex problem!

Brice Huang (MIT) Ising perceptron November 14, 2024 10 / 31



Ising perceptron, κ = 0

Talagrand 11, Xu 21, Nakajima Sun 23: sharp threshold sequence α∗(N)
(non-explicit, doesn’t imply α∗ = limN→∞ α∗(N) exists)

Trivial bound: E|S(Nα)| ≤ 2(1−α)N , so α∗ ≤ 1

Kim Roche 98, Talagrand 99 & 00: ε ≤ α∗ ≤ 1− ε

Ding Sun 18: α∗ ≥ αKM ≈ 0.833

Altschuler Tikhomirov 24: α∗ ≤ 0.847

H. 24: α∗ ≤ αKM
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First attempt: 1st/2nd moment method

E|S(Nα)| � 1⇒ no solutions; E[|S(Nα)|2] � (E|S(Nα)|)2 ⇒ solutions

Identifies α∗ in symmetric perceptron with constraints 〈g a, x〉/
√
N ∈ [−κ, κ]

(Aubin Perkins Zdeborová 19, Perkins Xu 21, Abbe Li Sly 22, Altschuler 22,
Sah Sawhney 23)

But fails in our model! E|S(Nα)| = 2(1−α)N � 1 only when α > 1
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Failure of direct moment method

α

1
αKM
≈ 0.833

log 2

1
N
logE|S(Nα)|

= (1− α) log 2

1
N
log |S(Nα)|
= Vol(α)

E|S(Nα)| dominated by events where the g a are atypically correlated

Typically: ga orthogonal Atypically: ga correlated,
which inflates # solutions
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Another perspective on 1st moment failure

Solution set is not centered on origin:

0

0

0

Each slice deletes half of solutions on average, but genuine fluctuations

Imagine simplified model: each slice deletes 1% or 99%. Then all solutions deleted
much faster than 1st moment bound.

Next few slides: non-rigorous physics intuitions on how to remedy this.
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Conditional moment method

Key intuition of Ding Sun 18, Bolthausen 19: 1st mt failure caused by large
deviation events in barycenter of solution set S(Nα)

barycenterbarycenter

That is, E(|S |)� (typical |S |) but we expect

(typical |S |) � E(|S | | barycenter)

� E(|S |2 | barycenter)1/2

This suggests plan: condition on typical behavior of barycenter, then 1st/2nd mt

Barycenter is mathematically complicated, but can condition on physics proxy
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Barycenter is mathematically complicated, but can condition on physics proxy
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(Heuristic) physics description of barycenter

TAP equation: nonlinear system in
G ∈ RM×N matrix with rows g1, . . . , gM

m ∈ RN barycenter of S(M)

n ∈ RM average slacks of constraints: na = avgx∈S(M)

{ 〈g a,x〉√
N
− κ
}

For explicit nonlinearities Ḟ , F̂ , constants b, d :

m = Ḟ

(
G>n√

N
− dm

)
n = F̂

(
Gm√
N
− bn

)

(↔ dense graph limit of belief propagation)

� � �M constraints

N variables

na→i = f̂ ((mj→a)j 6=i )

mi→a = ḟ ((nb→i )b 6=a)
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(
G>n√

N
− dm

)
n = F̂

(
Gm√
N
− bn

)

(↔ dense graph limit of belief propagation)

� � �M constraints

N variables

na→i = f̂ ((mj→a)j 6=i )
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Physics predictions for TAP & planted model

m = Ḟ

(
G>n√

N
− dm

)
n = F̂

(
Gm√
N
− bn

)
Physics prediction: for typical G , unique soln (m,n). m ≈ barycenter, n ≈ slacks

Key idea: planted model:
1 Sample (m,n) from its law (explicit physics prediction)
2 Sample G conditioned on TAP(G ,m,n)

Belief: planted ≈ true model; 1st/2nd mt conditional on (m,n) locates threshold

V existence/uniqueness of (m,n) is not proven, so planted 6= true possible
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Proof roadmap

True model:
G iid gaussian

Planted model:
G cond on

TAP(G ,m,n)

Conjecturally similar
under TAP heuristic

1st/2nd mt method
(direct calculation,
numerical cond
enters here)

α∗ = αKM in
planted modelFollows if TAP heuristic proven

α∗ = αKM in
true model

(Main difficulty)

[Previous work: motivation only]

DS18: lower bd by
conditional 1st/2nd
mt on truncation

of |S(M)|

Our work proves this. . .

. . .justifying this implication
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1 Introduction and main result

2 Failure of direct moment method → proof roadmap

3 1st/2nd moment in planted model

4 Justifying the TAP heuristic
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Properties making the planted model tractable

Recall planted model:
Sample (m,n) from its law
Sample G conditional on TAP(G ,m,n), i.e.

m = Ḟ

(
G>n√

N
− dm

)
n = F̂

(
Gm√
N
− bn

)

1 The coordinate profiles

µ(m) =
1
N

N∑
i=1

δ(mi ) ν(n) =
1
M

M∑
a=1

δ(na) ∈ P(R)

concentrate around explicit µ∗, ν∗. (Roughly, mi
iid∼ µ∗ & na

iid∼ ν∗)

2 TAP(G ,m,n) is linear constraint on G ⇒ G conditionally gaussian!
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(
G>n√

N
− dm

)
n = F̂

(
Gm√
N
− bn

)

1 The coordinate profiles

µ(m) =
1
N

N∑
i=1

δ(mi ) ν(n) =
1
M

M∑
a=1

δ(na) ∈ P(R)

concentrate around explicit µ∗, ν∗. (Roughly, mi
iid∼ µ∗ & na

iid∼ ν∗)

2 TAP(G ,m,n) is linear constraint on G ⇒ G conditionally gaussian!

Brice Huang (MIT) Ising perceptron November 14, 2024 19 / 31



Moment calculation in planted model

Plan: 1st/2nd moment method on |S | = #(solutions) conditional on (m,n)

G is spiked gaussian mtx ⇒ Gx is gaussian vector whose law depends on only

a = 〈x ,m〉 b = 〈x ,H〉 (H = Ḟ−1(m))

⇒ P(x is solution) = P( Gx√
N
≥ κ~1 ) is explicit function of a, b

E[|S ||m,n] =
∑
(a,b)

#(x ∈ {±1}N with this a, b)︸ ︷︷ ︸
explicit because m coordinate profile known

× P(one such x is solution)

Summand varies on exponential scale: contribution(a, b) ≈ exp(N · f (a, b))

⇒ E[|S ||m,n] ≈ exp(N ·max f (a, b)) essentially 2 variable maximization
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1st/2nd moment in planted model

1st/2nd moments are both explicit O(1)-variable maximizations.

1st/2nd moment works!! Conditional on typical (m,n),

E[|S(αN)||m,n] ≈ E[|S(αN)|2|m,n]1/2 ≈ exp(N Vol(α))

under our + DS18’s numerical conditions ⇒ typically |S(αN)| ≈ exp(N Vol(α))

α
αKM

1
N
log |S(αN)|
= Vol(α)

Since Vol has root αKM, planted model has capacity αKM
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Proof roadmap

True model:
G iid gaussian

Planted model:
G cond on

TAP(G ,m,n)

Conjecturally similar
under TAP heuristic

1st/2nd mt
method

α∗ = αKM in
planted modelFollows if TAP heuristic proven

α∗ = αKM in
true model

We now explain how to
make this step rigorous.
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Key issue: linking true and planted models

(m, n)

G

×

×

×

×

×

×

×

×

×

×

× ×

×

True model ↔ random row
Planted model ↔ random col, then random × in col

Under TAP prediction, most rows have exactly one ×
so true ≈ planted

but. . .we don’t actually know this
⇒ planted / true models can a priori be very different
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This work: contiguity of true / planted models

(m, n)

G

T = {(m, n) with ≈ ideal coordinate profiles} (high-probability set)

×

×
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× ?
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We show, for G ∼ true model:
1 Existence: G has TAP solution (m,n) ∈ T whp (most rows have a ×)
2 Uniqueness: E[#TAP solutions in T ] = 1 + o(1) (rows average 1+ o(1) ×’s)

This shows true ≈ planted. That is, ∀ event E ,

Ptrue(E ) ≤ C sup
(m,n)∈T

Pplanted(E |m,n) + o(1)
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Existence: algorithmic proof

Want: G ∼ true model, G has TAP fixed pt (m,n) ∈ T = {correct profiles} whp

­ Will show approximate message passing (AMP) finds such a point:

mk+1 = Ḟ

(
G>nk

√
N
− dmk

)
nk = F̂

(
Gmk

√
N
− bnk−1

)

1 TAP fixed points are critical points of TAP free energy FTAP(m,n; G )

2 State evolution (Bolthausen 14, Bayati Montanari 11) ⇒ for large k = O(1),

(mk ,nk) ∈ T ‖∇FTAP(mk ,nk)‖ = ok(1)

That is, AMP finds an approximate critical point in T
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(
G>nk

√
N
− dmk

)
nk = F̂

(
Gmk

√
N
− bnk−1

)

1 TAP fixed points are critical points of TAP free energy FTAP(m,n; G )

2 State evolution (Bolthausen 14, Bayati Montanari 11) ⇒ for large k = O(1),

(mk ,nk) ∈ T ‖∇FTAP(mk ,nk)‖ = ok(1)

That is, AMP finds an approximate critical point in T

Brice Huang (MIT) Ising perceptron November 14, 2024 25 / 31



Existence: from approximate to exact critical point

­ Celentano Fan Mei 21: if FTAP strongly concave near the approximate critical
point (mk ,nk), exists exact critical point nearby

T = {correct profile pts}

strongly concave zone
(m1, n1)

(m2, n2)

(mk , nk )

V In our setting, FTAP(m,n) not strongly concave near (mk ,nk). . .

. . . but is strongly convex-concave, which also works
Proof adapts AMP-conditioned gaussian comparison approach of Celentano 22
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Uniqueness: double-counting argument

Want: for G ∼ true model, E[#TAP fixed pts of G in T ] = 1 + o(1)

­ This also has an algorithmic proof! Following claim implies uniqueness:

Fix (m,n) ∈ T = {correct profiles}. Sample G conditioned on TAP(G ,m,n).

AMP run on G finds the planted point (m,n) whp

(m, n) ∈ T

G

×
×

× × ×
×

×

× ×
×

Experiment: choose (m, n) ∈ T

Sample G conditional on TAP(G ,m, n)

Run AMP on disorder G

Did AMP return to (m, n)?

Experiment succeeds for at most one × per row

If too many rows have > 1 ×s, claim cannot be true!

××× ×
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Uniqueness: AMP returns home in planted model

Want: for (m,n) ∈ T , G conditioned on TAP(G ,m,n),

AMP run on G finds the planted point (m,n) whp

This can be proved by the same strategy!

T = {correct profile pts}

strongly convex-
concave zone

(m1, n1)

(m2, n2)

(mk , nk )

(m, n)

By adapting state evolution & gaussian comparison analyses to planted model:

(mk ,nk) ∈ T , ‖∇FTAP(mk ,nk)‖ = ok(1), and ‖(mk ,nk)− (m,n)‖ = ok(1)

FTAP strongly convex-concave near (mk ,nk)
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(mk ,nk) ∈ T , ‖∇FTAP(mk ,nk)‖ = ok(1), and ‖(mk ,nk)− (m,n)‖ = ok(1)

FTAP strongly convex-concave near (mk ,nk)
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Recap: contiguity of true / planted models

(m, n)

G

T = {(m, n) with ≈ ideal coordinate profiles}

×

×

×

×

×

× ?

?

?

?

?

?

?

?

?

?

?

?

We show, for G ∼ true model:
1 Existence: G has TAP solution (m,n) ∈ T whp (most rows have a ×)
2 Uniqueness: E[#TAP solutions in T ] = 1 + o(1) (rows average 1+ o(1) ×’s)

This shows true ≈ planted.
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Recap: proof roadmap

True model:
G iid gaussian

Planted model:
G cond on

TAP(G ,m,n)

Conjecturally similar
under TAP heuristic

1st/2nd mt
method

α∗ = αKM in
planted modelFollows if TAP heuristic proven

α∗ = αKM in
true model

Our work proves this. . .

. . .justifying this implication
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Conclusion

We develop method to link true model & model with planted TAP fixed point
Then 1st/2nd moment in planted model identifies capacity α∗ = αKM

Contiguity follows from existence / uniqueness of TAP fixed point
Algorithmic proof of uniqueness via “AMP returns home in planted model”

Open Q: capacity of non replica symmetric models? E.g. spherical κ < 0

Thanks for your attention!
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Earlier work: AMP-conditioned moment method

mk+1 = Ḟ

(
G>nk

√
N
− dmk

)
nk = F̂

(
Gmk

√
N
− bnk−1

)
Plan: for large k = O(1), condition on m1,n1, . . . ,mk ,nk , then 1st/2nd moment

No existence / uniqueness issue, but now E[|S(M)| |AMP] is k-dim optimization
(Over codimension-k slices of {±1}N orthogonal to m1, . . . ,mk )

­ DS18: for lower bound, tractable 1st/2nd moment on truncated count

|S(M) ∩ {correct affine slice}|

Upper bound: can’t do truncation, optimization intractable
Brice Huang (MIT) Ising perceptron November 14, 2024 1 / 1
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