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The perceptron model

Ising Spherical

Intersection of ΣN = {−1, 1}N or
√
NSN−1

with M i.i.d. random half-spaces

with M = αN i.i.d. random half-spaces

α = constraint density

Formally: for g1, . . . , gM ∼ N (0, IN),

S = {x ∈ ΣN : (g a, x) ≥ 0, ∀1 ≤ a ≤ M}

Capacity problem: is there a critical density α∗ where S goes from nonempty to
empty (whp)? If so, what is it?
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Application: linear classification

Given labeled dataset (g1, y1), . . . , (gM , yM) ∈ RN × {−1, 1}, is there a
separating hyperplane?

That is, does there exist x such that

y a(g a, x) ≥ 0 ∀1 ≤ a ≤ M?

Consider random labels model:

g a ∼ N (0, IN) independent of y a ∼ unif(±1).

This is equivalent to capacity problem! Hyperplane exists ⇔ M/N < α∗.
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Application: discrepancy minimization

Related model: symmetric perceptron with constraints (g a, x)/
√
N ∈ [−κ, κ]

(Aubin Perkins Zdeborová 19, Perkins Xu 21, Abbe Li Sly 22, . . . )

↔ discrepancy minimization: given G ∈ RM×N , find x ∈ {±1}N minimizing

‖Gx‖∞ = x

G

NM

N

g a

∞

(Spencer 85, Bansal 10, Lovett Meka 15, Rothvoss 17, Eldan Singh 18, . . . )

Applications: randomized control trials, sparsification, differential privacy, . . .
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Problem restatement: Ising perceptron

Intersection of ΣN = {−1, 1}N with
M = αN i.i.d. random half-spaces

α = constraint density

Formally: for g1, . . . , gM ∼ N (0, IN),

S = {x ∈ ΣN : (g a, x) ≥ 0, ∀1 ≤ a ≤ M}

Capacity problem: is there a critical density α∗ where S goes from nonempty to
empty (whp)? If so, what is it?
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Main result

Conjecture (Krauth Mézard 1989)

For the Ising perceptron, α∗ = αKM ≈ 0.833.

Theorem (Ding Sun 2018)

α∗ ≥ αKM, under condition that an explicit univariate function is ≤ 0.

Theorem (H. 2024)

α∗ ≤ αKM, under condition that an explicit 2-variable function (next slide) is ≤ 0.

Both results hold for more general model with margin κ ∈ R:

S =

{
x ∈ ΣN :

(g a, x)√
N
≥ κ, ∀1 ≤ a ≤ M

}
for suitable threshold αKM(κ), under further numerical conditions depending on κ.
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The function S∗ in our numerical condition

S∗(1, 0) = 0 local max, conjecturally unique global max

Plot of S∗ (domain R2 reparametrized to [−1, 1]2):
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Background: physics predictions

Gardner Derrida 88, Krauth Mézard 89:
Volume formula 1

N log |S(αN constraints)| p→ Vol(α) in terms of fixed pt eqn

Capacity: αKM solves Vol(αKM) = 0

α
αKM

1
N log |S(αN)| = Vol(α)
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Rigorous results: positive spherical perceptron

For constraints (g a, x)/
√
N ≥ κ, where κ ≥ 0:

Shcherbina Tirozzi 03: proof of volume limit Volκ(α) (and thus capacity)
Stojnic 13: simple proof of capacity threshold

Crucial to proofs: κ ≥ 0 spherical perceptron is convex problem

⇐⇒

intersection nonempty intersection nonempty

Brice Huang (MIT) Ising perceptron April 29, 2025 9 / 29



Rigorous results: positive spherical perceptron

For constraints (g a, x)/
√
N ≥ κ, where κ ≥ 0:

Shcherbina Tirozzi 03: proof of volume limit Volκ(α) (and thus capacity)
Stojnic 13: simple proof of capacity threshold

Crucial to proofs: κ ≥ 0 spherical perceptron is convex problem

⇐⇒

intersection nonempty intersection nonempty

Brice Huang (MIT) Ising perceptron April 29, 2025 9 / 29



Rigorous results: Ising perceptron, κ = 0

Talagrand 11, Xu 21, Nakajima Sun 23: sharp threshold sequence α∗(N)
(non-explicit, doesn’t imply α∗ = limN→∞ α∗(N) exists)

Simple bound: α∗ ≤ 1 (more later)

Kim Roche 98, Talagrand 99 & 00: ε ≤ α∗ ≤ 1− ε

Ding Sun 18: α∗ ≥ αKM ≈ 0.833

Altschuler Tikhomirov 24: α∗ ≤ 0.847

H. 24: α∗ ≤ αKM
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1st/2nd moment method

E|S(Nα)| � 1 ⇒ no solution at constriant density α (whp)

E[|S(Nα)|2] = O(1) · (E|S(Nα)|)2 ⇒ ∃ soln at density α (with Ω(1) prob)

This provides a simple strategy to (try to) locate capacity:

Let α1mt be solution to E|S(Nα1mt)| = 1. (So no solns whp for α > α1mt)

α
α1mt

logE|S(Nα)|

(Hope to) show E[|S(Nα1mt)|2] � (E|S(Nα1mt)|)2 = 1. If so, α∗ = α1mt
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1st/2nd moment method: a success story

This locates α∗ in symmetric Ising perceptron with constraints |(g
a,x)|√
N
≤ κ

(Aubin Perkins Zdeborová 19, Perkins Xu 21, Abbe Li Sly 22, . . . )

In this model, S(M) = {x ∈ {±1}N : |(g
a,x)|√
N
≤ κ ∀1 ≤ a ≤ M}

E|S(M)| = 2N · P(a fixed x is in S(M))

= 2N ·
M∏
a=1

P
(
|(g a, x)|√

N
≤ κ

)
= 2N · P(|N (0, 1)| ≤ κ)M

E|S(M)|2 can be calculated similarly, and moment method works.
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Direct moment method fails in asymmetric model

In our model, S(αN) = {x ∈ {±1}N : (g a, x) ≥ 0 ∀1 ≤ a ≤ αN}

E|S(αN)| = 2N · 2−αN , so α1mt = 1. This proves α∗ ≤ 1.

But. . . this doesn’t locate true threshold αKM ≈ 0.833

α

1
αKM α1mt
≈ 0.833

log 2

1
N
logE|S(Nα)|

= (1− α) log 2

1
N
log |S(Nα)|
= Vol(α)
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What goes wrong? Asymmetric vs. symmetric models

Solution set is not centered on origin:

0

0

0

Each constraint deletes half of solutions on average, but genuine fluctuations

Thought experiment: each constraint deletes 1% or 99%. Then all solutions
deleted faster than 1st moment bound would suggest.
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What goes wrong? A large deviations perspective

α

1
αKM α1mt
≈ 0.833

log 2

1
N
logE|S(Nα)|

= (1− α) log 2

1
N
log |S(Nα)|
= Vol(α)

E|S(Nα)| dominated by events where the g a are atypically correlated

Typically: ga orthogonal Atypically: ga correlated,
which inflates # solutions
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Conditional moment method

Key intuition of Ding Sun 18, Bolthausen 19: 1st mt failure caused by large
deviation events in barycenter of solution set S

barycenterbarycenter

That is, E(|S |)� (typical |S |) but we expect, for typical realization of barycenter:

(typical |S |) � E(|S | | barycenter)

� E(|S |2 | barycenter)1/2

Suggests plan: condition on typical realization of barycenter, then 1st/2nd mt

Barycenter is mathematically complicated, but can condition on physics proxy
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(Heuristic) physics description of barycenter

TAP equation: nonlinear system in
G ∈ RM×N matrix with rows g1, . . . , gM

m ∈ RN barycenter of S

n ∈ RM average slacks of constraints: na = avgx∈S
{ 〈g a,x〉√

N

}

For explicit nonlinearities Ḟ , F̂ : R→ R, constants b, d :

m = Ḟ

(
G>n√

N
− dm

)
n = F̂

(
Gm√
N
− bn

)

(↔ dense graph limit of belief propagation)

� � �M constraints

N variables

na→i = f̂ ((mj→a)j 6=i )

mi→a = ḟ ((nb→i )b 6=a)
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Physics predictions for TAP & planted model

m = Ḟ

(
G>n√

N
− dm

)
n = F̂

(
Gm√
N
− bn

)
Physics prediction: for typical G , there is a unique solution (m,n)

Key idea: planted model:
1 Sample (m,n) from its law (explicit physics prediction)
2 Sample G conditioned on TAP(G ,m,n)

Belief: planted ≈ true model; 1st/2nd mt conditional on (m,n) finds threshold

V existence/uniqueness of (m,n) is not proven. Not known that planted ≈ true!
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1st/2nd moment works in planted model

Recall planted model:
Sample (m,n) from its law

Sample G conditional on m = Ḟ
(

G>n√
N
− dm

)
, n = F̂

(
Gm√
N
− bn

)

This is linear constraint on G ⇒ conditional on (m,n), G remains gaussian!

⇒ conditional moments of |S(αN)| remain tractable. For typical (m,n),

E[|S(αN)||m,n] ≈ E[|S(αN)|2|m,n]1/2 ≈ exp(N Vol(α))

⇒ planted model has capacity αKM

(under our + DS18’s numerical conditions)

α
αKM

1
N
log |S(αN)|
= Vol(α)
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Proof roadmap

True model:
G iid gaussian

Planted model:
G cond on

TAP(G ,m,n)

Conjecturally similar
under TAP heuristic

α∗ = αKM in
planted model

1st/2nd mt method
(direct calculation,
numerical conditions

enter here)

Follows if TAP heuristic proven

α∗ = αKM in
true model

(Main difficulty)

[Previous work: motivation only]

DS18: lower bd by
1st/2nd mt on

truncation of |S|

Our work proves this. . .

. . .justifying this implication

We now explain how to
make this step rigorous.
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1 Introduction and main result

2 Direct approach: 1st/2nd moment method

3 Physics intuitions and proof roadmap

4 Justifying the TAP heuristic
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Key issue: linking true and planted models

(m, n)

G

×

×

×

×

×

×

×

×

×

×

× ×

×

True model ↔ random row
Planted model ↔ random col, then random × in col

Under TAP prediction, most rows have exactly one ×
so true ≈ planted

but. . .we don’t actually know this
⇒ planted / true models can a priori be very different
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This work: contiguity of true / planted models

(m, n)

G

T = {“typical” (m, n)} (suitably defined set; whp in planted model)

×

×

×

×

×

× ?

?

?

?

?

?

?

?

?

?

?

?

We show, for G ∼ true model:
1 Existence: G has TAP solution (m,n) ∈ T whp (most rows have a × in T )
2 Uniqueness: E[#TAP solutions in T ] = 1+o(1) (rows average 1+o(1) ×’s in T )

This shows true ≈ planted. Formally, ∀ event E ,

Ptrue(E ) ≤ O(1) · sup
(m,n)∈T

Pplanted(E |m,n) + o(1)

Brice Huang (MIT) Ising perceptron April 29, 2025 22 / 29



This work: contiguity of true / planted models

(m, n)

G

T = {“typical” (m, n)} (suitably defined set; whp in planted model)

×

×

×

×

×

× ?

?

?

?

?

?

?

?

?

?

?

?

We show, for G ∼ true model:
1 Existence: G has TAP solution (m,n) ∈ T whp (most rows have a × in T )

2 Uniqueness: E[#TAP solutions in T ] = 1+o(1) (rows average 1+o(1) ×’s in T )

This shows true ≈ planted. Formally, ∀ event E ,

Ptrue(E ) ≤ O(1) · sup
(m,n)∈T

Pplanted(E |m,n) + o(1)

Brice Huang (MIT) Ising perceptron April 29, 2025 22 / 29



This work: contiguity of true / planted models

(m, n)

G

T = {“typical” (m, n)} (suitably defined set; whp in planted model)

×

×

×

×

×

× ?

?

?

?

?

?

?

?

?

?

?

?

We show, for G ∼ true model:
1 Existence: G has TAP solution (m,n) ∈ T whp (most rows have a × in T )
2 Uniqueness: E[#TAP solutions in T ] = 1+o(1) (rows average 1+o(1) ×’s in T )

This shows true ≈ planted. Formally, ∀ event E ,

Ptrue(E ) ≤ O(1) · sup
(m,n)∈T

Pplanted(E |m,n) + o(1)

Brice Huang (MIT) Ising perceptron April 29, 2025 22 / 29



This work: contiguity of true / planted models

(m, n)

G

T = {“typical” (m, n)} (suitably defined set; whp in planted model)

×

×

×

×

×

× ?

?

?

?

?

?

?

?

?

?

?

?

We show, for G ∼ true model:
1 Existence: G has TAP solution (m,n) ∈ T whp (most rows have a × in T )
2 Uniqueness: E[#TAP solutions in T ] = 1+o(1) (rows average 1+o(1) ×’s in T )

This shows true ≈ planted. Formally, ∀ event E ,

Ptrue(E ) ≤ O(1) · sup
(m,n)∈T

Pplanted(E |m,n) + o(1)

Brice Huang (MIT) Ising perceptron April 29, 2025 22 / 29



This work: contiguity of true / planted models
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Existence: algorithmic proof

Want: G ∼ true model, G has TAP fixed pt (m,n) ∈ T = {typical pts} whp

­ Will show approximate message passing (AMP) finds such a point:

mk+1 = Ḟ

(
G>nk

√
N
− dmk

)
nk = F̂

(
Gmk

√
N
− bnk−1

)

1 TAP fixed points are critical points of TAP free energy FTAP(m,n; G )

2 AMP state evolution (Bolthausen 14, Bayati Montanari 11) implies

(mk ,nk) ∈ T ‖∇FTAP(mk ,nk)‖ = ok(1)

That is, AMP finds an approximate critical point in T

V This holds for k fixed as N →∞. Does not imply AMP finds exact crit pt
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Existence: from approximate to exact critical point

­ Celentano Fan Mei 21: if FTAP strongly concave near the approx critical
point (mk ,nk), exists exact critical point nearby

T = {typical pts}

strongly
concave zone

(m1, n1)

(m2, n2)

(mk , nk )

V In our setting, FTAP(m,n) not strongly concave near (mk ,nk). . .

. . . but is strongly convex-concave, which also works

Proof adapts AMP-conditioned gaussian comparison approach of Celentano 22
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Uniqueness: double-counting argument

Want: for G ∼ true model, E[#TAP fixed pts of G in T ] = 1 + o(1)

­ This also has an algorithmic proof! Following claim implies uniqueness:

Fix (m,n) ∈ T = {typical pts}. Sample G conditioned on TAP(G ,m,n).

AMP run on G finds the planted point (m,n) whp

(m, n) ∈ T

G

×
×

× × ×
×

×

× ×
×

Experiment: choose (m, n) ∈ T

Sample G conditional on TAP(G ,m, n)

Run AMP on disorder G

Did AMP return to (m, n)?

Experiment succeeds for at most one × per row

If too many rows have > 1 ×s, claim cannot be true!

××× ×
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Uniqueness: AMP returns home in planted model

Want: for (m,n) ∈ T , G conditioned on TAP(G ,m,n),

AMP run on G finds the planted point (m,n) whp

This can be proved by the same strategy!

T = {typical pts}

strongly convex-
concave zone

(m1, n1)

(m2, n2)

(mk , nk )

(m, n)

By adapting state evolution & gaussian comparison to planted model:

(mk ,nk) ∈ T , ‖∇FTAP(mk ,nk)‖ = ok(1)

FTAP strongly convex-concave near (mk ,nk)

‖(mk ,nk)− (m,n)‖ = ok(1)
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(mk ,nk) ∈ T , ‖∇FTAP(mk ,nk)‖ = ok(1)

FTAP strongly convex-concave near (mk ,nk)

‖(mk ,nk)− (m,n)‖ = ok(1)
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Recap: contiguity of true / planted models

(m, n)

G

T = {typical (m, n)}

×

×

×

×

×

× ?

?

?

?

?

?

?

?

?

?

?

?

We show, for G ∼ true model:
1 Existence: G has TAP solution (m,n) ∈ T whp (most rows have a ×)
2 Uniqueness: E[#TAP solutions in T ] = 1 + o(1) (rows average 1+ o(1) ×’s)

This shows true ≈ planted.
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Recap: proof roadmap

True model:
G iid gaussian

Planted model:
G cond on

TAP(G ,m,n)

Conjecturally similar
under TAP heuristic

1st/2nd mt
method

α∗ = αKM in
planted modelFollows if TAP heuristic proven

α∗ = αKM in
true model

Our work proves this. . .

. . .justifying this implication
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Conclusion

We show contiguity of true model & model with planted TAP fixed point
Then, 1st/2nd moment in planted model locates capacity α∗ = αKM

Open Q: capacity of non “replica symmetric” models? E.g. spherical κ < 0

Thank you!
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Choice of typical set T

Define the coordinate profiles

µ(m) =
1
N

N∑
i=1

δ(mi ) ν(n) =
1
M

M∑
a=1

δ(na) ∈ P(R)

Under planted model, these concentrate around explicit µ∗, ν∗.

Choice: T = { (m,n) : µ(m) ≈ µ∗, ν(n) ≈ ν∗ } Choice:

Arises in proof steps:

For (m,n) ∈ T , 1st/2nd mt method works conditional on (m,n).

AMP state evolution characterizes coordinate profile of iterates mk ,nk .
This allows us to show (mk ,nk) ∈ T .
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Earlier work: AMP-conditioned moment method

mk+1 = Ḟ

(
G>nk

√
N
− dmk

)
nk = F̂

(
Gmk

√
N
− bnk−1

)
Plan: for large k = O(1), condition on m1,n1, . . . ,mk ,nk , then 1st/2nd moment

No existence / uniqueness issue, but now E[|S(M)| |AMP] is k-dim optimization
(Over codimension-k slices of {±1}N orthogonal to m1, . . . ,mk )

­ DS18: for lower bound, tractable 1st/2nd moment on truncated count

|S(M) ∩ {correct affine slice}|

Upper bound: can’t do truncation, optimization intractable
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