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Mean Field Spin Glasses

Polynomials Hy : RYN — R with random coefficients, e.g. random cubic
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Polynomials Hy : RYN — R with random coefficients, e.g. random cubic

N
1 1
Hn(o) = m Y " iy 040,00 = N<G(3)’U®3> oW N(0,1)
v iaa=1

More generally, mix different degrees. For 72,73,... >0,
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Mean Field Spin Glasses

Polynomials Hy : RYN — R with random coefficients, e.g. random cubic

N

1 1
Hn(o) = N Z 8iriais " 0inOiyOiy = N<G(3)’U®3> Biviaia 7 N(0,1)
i1 i2,is=1 e
More generally, mix different degrees. For 72,73,... >0,

& v

— P (P) 5® (P) N\®p ;

Hn(o) = 22 N(pfl)/2<G Pl a®P) G e (R™)®Piid. N(0,1)s

p:

Goal: algorithmically optimize Hy over sphere Sy = v/ NSV-1
Mixture function: ¢(q) = Ep »729P. Cubic above: £(q) = ¢*
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Motivation

@ Origin: diluted magnetic alloys (Sherrington-Kirkpatrick 75)
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Motivation

@ Origin: diluted magnetic alloys (Sherrington-Kirkpatrick 75)
o Natural high-dimensional, non-convex random optimization problem

@ Random MaxCut and MaxSAT with many constraints (Dembo-Montanari-Sen 17,
Panchenko 18)

@ Tensor PCA log-likelihood in null model (Ben Arous-Mei-Montanari-Nica 17)

@ Neural networks, high-dimensional statistics (Hopfield 82, Gardner-Derrida 87/88,
Talagrand 00/02, Choromanska-Henaff-Mathieu-Ben Arous-LeCun 15, Ding-Sun 18,
Fan-Mei-Montanari 21)
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The maximum of Hy

Two basic questions for any random optimization problem:
@ OPT: maximum value that exists?

@ ALG: maximum value found by efficient algorithm?
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The maximum of Hy

Two basic questions for any random optimization problem:
@ OPT: maximum value that exists?

@ ALG: maximum value found by efficient algorithm?

Theorem (Parisi 82, Talagrand 06/10, Panchenko 14, Auffinger-Chen 17)

The limiting maximum value

OPT = p-lim L max Hy(o)

N—oo N oesy

exists and is given by the Parisi formula P(¢).
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|
Efficient Optimization

o Today's goal: understand power of efficient algorithms A to optimize Hy.
For o = A(Hy), what is max of

1
E = lim NHN(U')?

N—oo
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|
Efficient Optimization

o Today's goal: understand power of efficient algorithms A to optimize Hy.
For o = A(Hy), what is max of

E = lim %HN(U)?

@ Rich landscapes challenging for algorithms
° GCN bad local maxima well below OPT (Auffinger-Ben Arous-Cerny 13, Subag 17)

@ Worst-case lower bounds overly pessimistic
o Adversarial Hy: (log® N)-approximation NP-hard (ABEKS 05, BBHKSZ 12)
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Informal Result

We determine sharp threshold ALG for a class of O(1)-Lipschitz algorithms
@ A Lipschitz algorithm attains ALG, and this is the best known
@ No Lipschitz algorithm surpasses ALG
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Informal Result

We determine sharp threshold ALG for a class of O(1)-Lipschitz algorithms
@ A Lipschitz algorithm attains ALG, and this is the best known
@ No Lipschitz algorithm surpasses ALG

Result holds for yet more general multi-species spin glasses

O(1)-Lipschitz algorithms include:

@ Gradient descent, AMP, or any constant order method for O(1) rounds
@ Langevin dynamics for e’ for O(1) time

@ Not: low degree polynomials, SOS

Hardness result holds for more general overlap concentrated algorithms

Brice Huang (MIT)
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Densely Branching Ultrametric Trees
Hierarchically clustered constellation of points

Overlap: R(o,p) = (o,p)/N € [-1,1]

/ \
e / \ / \
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Densely Branching Ultrametric Trees

Hierarchically clustered constellation of points

Overlap: R(o,p) = (o,p)/N € [-1,1]

/\

k-ary
depth D
R_" 1 _

Overlap g2
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Densely Branching Ultrametric Trees

Hierarchically clustered constellation of points

Overlap: R(o,p) = (o,p)/N € [-1,1]

/\

k-ary
depth D
R_" 1 _

Overlap g2

k,D €N large, (go,...,qp) = (0, 5,...,1) (dense branching)

Brice Huang (MIT)

Overlap qo
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|
Geometric description of ALG

Largest value whose super-level set contains densely branching ultrametric tree
@ Tree exists = algorithm can climb tree
@ Tree absent = hard by Branching OGP
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|
Geometric description of ALG

Largest value whose super-level set contains densely branching ultrametric tree
@ Tree exists = algorithm can climb tree
@ Tree absent = hard by Branching OGP

o Comparison with Gibbs/OPT ultrametricity: ALG trees must branch
continuously, Gibbs trees might not

o Consistent with algorithmic solutions forming dense well-connected cluster
(Baldassi et. al. 15, Abbe-Li-Sly 21)
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|
Overlap Gap Property

v solution geometry clustering = rigorous hardness for stable algorithms
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|
Overlap Gap Property

v solution geometry clustering = rigorous hardness for stable algorithms

@ Max ind. set (Gamarnik-Sudan 14, Rahman-Virag 17, Gamarnik-Jagannath-Wein 20, Wein 20)
Random (NAE-)k-SAT (Gamarnik-Sudan 17, Bresler-H. 21)
Hypergraph maxcut (Chen-Gamarnik-Panchenko-Rahman 19)

Symmetric binary perceptron (Gamarnik-Kizildag-Perkins-Xu 22)

Mean field spin glass (Gamarnik-Jagannath 19, Gamarnik-Jagannath-Wein 20)

Overlap gap: no high-value o, p have medium overlap € [v4, 1]

@ Intuition: high-value points close together or far apart
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-
Classic OGP (Gamarnik-Sudan 14)

@ Stable algorithm A reaching E = 2 points of value E with medium overlap
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Classic OGP to Multi-OGP

Easy Hard by Classic OGP | Impossible

ALG © oPT
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|
Classic OGP to Multi-OGP

Easy | 77?7 , Hard by Classic OGP~ Impossible
< 1

ALG ® | ©  opT

Multi-OGP: more complex forbidden structure (Rahman-Virag 17, Wein 20, ...)
o T
‘b‘ ¢ ko) Ne
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|
Classic OGP to Multi-OGP

Easy ?7? Hard by Multi-OGP

O OPT

Impossible

A 4

Can we push hardness to ALG? Yes, by Branching OGP.
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Main Result: Algorithmic Threshold

Theorem (Subag 18)
An efficient algorithm finds o such that

1
FHn(0) = AL = [ €'(a)da.
0
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Main Result: Algorithmic Threshold

Theorem (Subag 18)

An efficient algorithm finds o such that

1
FHn(0) = AL = [ €'(a)da.
0

Theorem (H.-Sellke 21)

If € even, no O(1)-Lipschitz algorithm beats ALG with probability e~V

Tight answer for even models, but brittle proof using Guerra’s interpolation

Theorem (H.-Sellke 23)

For all £, no O(1)-Lipschitz algorithm beats ALG with probability e=<".

@ New proof of Branching OGP avoids Guerra's interpolation
@ Same method works for multi-species spin glasses
o In these models, OPT not always known! (Because Guerra's interpolation fails)
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Subag's Algorithm (Hessian Ascent)

Constant step size § = 1/D. x° =0 € RV:
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Subag's Algorithm (Hessian Ascent)
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-
Subag's Algorithm (Hessian Ascent)

Constant step size § = 1/D. x° =0 € RV:
© Take v' the top eigenvector of tangential Hessian V2 Hp(x*)|xt)-

© Explore outward by small orthogonal steps: x'™! = xt 4+ /6 Nv?.
(Since v* L xt, th||§ = téN)

@ Output o = xP € Sy
Can be implemented as O(1)-Lipschitz algorithm (EI Alacui-Montanari-Sellke 20)
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Branching OGP (H.-Sellke 21)

@ O(1)-Lipschitz algorithm A reaching E = ultrametric of points of value E

o}
oy o 0 0

g o ¢ o d o d 0o
© 00 0O OO OO OO VO VO ©

(with respect to a correlated Hamiltonian ensemble)

@ Constellation does not exist for E > ALG + . So A cannot beat ALG
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Lipschitz Algorithms to Dense Ultrametric Trees

Suppose O(1)-Lipschitz algorithm A attains value E

Q
. o
/\ /\
@ @B & ®

k-ary
depth D
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Lipschitz Algorithms to Dense Ultrametric Trees

Suppose O(1)-Lipschitz algorithm A attains value E

Q Q
< N\ < NG
/\ [N\ Atz SN /\
@ @B & ®

Po

k-ary

depth D) Pt
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Lipschitz Algorithms to Dense Ultrametric Trees

Suppose O(1)-Lipschitz algorithm A attains value E

Q Q
< N\ < NG
/\ [N\ Atz SN /\
@ @B & ®

Gaussian concentration: overlaps concentrate
11 _12 11 _12 —
eg. R(o™,0™) = ER(c™,0™) =x(p1) =1

k-ary

depth D) Pt
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Lipschitz Algorithms to Dense Ultrametric Trees

Suppose O(1)-Lipschitz algorithm A attains value E

0 Q
O/ \O (o) O/ \O

A(Hf)=c"

k-ary

depth D) Pt

/\ /\
@ @B & ®

Gaussian concentration: overlaps concentrate
11 _12 11 _12 —
eg. R(o™,0™) = ER(c™,0™) =x(p1) =1

q1

[N /N
) €9 &9 &) =

R_A R_A
q1 do
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Lipschitz Algorithms to Dense Ultrametric Trees

Suppose O(1)-Lipschitz algorithm A attains value E

0 Q
O/ \O (o) O/ \O

A(Hf)=c"

k-ary

depth D) Pt

/\ /\
@ @B & ®

Gaussian concentration: overlaps concentrate
11 _12 11 _12 —
eg. R(o™,0™) = ER(c™,0™) =x(p1) =1

q1

[N /N
) €9 &9 &) =

R_A R_A
q1 do

(UU)UE[HD is approximately ultrametric!
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Lipschitz Algorithms to Dense Ultrametric Trees

Suppose O(1)-Lipschitz algorithm A attains value E

Po O O do
—
. x(Pd)=qd
-ary
depth D) Pt O O O O q
SN N\ A SN SN
m @) ) B @ e
R_A1 R~ R R A
P1 Po g1 do
Gaussian concentration: overlaps concentrate
e.g. R(o™, o) ~ ER(c™,0"%) = x(p1) = 1
(UU)UE[HD is approximately ultrametric!
X continuous = can choose g so (qo, ..., qp) = (0, %, .5 1)
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Lipschitz Algorithms to Dense Ultrametric Trees

Suppose O(1)-Lipschitz algorithm A attains value E

Po O O do
—
. x(Pd)=qd
-ary
depth D) Pt O O O O q
SN N\ A SN SN
m @) ) B @ e
R_A1 R~ R R A
P1 Po g1 do
Gaussian concentration: overlaps concentrate
e.g. R(o™, o) ~ ER(c™,0"%) = x(p1) = 1
(UU)UE[HD is approximately ultrametric!
X continuous = can choose g so (qo, ..., qp) = (0, %, .5 1)

Aattains E = Hf\(o!) > E for all u € [k]P
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Lipschitz Algorithms to Dense Ultrametric Trees

Suppose O(1)-Lipschitz algorithm A attains value E

Po O O do
—
. x(Pd)=qd
-ary
depth D) Pt O O O O q
SN N\ A SN SN
m @) ) B @ e
R_A1 R~ R R A
P1 Po g1 do
Gaussian concentration: overlaps concentrate
e.g. R(o™, o) ~ ER(c™,0"%) = x(p1) = 1
(UU)UE[HD is approximately ultrametric!
X continuous = can choose g so (qo, ..., qp) = (0, %, .5 1)

Aattains E = gHj(o") > Eforall uc [k]® = 5y 2 ,cpp Hi(o") > E
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Upper Bounding the Constellation Value
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g:(o,l/D,...,l) uelk]P
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Upper Bounding the Constellation Value
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Upper Bounding the Constellation Value

1
We will show: — Hy(e") < ALG
& Wit show (o) UItI;Eri)e(tnc with kPN N(G ) -
§=(0,1/D,...,1) uelk]P

New proof idea: optimal constellation (o) is greedy
@ Can branch Subag’s algorithm by taking top k eigenvectors

@ Multi-valued algorithm. Outputs (0),¢c[qp ultrametric, all achieve ~ ALG

@ Main claim: this greedy construction is optimal

o Consequence: ALG = highest super-level set containing dense ultrametric
e “Can’t plan ahead" — formalized by uniform concentration

Brice Huang (MIT) Algorithmic Threshold for Spin Glasses 15 /21



Uniform Concentration

Configuration x, x*, ..., x*:
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Uniform Concentration

Configuration x, x*, ..., x*:

k

F(x) = max % Z(HN(Xi) — Hu(x))

x1,...,xk -1

“Improvement in Hy from x to its children"

Radius:

X[l = VaN
Ix'lly = v/a'N

Increment orthogonality:
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Uniform Concentration

Configuration x, x*, ..., x*:

k
F(x) = max % Z(HN(Xi) — Hu(x))

x1,...,xk -1

“Improvement in Hy from x to its children"

Lemma (Uniform Concentration, Subag 18)

For any n > 0, sufficiently large k > ko(n),
Radivs. P [|F(x) —EF(x)| <n Vx|, = \/qN] >1—e N

X[l = VaN
Ix'lly = v/a'N

Increment orthogonality:

x'—x L x—x1Lx
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Uniform Concentration

Configuration x, x*, ..., x*:

k
F(x) = max % Z(HN(Xi) — Hu(x))

x1,...,xk -1

“Improvement in Hy from x to its children"

Lemma (Uniform Concentration, Subag 18)

For any n > 0, sufficiently large k > ko(n),
Radivs. P [|F(x) —EF(x)| <n Vx|, = \/qN] >1—e N
X[l = VaN

M. = /a'N
11l 9 No ||x||, = v/gN is unusually good for building
Increment orthogonality: a tree, so might as well be greedy.

x'—x L x—x1Lx
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Upper Bounding the Constellation Value

. . u o
Given ultrametric ("), 4o, let interior
o' be recursive barycenters
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Given ultrametric ("), o, let interior
o' be recursive barycenters Want to upper bound:

k 1 u
u 1 ui D E HN(U )
o' == E o kPN arnts

g Equals telescoping sum of increments
o

@

@ ./ \. 7 (o) = Hilo)

qz@@

Satisfy orthogonality relations
approximately if k large:

le“ll2 = /qjuN
ui
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o' be recursive barycenters Want to upper bound:

1 u
Uu:lio_ui m Z HN(U)

u€lk]P

a0 / Equals telescoping sum of increments
1 J ui u
@ 7 L (Hu(o™) = Hilo)

NaRcN=R=

Satisfy orthogonality relations
approximately if k large:

lo“lly = \/qu N

o —oc' Lo¥Y—-0c"Lo"
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Given ultrametric ("), 4o, let interior
o' be recursive barycenters Want to upper bound:

1 u
Uu:lidui m Z HN(U)

uclk]P

Equals telescoping sum of increments
qo &

q / \ % Z(HN(UUi) — Hn(c")) < F(o")
ANVAN
© @) ) )
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approximately if k large:

lo“ll, = y/au N
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Upper Bounding the Constellation Value

Given ultrametric ("), 4o, let interior
o' be recursive barycenters Want to upper bound:

1 u
o_u_ lidu’. m Z HN(O’)

uclk]P

Equals telescoping sum of increments
qo &

@ / \ i S (Hu(e) = Hulo")) < Flo")
S A
92 @ @ @ @ F(o") =~ EF(c") by uniform concentration!

Satisfy orthogonality relations

approximately if k large: Bounds match greedy algorithm, sum to ALG

oIl = +/qr N Correlated Hy: similarly bound
' 2 . ] L
ui . _u u _ u u ui i u
o o' lo o' lo WZ(H’V(UU)_ Hi(a"))
i=1
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Multi-Species Spin Glasses

@ Up to now: polynomials in variables x1, ..., xy that all look alike

o Multi-species models: r = O(1) different “variable types"
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Multi-species models: r = O(1) different “variable types"

Formally, each coordinate part of a species s € . = {1,...,r}

N|=ThU---UZ,,  |[Ts| = AN

o Interaction weights 72,73, ... NOW (V5,5 )s1,.s26.55 (Vs.52.53 )sa 52053675 - - -
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Multi-Species Spin Glasses

@ Up to now: polynomials in variables x1, ..., xy that all look alike

o Multi-species models: r = O(1) different “variable types"

@ Formally, each coordinate part of a species s € . = {1,...,r}
INl=Z, U---UZ, |Zs| = AsN

@ Interaction weights 72,73, ... NOW (Vs; 5, )s1,50€.5 (Vs1,50.55 )51,52,55€.5» - - -

@ Goal: optimize Hy over product of spheres

Ty = {0' eRV: H0'|Is||§ =N Vse 5’}
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Multi-Species Algorithms

@ Optimizing on product of spheres = track radius for each species
o 2 species: radius schedule is up-right path from (0,0) to (1,1)

00 02 04 06 08 10
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Brice Huang (MIT) Algorithmic Threshold for Spin Glasses



|
Multi-Species Algorithms

@ Optimizing on product of spheres = track radius for each species
o 2 species: radius schedule is up-right path from (0,0) to (1,1)

00 02 04 06 08 10

o In general, radius schedule is coordinate-increasing ¢ : [0,1] — [0, 1]
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Multi-Species Algorithms

@ Optimizing on product of spheres = track radius for each species
o 2 species: radius schedule is up-right path from (0,0) to (1,1)

o In general, radius schedule is coordinate-increasing ¢ : [0,1] — [0, 1]

@ Each ® gives algorithm taking small orthogonal steps in each species
o Algorithm value

40)= 3 [ \n@co0y(@)9i(a) da

se€S
(& now multivariate polynomial in || variables)
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Multi-Species Algorithmic Threshold

Theorem (H.-Sellke 23)
Define

1
ALG = sup > / \//\s(asé 0 ®)(q)%:(q) dg
®:[0,1][0,1]7 /0
increasing, differentiable
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Theorem (H.-Sellke 23)
Define

1
ALG = sup > / \//\s(asé 0 ®)(q)%:(q) dg
®:[0,1][0,1]7 /0
increasing, differentiable

o An explicit O(1)-Lipschitz algorithm achieves ALG w.h.p.
@ No O(1)-Lipschitz algorithm beats ALG with probability e=<".

v
Theorem (H.-Sellke 23)
The variational formula has a maximizer ®, which solves an explicit ODE.
Theorem (H.-Sellke 23)
For pure models £(§) = qf‘ qu gl ALG = E..
v
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Summary

@ We determine algorithmic threshold of O(1)-Lipschitz algorithms for
optimizing multi-species spherical spin glasses
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Summary

@ We determine algorithmic threshold of O(1)-Lipschitz algorithms for
optimizing multi-species spherical spin glasses

@ Geometric description of ALG: largest value whose super-level set contains
densely-branching ultrametric tree

Thank you!
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Variational Problem Example

Consider (A1, A2) = (1/3,2/3) and

£(q1, a2) = (Mq1)” + (Ma1)(Deq) + (Aeq1)® + (A1q1)* + (Ma1) (A2q2)?

%80 0.2 0.4 0.6 0.8 1.0
®1(q)

Some ODE solutions. Optimal ¢ : [0,1] — [0, 1]? in bold
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Algorithmic Symmetry Breaking

Optimal ® may be asymmetric, even when model is symmetric!

A=) = % (g1, 92) = (3q1)* + (3q1)(392) + (362)* + (3q1)* + (3¢2)*

080 02 04 06 08 10
®1(q)

The plot thickens...

Brice Huang (MIT) Algorithmic Threshold for Spin Glasses
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Models with Linear Terms

Suppose model has 1-spin interaction (external field)

HN(O') = Z

p=1

Then

P
~
N(Tpl)/z<6(p)70®p> &a)=>_nd
p=1

ALG = BOGP = / vV (pE)'(q) dg

Brice Huang (MIT)

b0l o0,
increasing, differentiable

0.0 0.2 0.4 0.6 0.8 1.0
a

Optimal p for £(q) = q* + ¢

Algorithmic Threshold for Spin Glasses
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Multi-Species Algorithmic Threshold with Linear Terms

Theorem (H.-Sellke 23)
Define

1
ALG=  sup S / V(b x €0 0)(q)9L(q) dg
p:[0,1]—[0,1] s 0
®:[0,1]—[0,1]”
increasing, differentiable

o An explicit O(1)-Lipschitz algorithm achieves ALG w.h.p.
e No O(1)-Lipschitz algorithm beats ALG with probability e=<N

Theorem (H.-Sellke 23)

This variational problem has a maximizer (p, ®).

@ The maximizer solves an explicit ODE.

e If & has no 1-spin interactions, then p = 1.
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Variational Problem Example: No Linear Term
Consider (A1, A2) =(1/3,2/3)

£(q1, a2) = (M1q1)” + (Ma1)(ear) + (A2q1)® + (A1q1)* + (Ma1) (A2q2)?

1.0

0.8/

0.6/
z
[=%

0.4/

02/

%80 02 04 06 08 10 8o o2 04 06 08 1.0

q ()
Optimal p: [0,1] — [0,1]

Image of optimal ® : [0,1] — [0,1]? in bold
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Variational Problem Example: Small Linear Term

Consider (A1, A2) =(1/3,2/3)

(a1, @) = (\aa1)® + (\agn)(Qoqr) + (oar)® + (aar)* + (Aar)(Aag2)?
4 0.05(A1q1) + 0.5(A2q2)

1.0

080 02 04 06 08 10 )
q

o 02 o
Optimal p : [0,1] — [0,1]

.6 0.8 1.0

4®1(q)0
Image of optimal ® : [0,1] — [0,1]? in bold
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Variational Problem Example: Large Linear Term
Consider (A1, A2) =(1/3,2/3)

&(q1:a2) = (Ma1)® + (Ma)(A2q1) + (A201)? + (M1g1)* + (A1g1) (h2g2)°?
—+ 0.2()\1(71) + 1.8()\2CI2)

10 12
1.0
08
0.8
0.6
C] Zo6
o &
0.4
0.4
02
02
080 02 04 06 08 10 %80 02 04 06 08 10 12
q

a(q)

Optimal p : [0,1] — [0,1] Image of optimal ¢ : [0,1] — [0,1]2
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