The Algorithmic Phase Transition of Random k-SAT for Low Degree Polynomials

Brice Huang (MIT)

Joint work with Guy Bresler

CanaDAM 2023

Brice Huang (MIT)

June 8, 2023

k-SAT formula: AND of m clauses, each an OR of k literals, e.g.

$$(x_1 \vee \bar{x}_3 \vee x_7) \wedge (\bar{x}_2 \vee x_3 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee x_6)$$

Brice Huang (MIT)

Random k-SAT

k-SAT formula: AND of m clauses, each an OR of k literals, e.g.

$$(x_1 \vee \bar{x}_3 \vee x_7) \wedge (\bar{x}_2 \vee x_3 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee x_6)$$

 $x \in \{T, F\}^n$ satisfies this formula if every clause evaluates to True.

2/17

k-SAT formula: AND of m clauses, each an OR of k literals, e.g.

$$(x_1 \vee \bar{x}_3 \vee x_7) \wedge (\bar{x}_2 \vee x_3 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee x_6)$$

 $x \in \{T, F\}^n$ satisfies this formula if every clause evaluates to True.

Model (Random k-SAT)

k-SAT formula with m clauses, where the km literals are sampled i.i.d. from $\operatorname{unif}(\{x_1,\ldots,x_n,\bar{x}_1,\ldots,\bar{x}_n\})$.

2/17

k-SAT formula: AND of m clauses, each an OR of k literals, e.g.

$$(x_1 \vee \bar{x}_3 \vee x_7) \wedge (\bar{x}_2 \vee x_3 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee x_6)$$

 $x \in \{T, F\}^n$ satisfies this formula if every clause evaluates to True.

Model (Random k-SAT)

k-SAT formula with m clauses, where the km literals are sampled i.i.d. from $\operatorname{unif}(\{x_1,\ldots,x_n,\bar{x}_1,\ldots,\bar{x}_n\})$.

Clause density: $\alpha = m/n$

Brice Huang (MIT)

k-SAT formula: AND of m clauses, each an OR of k literals, e.g.

$$(x_1 \lor \bar{x}_3 \lor x_7) \land (\bar{x}_2 \lor x_3 \lor \bar{x}_5) \land (\bar{x}_1 \lor \bar{x}_2 \lor x_6)$$

 $x \in \{T, F\}^n$ satisfies this formula if every clause evaluates to True.

Model (Random k-SAT)

k-SAT formula with m clauses, where the km literals are sampled i.i.d. from $\operatorname{unif}(\{x_1,\ldots,x_n,\bar{x}_1,\ldots,\bar{x}_n\})$.

Clause density: $\alpha = m/n$

Parameters: fix large k, $\alpha = \alpha(k)$. Then $m, n \to \infty$ with $m/n \to \alpha$

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Brice Huang (MIT)

Random k-SAT

June 8, 2023

Satisfiability and Algorithmic Thresholds

OPT: largest α where solution exists? (w.h.p.)

• (Ding-Sly-Sun 15): $\mathsf{OPT} = 2^k \log 2 - \frac{1}{2} (1 + \log 2) + \varepsilon_k$

3/17

Satisfiability and Algorithmic Thresholds

OPT: largest α where solution exists? (w.h.p.)

• (Ding-Sly-Sun 15): OPT = $2^k \log 2 - \frac{1}{2}(1 + \log 2) + \varepsilon_k$

ALG: largest α where solution found by **efficient algorithm**?

• (Coja-Oghlan 10): algorithm (FIX) works to $(1 - \varepsilon_k)2^k \log k/k$

Brice Huang (MIT) Random k-SAT

Satisfiability and Algorithmic Thresholds

OPT: largest α where solution exists? (w.h.p.)

• (Ding-Sly-Sun 15): $\mathsf{OPT} = 2^k \log 2 - \frac{1}{2} (1 + \log 2) + \varepsilon_k$

ALG: largest α where solution found by efficient algorithm?

ullet (Coja-Oghlan 10): algorithm (FIX) works to $(1-arepsilon_k)2^k\log k/k$

Heuristic: shattering at $\approx 2^k \log k/k$ obstructs algorithms (Achlioptas-Coja-Oghlan 08)

(Adapted from Krzakala-Montanari-Ricci-Tersenghi-Semerjian-Zdeborová 07)

4□ > 4問 > 4 = > 4 = > = 90

June 8, 2023

3/17

Brice Huang (MIT) Random k-SAT

Main Result (informal)

Theorem (Bresler-H. 21)

Low degree polynomial algorithms cannot succeed above $\alpha = 4.911 \cdot 2^k \log k/k$.

4/17

Main Result (informal)

Theorem (Bresler-H. 21)

Low degree polynomial algorithms cannot succeed above $\alpha = 4.911 \cdot 2^k \log k/k$.

Clause Density	Algorithm(s)	Reference
$C2^k/k$	DPLL algorithms	[Achlioptas-Beame-Molloy 04]
$(1+\varepsilon_k)2^k\log k/k$	Survey Propagation guided decimation	[Hetterich 16]
$(1+\varepsilon_k)2^{k-1}\log^2 k/k$	Balanced sequential local algorithms (NAE-k-SAT)	[Gamarnik-Sudan 17]
$C2^k \log^2 k/k$	Walksat	[Coja-Oghlan-Haqshenas-Hetterich 17]
$4.911 \cdot 2^k \log k/k$	Low degree polynomials	This work

4/17

Polynomials $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^n$ of degree $D = O(\log n)$ (possibly randomized)

5/17

Polynomials $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^n$ of degree $D = O(\log n)$ (possibly randomized)

Includes: message passing, local algs, spectral algs, FIX

5/17

Polynomials $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^n$ of degree $D = O(\log n)$ (possibly randomized)

Includes: message passing, local algs, spectral algs, FIX

Encode k-SAT formula as $\Phi \in \{0,1\}^{mk \cdot 2n}$, 2n indicators per literal

Brice Huang (MIT) Random k-SAT

Polynomials $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^n$ of degree $D = O(\log n)$ (possibly randomized)

Includes: message passing, local algs, spectral algs, FIX

Encode k-SAT formula as $\Phi \in \{0,1\}^{mk \cdot 2n}$, 2n indicators per literal

 $\mathcal{A}: \{0,1\}^{mk \cdot 2n} \to \mathbb{R}^n$ solves k-SAT instance Φ if $\mathrm{sign}(\mathcal{A}(\Phi))$ almost satisfies Φ

Brice Huang (MIT)

Polynomials $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^n$ of degree $D = O(\log n)$ (possibly randomized)

Includes: message passing, local algs, spectral algs, FIX

Encode k-SAT formula as $\Phi \in \{0,1\}^{mk \cdot 2n}$, 2n indicators per literal

 $\mathcal{A}: \{0,1\}^{mk \cdot 2n} \to \mathbb{R}^n$ solves k-SAT instance Φ if $\mathrm{sign}(\mathcal{A}(\Phi))$ almost satisfies Φ

ullet i.e. $arepsilon_k n$ Hamming distance to assignment satisfying $(1-arepsilon_k)m$ clauses

5/17

Main Result

$$\kappa^* = \min_{\beta > 1} \frac{\beta}{1 - \beta e^{-(\beta - 1)}} \approx 4.911$$

Theorem (Bresler-H. 21)

If $\alpha > \kappa^* 2^k \log k/k$, then no degree $D = o(n/\log n)$ polynomial succeeds with probability $1 - \exp(-\Omega(D \log n))$.

6/17

Main Result

$$\kappa^* = \min_{\beta > 1} \frac{\beta}{1 - \beta e^{-(\beta - 1)}} \approx 4.911$$

Theorem (Bresler-H. 21)

If $\alpha > \kappa^* 2^k \log k/k$, then no degree $D = o(n/\log n)$ polynomial succeeds with probability $1 - \exp(-\Omega(D \log n))$.

Theorem (Bresler-H. 21)

For the same α , no O(1)-local algorithm succeeds with probability $\exp(-O(n^{1/3}))$.

O(1)-local algorithms also simulate FIX.

6/17

Overlap Gap Property (Gamarnik-Sudan 14)

solution geometry $\textbf{clustering} \Rightarrow \text{rigorous hardness for } \textbf{stable}$ algorithms

Overlap Gap Property (Gamarnik-Sudan 14)

solution geometry $\textbf{clustering} \Rightarrow \text{rigorous hardness for } \textbf{stable}$ algorithms

- Max independent set (Gamarnik-Sudan 14, Rahman-Virág 17, Gamarnik-Jagannath-Wein 20, Wein 20)
- Random NAE-k-SAT (Gamarnik-Sudan 17)
- Hypergraph maxcut (Chen-Gamarnik-Panchenko-Rahman 19)
- Symmetric binary perceptron (Gamarnik-Kızıldağ-Perkins-Xu 22)
- Mean field spin glass (Gamarnik-Jagannath 19, Gamarnik-Jagannath-Wein 20, H.-Sellke 21 & 23)
- Survey: (Gamarnik 21)

7/17

Overlap Gap Property (Gamarnik-Sudan 14)

solution geometry $clustering \Rightarrow rigorous hardness for stable algorithms$

- Max independent set (Gamarnik-Sudan 14, Rahman-Virág 17, Gamarnik-Jagannath-Wein 20, Wein 20)
- Random NAE-k-SAT (Gamarnik-Sudan 17)
- Hypergraph maxcut (Chen-Gamarnik-Panchenko-Rahman 19)
- Symmetric binary perceptron (Gamarnik-Kızıldağ-Perkins-Xu 22)
- Mean field spin glass (Gamarnik-Jagannath 19, Gamarnik-Jagannath-Wein 20, H.-Sellke 21 & 23)
- Survey: (Gamarnik 21)

Overlap gap: no solutions x, y have **medium** Hamming distance $\in [\nu_1 n, \nu_2 n]$

• Intuition: solutions close together or far apart

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ めぬ○

7/17

Classic OGP (Gamarnik-Sudan 14, Gamarnik-Jagannath-Wein 20)

Forbidden structure: no solution pair medium distance apart

8/17

Classic OGP (Gamarnik-Sudan 14, Gamarnik-Jagannath-Wein 20)

Forbidden structure: no solution pair medium distance apart

② Interpolation: If LDP algorithm $\mathcal A$ succeeds, can construct such a pair. So $\mathcal A$ cannot succeed

Will show hardness for $\alpha > \alpha_{\text{cl-ogp}} \equiv \frac{1}{2} \cdot 2^k \log 2 \approx \frac{1}{2} \mathsf{OPT}$

9/17

Will show hardness for
$$\alpha > \alpha_{\text{cl-ogp}} \equiv \frac{1}{2} \cdot 2^k \log 2 \approx \frac{1}{2} \mathsf{OPT}$$

Interpolation path of k-SAT instances:
$$\Phi^{(0)}$$
 $\Phi^{(1)}$ $\Phi^{(2)}$... $\Phi^{(km)}$

Brice Huang (MIT)

Will show hardness for
$$\alpha > \alpha_{\text{cl-ogp}} \equiv \frac{1}{2} \cdot 2^k \log 2 \approx \frac{1}{2} \text{OPT}$$

Interpolation path of *k*-SAT instances:
$$\Phi^{(0)}$$
 $\Phi^{(1)}$ $\Phi^{(2)}$... $\Phi^{(km)}$

 $\Phi^{(t)}$ resamples t-th literal of $\Phi^{(t-1)}$. Note $\Phi^{(0)} \perp \!\!\! \perp \Phi^{(km)}$.

Will show hardness for $\alpha > \alpha_{\text{cl-ogp}} \equiv \frac{1}{2} \cdot 2^k \log 2 \approx \frac{1}{2} \text{OPT}$

Interpolation path of *k*-SAT instances: $\Phi^{(0)}$ $\Phi^{(1)}$ $\Phi^{(2)}$... $\Phi^{(km)}$

 $\Phi^{(t)}$ resamples t-th literal of $\Phi^{(t-1)}$. Note $\Phi^{(0)} \perp \!\!\! \perp \Phi^{(km)}$.

Forbidden Structure: two assignments $y^{(1)}, y^{(2)} \in \{\mathtt{T},\mathtt{F}\}^n$ such that

- Each $y^{(i)}$ satisfies some $\Phi^{(t_i)}$ (not necessarily same t_i)
- $d_H(y^{(1)}, y^{(2)}) \in [\nu_1 n, \nu_2 n]$

Brice Huang (MIT)

This structure doesn't occur w.h.p. by 1st moment calculation

$$\frac{1}{n}\log \mathbb{E}\# \text{ (pairs of solutions } x,y \text{ with } d_H(x,y)\approx tn)$$

Brice Huang (MIT)

Suppose LDP \mathcal{A} succeeds with high enough probability. $x^{(t)} = \mathcal{A}(\Phi^{(t)})$.

10 / 17

Suppose LDP \mathcal{A} succeeds with high enough probability. $x^{(t)} = \mathcal{A}(\Phi^{(t)})$. \Rightarrow w.h.p. $x^{(t)}$ satisfies $\Phi^{(t)}$ for all t = 0, ..., km.

Brice Huang (MIT) Random *k*-SAT June 8, 2023 10 / 17

Suppose LDP \mathcal{A} succeeds with high enough probability. $x^{(t)} = \mathcal{A}(\Phi^{(t)})$. \Rightarrow w.h.p. $x^{(t)}$ satisfies $\Phi^{(t)}$ for all t = 0, ..., km.

Suppose LDP \mathcal{A} succeeds with high enough probability. $x^{(t)} = \mathcal{A}(\Phi^{(t)})$. \Rightarrow w.h.p. $x^{(t)}$ satisfies $\Phi^{(t)}$ for all t = 0, ..., km.

Suppose LDP \mathcal{A} succeeds with high enough probability. $x^{(t)} = \mathcal{A}(\Phi^{(t)})$. \Rightarrow w.h.p. $x^{(t)}$ satisfies $\Phi^{(t)}$ for all t = 0, ..., km.

 $x^{(km)}$

Suppose LDP \mathcal{A} succeeds with high enough probability. $x^{(t)} = \mathcal{A}(\Phi^{(t)})$. \Rightarrow w.h.p. $x^{(t)}$ satisfies $\Phi^{(t)}$ for all t = 0, ..., km.

Brice Huang (MIT)

Random k-SAT

June 8, 2023

Suppose LDP \mathcal{A} succeeds with high enough probability. $x^{(t)} = \mathcal{A}(\Phi^{(t)})$. \Rightarrow w.h.p. $x^{(t)}$ satisfies $\Phi^{(t)}$ for all t = 0, ..., km.

Suppose LDP \mathcal{A} succeeds with high enough probability. $x^{(t)} = \mathcal{A}(\Phi^{(t)})$. \Rightarrow w.h.p. $x^{(t)}$ satisfies $\Phi^{(t)}$ for all t = 0, ..., km.

Classic OGP: Interpolation

Suppose LDP \mathcal{A} succeeds with high enough probability. $x^{(t)} = \mathcal{A}(\Phi^{(t)})$. \Rightarrow w.h.p. $x^{(t)}$ satisfies $\Phi^{(t)}$ for all $t = 0, \dots, km$.

$$x^{(0)} \overset{x^{(1)}}{\overset{\bullet}{\bullet}} \overset{x^{(2)}}{\overset{\bullet}{\bullet}} x^{(3)} \overset{x^{(4)}}{\overset{\bullet}{\bullet}}$$
 Not allowed by OGP!

 $x^{(km)}_{\quad \bullet}$

Contradiction $\Rightarrow A$ cannot succeed.

イロト 4回ト 4 重ト 4 重ト 重 めなべ

Brice Huang (MIT) Random *k*-SAT June 8, 2023 10 / 17

Classic OGP to Multi-OGP

Classic OGP breaks down at $\alpha_{ ext{cl-ogp}}$ because constellation no longer forbidden

Classic OGP to Multi-OGP

Classic OGP breaks down at $\alpha_{ ext{cl-ogp}}$ because constellation no longer forbidden

Multi-OGP: use larger constellation. Shows hardness at $\kappa^* 2^k \log k / k$.

Classic OGP to Multi-OGP

Classic OGP breaks down at $\alpha_{
m cl-ogp}$ because constellation no longer forbidden

Multi-OGP: use larger constellation. Shows hardness at $\kappa^* 2^k \log k / k$.

Multi-OGP determined ALG for maximum independent set (Rahman-Virág 17, Wein 20) and mean-field spin glasses (H.-Sellke $21\ \&\ 23$)

"Ladder" Multi-OGP (Wein 20)

Forbidden structure: no constellation of solutions of prescribed geometry

3 Interpolation: If LDP algorithm \mathcal{A} succeeds, can construct such a constellation. So \mathcal{A} cannot succeed

Let
$$\alpha > \alpha_{\text{m-ogp}} \equiv \kappa^* 2^k \log k / k$$
.

Interpolation path of k-SAT instances: $\Phi^{(0)}$ $\Phi^{(1)}$ $\Phi^{(2)}$... $\Phi^{(km \cdot k)}$

```
Let \alpha > \alpha_{\text{m-ogp}} \equiv \kappa^* 2^k \log k / k. Interpolation path of k-SAT instances: \Phi^{(0)} = \Phi^{(1)} = \Phi^{(2)} = \cdots = \Phi^{(km \cdot k)}. \Phi^{(t)} resamples (t \mod km)-th literal of \Phi^{(t-1)}
```

```
Let \alpha > \alpha_{\text{m-ogp}} \equiv \kappa^* 2^k \log k/k. Interpolation path of k-SAT instances: \Phi^{(0)} = \Phi^{(1)} = \Phi^{(2)} = \cdots = \Phi^{(km-k)} \Phi^{(t)} \text{ resamples } (t \mod km) \text{-th literal of } \Phi^{(t-1)} Note \Phi^{(t_1)} \perp \!\!\!\perp \Phi^{(t_2)} for all |t_1 - t_2| > km
```

```
Let \alpha > \alpha_{\text{m-ogp}} \equiv \kappa^* 2^k \log k/k. Interpolation path of k-SAT instances: \Phi^{(0)} = \Phi^{(1)} = \Phi^{(2)} = \cdots = \Phi^{(km \cdot k)} \Phi^{(t)} \text{ resamples } (t \mod km) \text{-th literal of } \Phi^{(t-1)} Note \Phi^{(t_1)} \perp \!\!\! \perp \Phi^{(t_2)} for all |t_1 - t_2| \geq km
```

Forbidden structure: k assignments $y^{(1)}, \dots, y^{(k)} \in \{T, F\}^n$ such that

- Each $y^{(i)}$ satisfies some $\Phi^{(t_i)}$ (not necessarily same t_i)
- For $i \ge 2$, $y^{(i)}$ has medium multi-distance to $\{y^{(1)}, \dots, y^{(i-1)}\}$.

Let
$$\alpha > \alpha_{\text{m-ogp}} \equiv \kappa^* 2^k \log k / k$$
.

Interpolation path of k-SAT instances:
$$\Phi^{(0)}$$
 $\Phi^{(1)}$ $\Phi^{(2)}$... $\Phi^{(km \cdot k)}$

$$\Phi^{(t)}$$
 resamples ($t \mod km$)-th literal of $\Phi^{(t-1)}$
Note $\Phi^{(t_1)} \perp \!\!\!\perp \Phi^{(t_2)}$ for all $|t_1 - t_2| \geq km$

Forbidden structure: k assignments $y^{(1)}, \ldots, y^{(k)} \in \{T, F\}^n$ such that

- Each $y^{(i)}$ satisfies some $\Phi^{(t_i)}$ (not necessarily same t_i)
- For $i \ge 2$, $y^{(i)}$ has medium multi-distance to $\{y^{(1)}, \dots, y^{(i-1)}\}$.

Doesn't occur w.h.p. by 1st moment argument

Brice Huang (MIT)

Random k-SAT

June 8, 2023

Suppose LDP \mathcal{A} succeeds with high enough probability. $x^{(t)} = \mathcal{A}(\Phi^{(t)})$.

Brice Huang (MIT) Random k-SAT June 8, 2023 14/17

Suppose LDP \mathcal{A} succeeds with high enough probability. $x^{(t)} = \mathcal{A}(\Phi^{(t)})$. \Rightarrow w.h.p. $x^{(t)}$ satisfies $\Phi^{(t)}$ for all $t = 0, \dots, k^2m$.

14 / 17

Brice Huang (MIT)

Random k-SAT

June 8, 2023

Suppose LDP \mathcal{A} succeeds with high enough probability. $x^{(t)} = \mathcal{A}(\Phi^{(t)})$. \Rightarrow w.h.p. $x^{(t)}$ satisfies $\Phi^{(t)}$ for all $t = 0, \dots, k^2m$.

$$x^{(km)}$$

$$y^{(1)} = x^{(0)}$$

$$x^{(km)}$$

$$y^{(1)} = x^{(0)}$$

$$x^{(km)}$$

$$y^{(1)} = x^{(0)}$$

$$x^{(km)}$$

$$y^{(1)} = x^{(0)}$$

Suppose LDP \mathcal{A} succeeds with high enough probability. $x^{(t)} = \mathcal{A}(\Phi^{(t)})$. \Rightarrow w.h.p. $x^{(t)}$ satisfies $\Phi^{(t)}$ for all $t = 0, \dots, k^2m$.

$$x^{(km)}$$

$$y^{(1)} = x^{(0)}$$

$$x^{(km)}$$

$$y^{(1)} = x^{(0)}$$

$$y^{(2)} = x^{(4)}$$

Suppose LDP \mathcal{A} succeeds with high enough probability. $x^{(t)} = \mathcal{A}(\Phi^{(t)})$. \Rightarrow w.h.p. $x^{(t)}$ satisfies $\Phi^{(t)}$ for all $t = 0, \dots, k^2m$.

Medium multi-distance to $\{x^{(0)}, x^{(4)}\}$

$$y^{(1)} = x^{(0)}$$

$$y^{(2)} = x^{(4)}$$

4□ > 4□ > 4 = > 4 = > = 99

Suppose LDP \mathcal{A} succeeds with high enough probability. $x^{(t)} = \mathcal{A}(\Phi^{(t)})$. \Rightarrow w.h.p. $x^{(t)}$ satisfies $\Phi^{(t)}$ for all $t = 0, \dots, k^2m$.

Brice Huang (MIT) Random k-SAT

Suppose LDP \mathcal{A} succeeds with high enough probability. $x^{(t)} = \mathcal{A}(\Phi^{(t)})$. \Rightarrow w.h.p. $x^{(t)}$ satisfies $\Phi^{(t)}$ for all $t = 0, \dots, k^2m$.

 $x^{(4+km)}$

$$y^{(1)} = x^{(0)}$$

$$y^{(2)} = x^{(4)}$$

Suppose LDP \mathcal{A} succeeds with high enough probability. $x^{(t)} = \mathcal{A}(\Phi^{(t)})$. \Rightarrow w.h.p. $x^{(t)}$ satisfies $\Phi^{(t)}$ for all $t = 0, \dots, k^2m$.

 $x^{(4+km)}_{\quad \bullet}$

$$y^{(1)} = x^{(0)}$$

$$y^{(2)} = x^{(4)}$$

Suppose LDP \mathcal{A} succeeds with high enough probability. $x^{(t)} = \mathcal{A}(\Phi^{(t)})$. \Rightarrow w.h.p. $x^{(t)}$ satisfies $\Phi^{(t)}$ for all $t = 0, \dots, k^2m$.

 $x^{(4+km)}_{\quad \bullet}$

$$y^{(1)} = x^{(0)}$$

$$y^{(2)} = x^{(4)}$$

Suppose LDP A succeeds with high enough probability. $x^{(t)} = A(\Phi^{(t)})$. \Rightarrow w.h.p. $x^{(t)}$ satisfies $\Phi^{(t)}$ for all $t = 0, \dots, k^2 m$.

 $x^{(4+km)}$

$$y^{(1)} = x^{(0)}$$

$$y^{(2)} = x^{(4)}$$

Brice Huang (MIT)

Suppose LDP \mathcal{A} succeeds with high enough probability. $x^{(t)} = \mathcal{A}(\Phi^{(t)})$. \Rightarrow w.h.p. $x^{(t)}$ satisfies $\Phi^{(t)}$ for all $t = 0, \dots, k^2 m$.

 $x^{(4+km)}$

$$y^{(1)} = x^{(0)}$$

$$y^{(2)} = x^{(4)}$$

$$y^{(3)} = x^{(8)}$$

Suppose LDP \mathcal{A} succeeds with high enough probability. $x^{(t)} = \mathcal{A}(\Phi^{(t)})$. \Rightarrow w.h.p. $x^{(t)}$ satisfies $\Phi^{(t)}$ for all $t = 0, \dots, k^2m$.

$$y^{(1)} = x^{(0)}$$

$$y^{(2)} = x^{(4)}$$

$$y^{(3)} = x^{(8)}$$

June 8, 2023

14 / 17

Contradiction $\Rightarrow A$ cannot succeed.

4 □ ト 4 □ ト 4 亘 ト 4 亘 ・ り 9 ○ ○

Brice Huang (MIT) Random k-SAT

Remains to define multi-distance so that $\mathbb{E}[\# ext{forbidden structure}] = e^{-\Omega(n)}$

15 / 17

Brice Huang (MIT) Random k-SAT June 8, 2023

Remains to define multi-distance so that $\mathbb{E}[\# ext{forbidden structure}] = e^{-\Omega(n)}$

For max independent set on G(n, d/n) (Wein 20):

 $\mathbb{E}[\# \text{forbidden structure}] = (\text{entropic term})\mathbb{P}[S_1, \dots, S_L \text{ all large independent sets}]$ controlled by vertex, edge counts in $S_1 \cup \dots \cup S_L$.

Remains to define multi-distance so that $\mathbb{E}[\# \text{forbidden structure}] = e^{-\Omega(n)}$

For max independent set on G(n, d/n) (Wein 20):

 $\mathbb{E}[\#\text{forbidden structure}] = (\text{entropic term})\mathbb{P}[S_1, \dots, S_L \text{ all large independent sets}]$

controlled by vertex, edge counts in $S_1 \cup \cdots \cup S_L$. So this condition works:

 $\mathsf{multiDist}(S_i, \{S_1, \dots, S_{i-1}\}) \equiv |S_i \setminus (S_1 \cup \dots \cup S_{i-1})|$ is medium

Remains to define multi-distance so that $\mathbb{E}[\# \text{forbidden structure}] = e^{-\Omega(n)}$

For max independent set on G(n, d/n) (Wein 20):

 $\mathbb{E}[\# \text{forbidden structure}] = (\text{entropic term}) \mathbb{P}[S_1, \dots, S_L \text{ all large independent sets}]$

controlled by vertex, edge counts in $S_1 \cup \cdots \cup S_L$. So this condition works:

$$\mathsf{multiDist}(S_i, \{S_1, \dots, S_{i-1}\}) \equiv |S_i \setminus (S_1 \cup \dots \cup S_{i-1})| \quad \mathsf{is medium}$$

For us,

 $\mathbb{E}[\# \text{forbidden structure}] = (\text{entropic term})\mathbb{P}[y^{(1)},\ldots,y^{(k)} \text{ all satisfying assignments}].$

Main challenge: \mathbb{P} term depends on $y^{(1)}, \dots, y^{(k)}$ in complicated way.

How to choose condition so \mathbb{P} term beats entropic term?

Brice Huang (MIT) Random k-SAT June 8, 2023 15 / 17

Overlap profile: for $y^{(1)},\ldots,y^{(L)}\in\{\mathtt{T},\mathtt{F}\}^n$, $\pi=\pi(y^{(1)},\ldots,y^{(L)})\in\mathbb{R}^{2^{L-1}}$

Brice Huang (MIT)

Overlap profile: for
$$y^{(1)}, \dots, y^{(L)} \in \{T, F\}^n$$
, $\pi = \pi(y^{(1)}, \dots, y^{(L)}) \in \mathbb{R}^{2^{L-1}}$

For each (unordered) partition S, T of $[L] = \{1, \ldots, L\}$ (including $\emptyset, [L]$),

$$\pi_{S,T} = \frac{1}{n} \left| i \in [n] : \right|$$
 all $\{y_i^{(\ell)} : \ell \in S\}$ equal one value and all $\{y_i^{(\ell)} : \ell \in T\}$ equal the other value

Brice Huang (MIT)

Overlap profile: for $y^{(1)}, \dots, y^{(L)} \in \{T, F\}^n$, $\pi = \pi(y^{(1)}, \dots, y^{(L)}) \in \mathbb{R}^{2^{L-1}}$

For each (unordered) partition S, T of $[L] = \{1, \dots, L\}$ (including $\emptyset, [L]$),

$$\pi_{S,T} = \frac{1}{n} \left| i \in [n] : \begin{array}{l} \text{all } \{y_i^{(\ell)} : \ell \in S\} \text{ equal one value and} \\ \text{all } \{y_i^{(\ell)} : \ell \in T\} \text{ equal the other value} \end{array} \right|$$

Overlap entropy:

$$H(\pi) = -\sum_{S,T \text{ partition } [L]} \pi_{S,T} \log \pi_{S,T}$$

Brice Huang (MIT) Random k-SAT

Overlap profile: for $y^{(1)}, \dots, y^{(L)} \in \{T, F\}^n$, $\pi = \pi(y^{(1)}, \dots, y^{(L)}) \in \mathbb{R}^{2^{L-1}}$

For each (unordered) partition S, T of $[L] = \{1, \dots, L\}$ (including $\emptyset, [L]$),

$$\pi_{S,T} = \frac{1}{n} \left| i \in [n] : \begin{array}{l} \text{all } \{y_i^{(\ell)} : \ell \in S\} \text{ equal one value and} \\ \text{all } \{y_i^{(\ell)} : \ell \in T\} \text{ equal the other value} \end{array} \right|$$

Overlap entropy:

$$H(\pi) = -\sum_{S,T \text{ partition } [L]} \pi_{S,T} \log \pi_{S,T}$$

Multi-distance condition:

$$\mathsf{multiDist}(y^{(L)}, \{y^{(1)}, \dots, y^{(L-1)}\}) \equiv \mathit{H}(\pi(y^{(1)}, \dots, y^{(L)})) - \mathit{H}(\pi(y^{(1)}, \dots, y^{(L-1)}))$$

is medium

Brice Huang (MIT)

Random k-SAT

June 8, 2023

We prove hardness of random k-SAT at $\alpha = 4.911 \cdot 2^k \log k/k$ via a multi-OGP

We prove hardness of random k-SAT at $\alpha = 4.911 \cdot 2^k \log k/k$ via a multi-OGP

Q1: Close the 4.911 constant factor gap?

• Our techniques get stuck at $1.716 \cdot 2^k \log k/k$ at best

Brice Huang (MIT)

We prove hardness of random k-SAT at $\alpha = 4.911 \cdot 2^k \log k/k$ via a multi-OGP

Q1: Close the 4.911 constant factor gap?

• Our techniques get stuck at $1.716 \cdot 2^k \log k/k$ at best

Q2: Show low degree polynomials can't succeed even with small probability?

We prove hardness of random k-SAT at $\alpha = 4.911 \cdot 2^k \log k/k$ via a multi-OGP

- Q1: Close the 4.911 constant factor gap?
 - Our techniques get stuck at $1.716 \cdot 2^k \log k/k$ at best
- Q2: Show low degree polynomials can't succeed even with small probability?
- Q3: General theory of algorithmic threshold in random optimization problems?

17 / 17

Brice Huang (MIT) Random k-SAT June 8, 2023

We prove hardness of random k-SAT at $\alpha = 4.911 \cdot 2^k \log k/k$ via a multi-OGP

- Q1: Close the 4.911 constant factor gap?
 - Our techniques get stuck at $1.716 \cdot 2^k \log k/k$ at best
- Q2: Show low degree polynomials can't succeed even with small probability?
- Q3: General theory of algorithmic threshold in random optimization problems?

Thank you!

Brice Huang (MIT)