Sampling from spherical spin glasses in total variation via algorithmic stochastic localization

Brice Huang (MIT)

JSM: Advances in the theory of modern sampling algorithms August 7, 2024

Joint work with Andrea Montanari and Huy Tuan Pham (Stanford)

Sampling from Spin Glasses

Goal of this talk

Sample from a high-dimensional measure

$$oldsymbol{\sigma} \sim \mu(\mathsf{d}oldsymbol{\sigma}) \equiv rac{1}{Z} e^{eta H_{\mathsf{N}}(oldsymbol{\sigma})} \mathsf{d}oldsymbol{\sigma}, \qquad \mu \in \mathcal{P}(\mathbb{R}^{\mathsf{N}})$$

where H_N non-concave and highly multimodal

- Random polynomial over $\{\pm 1\}^N$ or $S_N = \{ \boldsymbol{\sigma} \in \mathbb{R}^N : \|\boldsymbol{\sigma}\| = \sqrt{N} \}$
- Sherrington-Kirkpatrick model:

$$\mathcal{H}_{N}(\sigma) = rac{1}{\sqrt{N}} \sum_{i,j=1}^{N} rac{g_{i,j}\sigma_{i}\sigma_{j}}{\sim} g_{i,j} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$$

- Random polynomial over $\{\pm 1\}^N$ or $S_N = \{ \boldsymbol{\sigma} \in \mathbb{R}^N : \|\boldsymbol{\sigma}\| = \sqrt{N} \}$
- Sherrington-Kirkpatrick model:

$$H_{N}(\boldsymbol{\sigma}) = rac{1}{\sqrt{N}} \sum_{i,j=1}^{N} rac{g_{i,j}\sigma_{i}\sigma_{j}}{\sim} g_{i,j} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$$

• *p*-spin model: (SK: *p* = 2)

$$H_{N}(\boldsymbol{\sigma}) = \frac{1}{N^{(p-1)/2}} \sum_{\underline{i} \in [N]^{p}} \underline{g}_{\underline{i}} \sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{p}} \qquad \underline{g}_{\underline{i}} \overset{i.i.d.}{\sim} \mathcal{N}(0,1)$$

- Random polynomial over $\{\pm 1\}^N$ or $S_N = \{ \boldsymbol{\sigma} \in \mathbb{R}^N : \|\boldsymbol{\sigma}\| = \sqrt{N} \}$
- Sherrington-Kirkpatrick model:

$$H_{N}(\boldsymbol{\sigma}) = \frac{1}{\sqrt{N}} \sum_{i,j=1}^{N} g_{i,j} \sigma_{i} \sigma_{j} \qquad g_{i,j} \overset{i.i.d.}{\sim} \mathcal{N}(0,1)$$

$$H_{N}(\boldsymbol{\sigma}) = \frac{1}{N^{(\rho-1)/2}} \sum_{\underline{i} \in [N]^{\rho}} \underline{g_{\underline{i}}} \sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{\rho}} \qquad \underline{g_{\underline{i}}} \overset{i.i.d.}{\sim} \mathcal{N}(0,1)$$

• Mixed *p*-spin model:

$$H_{N}(\boldsymbol{\sigma}) = \sum_{p \geq 2} \frac{\gamma_{p}}{N^{(p-1)/2}} \sum_{\underline{i} \in [N]^{p}} g_{\underline{i}} \sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{p}}$$

- Random polynomial over $\{\pm 1\}^N$ or $S_N = \{ \boldsymbol{\sigma} \in \mathbb{R}^N : \|\boldsymbol{\sigma}\| = \sqrt{N} \}$
- Sherrington-Kirkpatrick model:

$$H_{N}(\boldsymbol{\sigma}) = rac{1}{\sqrt{N}} \sum_{i,j=1}^{N} g_{i,j} \sigma_{i} \sigma_{j} \qquad g_{i,j} \overset{i.i.d.}{\sim} \mathcal{N}(0,1)$$

$$H_{N}(\boldsymbol{\sigma}) = \frac{1}{N^{(\rho-1)/2}} \sum_{\underline{i} \in [N]^{\rho}} \underline{g_{\underline{i}}} \sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{\rho}} \qquad \underline{g_{\underline{i}}} \overset{i.i.d.}{\sim} \mathcal{N}(0,1)$$

• Mixed *p*-spin model:

$$H_{N}(\boldsymbol{\sigma}) = \sum_{\rho \geq 2} \frac{\gamma_{\rho}}{N^{(\rho-1)/2}} \sum_{\underline{i} \in [N]^{\rho}} \mathbf{g}_{\underline{i}} \sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{\rho}}$$

• $\mu_{\beta}(d\sigma) \equiv \frac{1}{Z} e^{\beta H_N(\sigma)} d\sigma$ Gibbs measure at inverse temperature β

Brice Huang (MIT)

Sampling from Spin Glasses

Spin glasses are prototypes for disordered, random probability measures:

- Posteriors in high-dimensional Bayesian inference
- Community detection, error-correcting codes, compressed sensing

Connections

Spin glasses are prototypes for disordered, random probability measures:

- Posteriors in high-dimensional Bayesian inference
- Community detection, error-correcting codes, compressed sensing

E.g. \mathbb{Z}_2 -synchronization (Fan-Mei-Montanari 21, Montanari-Wu 23): Estimate $x_0 \sim \text{unif}(\{\pm 1\}^N)$ from noisy observation $\mathbf{A} = \lambda x_0^{\otimes 2} + \mathbf{W}$

where $W_{i,j} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$

Connections

Spin glasses are prototypes for disordered, random probability measures:

- Posteriors in high-dimensional Bayesian inference
- Community detection, error-correcting codes, compressed sensing
- E.g. Z₂-synchronization (Fan-Mei-Montanari 21, Montanari-Wu 23):

Estimate $\mathbf{x}_0 \sim \text{unif}(\{\pm 1\}^N)$ from noisy observation $\mathbf{A} = \lambda \mathbf{x}_0^{\otimes 2} + \mathbf{W}$ where $\mathbf{W}_{i,i} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$

Posterior is precisely

$$p(x|\mathbf{A}) = \frac{1}{Z} \exp(\lambda(\mathbf{A}x, x))$$

For sampling from Gibbs measure $\mu_{\beta}(d\sigma) \equiv \frac{1}{Z} e^{\beta H_{N}(\sigma)} d\sigma$:

For sampling from Gibbs measure $\mu_{\beta}(d\sigma) \equiv \frac{1}{Z} e^{\beta H_N(\sigma)} d\sigma$:

For sampling from Gibbs measure $\mu_{\beta}(d\sigma) \equiv \frac{1}{Z} e^{\beta H_{N}(\sigma)} d\sigma$:

Glauber/Langevin dynamics mix rapidly (Gheissari–Jagannath 19, Bauerschmidt–Bodineau 20, Eldan–Koehler–Zeitouni 22, Anari–Jain–Koehler–Pham–Vuong 21)

Prediction: Glauber/Langevin dynamics succeed

Prediction: Gibbs measure shatters, sampling hard (Crisanti–Horner–Sommers 93, El Alaoui–Montanari–Sellke 23)

βρι

 β_{sh}

For sampling from Gibbs measure $\mu_{\beta}(d\sigma) \equiv \frac{1}{Z} e^{\beta H_{N}(\sigma)} d\sigma$:

Glauber/Langevin dynamics mix rapidly (Gheissari–Jagannath 19, Bauerschmidt–Bodineau 20, Eldan–Koehler–Zeitouni 22, Anari–Jain–Koehler–Pham–Vuong 21)

> Algorithmic stochastic localization samples with small **Wasserstein** error (El Alaoui–Montanari–Sellke 22, Celentano 24)

Prediction: Glauber/Langevin dynamics succeed

Prediction: Gibbs measure shatters, sampling hard (Crisanti–Horner–Sommers 93, El Alaoui–Montanari–Sellke 23)

 $\beta_{\rm PI}$

 β_{SL}

 $\beta_{\rm sh}$

For sampling from Gibbs measure $\mu_{\beta}(d\sigma) \equiv \frac{1}{Z} e^{\beta H_{N}(\sigma)} d\sigma$:

Glauber/Langevin dynamics mix rapidly (Gheissari–Jagannath 19, Bauerschmidt–Bodineau 20, Eldan–Koehler–Zeitouni 22, Anari–Jain–Koehler–Pham–Vuong 21)

> Algorithmic stochastic localization samples with small **Wasserstein** error (El Alaoui–Montanari–Sellke 22, Celentano 24)

Prediction: Glauber/Langevin dynamics succeed

Prediction: Gibbs measure shatters, sampling hard (Crisanti–Horner–Sommers 93, El Alaoui–Montanari–Sellke 23)

This work: in **spherical models**, $\beta < \beta_{SL}$, alg-SL samples in **total variation**

Brice Huang (MIT)

 β_{SL}

 β_{sh}

Sampling from Spin Glasses

Given $\mu \in \mathcal{P}(\mathbb{R}^N)$, consider Brownian motion with unknown drift

$$\mathbf{y}_t = t\mathbf{x}_0 + \mathbf{B}_t \qquad \sim \mathcal{N}(t\mathbf{x}_0, t\mathbf{I}_N)$$

Here $x_0 \sim \mu$ independent of B_t , and only y_t observed

Given $\mu \in \mathcal{P}(\mathbb{R}^N)$, consider Brownian motion with unknown drift

$$\mathbf{y}_t = t\mathbf{x}_0 + \mathbf{B}_t \qquad \sim \mathcal{N}(t\mathbf{x}_0, t\mathbf{I}_N)$$

Here $x_0 \sim \mu$ independent of B_t , and only y_t observed

The sampling strategy:

- Simulate y_t for a long time $t \in [0, T]$ without knowing x_0
- Read off $x_0 \approx y_T/T$

Given $\mu \in \mathcal{P}(\mathbb{R}^N)$, consider Brownian motion with unknown drift

$$\mathbf{y}_t = t\mathbf{x}_0 + \mathbf{B}_t \qquad \sim \mathcal{N}(t\mathbf{x}_0, t\mathbf{I}_N)$$

Here $\mathbf{x}_0 \sim \mu$ independent of \mathbf{B}_t , and only \mathbf{y}_t observed

The sampling strategy:

- Simulate y_t for a long time $t \in [0, T]$ without knowing x_0
- Read off $x_0 \approx y_T/T$

Reparametrization of "backward process" in denoising diffusions

Our goal is to simulate, on average over unobserved $x_0 \sim \mu$,

 $\mathbf{y}_t = t\mathbf{x}_0 + \mathbf{B}_t$

Our goal is to simulate, on average over unobserved $x_0 \sim \mu$,

 $\mathbf{y}_t = t\mathbf{x}_0 + \mathbf{B}_t$

Equivalent: Markovian SDE, with drift current conditional expectation of x_0

 $d\mathbf{y}_t = \mathbf{m}_t dt + d\mathbf{W}_t \qquad \mathbf{m}_t = \mathbb{E}[\mathbf{x}_0 | \mathbf{y}_t]$

Our goal is to simulate, on average over unobserved $x_0 \sim \mu$,

 $\mathbf{y}_t = t\mathbf{x}_0 + \mathbf{B}_t$

Equivalent: Markovian SDE, with drift current conditional expectation of x_0

 $d\mathbf{y}_t = \mathbf{m}_t dt + d\mathbf{W}_t \qquad \mathbf{m}_t = \mathbb{E}[\mathbf{x}_0 | \mathbf{y}_t]$

Upshot: estimating m_t lets us simulate y_t , thus sample from μ

Our goal is to simulate, on average over unobserved $x_0 \sim \mu$,

 $\mathbf{y}_t = t\mathbf{x}_0 + \mathbf{B}_t$

Equivalent: Markovian SDE, with drift current conditional expectation of x_0

 $\mathrm{d} \mathbf{y}_t = \mathbf{m}_t \mathrm{d} t + \mathrm{d} \mathbf{W}_t \qquad \mathbf{m}_t = \mathbb{E}[\mathbf{x}_0 | \mathbf{y}_t]$

Upshot: estimating m_t lets us simulate y_t , thus sample from μ

AMS22: estimate m_t by approximate message passing (AMP) iteration

Brice Huang (MIT)

Sampling from Spin Glasses

Recall $H_N(\sigma) = \sum_p \frac{\gamma_p}{N^{(p-1)/2}} \langle \boldsymbol{G}^{(p)}, \sigma^{\otimes p} \rangle$. Mixture function: $\xi(q) = \sum_{p \geq 2} \gamma_p^2 q^p$

Recall $H_N(\sigma) = \sum_p \frac{\gamma_p}{N^{(p-1)/2}} \langle \boldsymbol{G}^{(p)}, \sigma^{\otimes p} \rangle$. Mixture function: $\xi(q) = \sum_{p \ge 2} \gamma_p^2 q^p$

Theorem (H.–Montanari–Pham 24)

Consider spherical model $\mu_{\beta}(d\sigma) \equiv \frac{1}{Z} e^{\beta H_{N}(\sigma)} d\sigma$.

Recall $H_N(\sigma) = \sum_{p} \frac{\gamma_p}{N^{(p-1)/2}} \langle \boldsymbol{G}^{(p)}, \sigma^{\otimes p} \rangle$. Mixture function: $\xi(q) = \sum_{p \ge 2} \gamma_p^2 q^p$

Theorem (H.–Montanari–Pham 24)

Consider spherical model $\mu(d\sigma) \equiv \frac{1}{Z} e^{H_N(\sigma)} d\sigma$.

Recall $H_N(\sigma) = \sum_p \frac{\gamma_p}{N^{(p-1)/2}} \langle \boldsymbol{G}^{(p)}, \sigma^{\otimes p} \rangle$. Mixture function: $\xi(q) = \sum_{p \ge 2} \gamma_p^2 q^p$ Theorem (H.-Montanari-Pham 24) Consider spherical model $\mu(d\sigma) \equiv \frac{1}{Z} e^{H_N(\sigma)} d\sigma$. If $\xi''(q) < (1-q)^{-2} \quad \forall q \in [0,1)$

a poly-time algorithm samples from μ with **TV** error $o_N(1)$.

Recall $H_N(\sigma) = \sum_p \frac{\gamma_p}{N^{(p-1)/2}} \langle \boldsymbol{G}^{(p)}, \sigma^{\otimes p} \rangle$. Mixture function: $\xi(q) = \sum_{p \ge 2} \gamma_p^2 q^p$ Theorem (H.-Montanari-Pham 24) Consider spherical model $\mu(d\sigma) \equiv \frac{1}{Z} e^{H_N(\sigma)} d\sigma$. If $\xi''(q) < (1-q)^{-2} \quad \forall q \in [0,1)$ a poly-time algorithm samples from μ with TV error $o_N(1)$.

Otherwise*, a generalized class of SL algorithms fails. (*in RS phase)

Recall $H_N(\sigma) = \sum_p \frac{\gamma_p}{N^{(p-1)/2}} \langle \boldsymbol{G}^{(p)}, \sigma^{\otimes p} \rangle$. Mixture function: $\xi(q) = \sum_{p \ge 2} \gamma_p^2 q^p$ Theorem (H.-Montanari-Pham 24) Consider spherical model $\mu(d\sigma) \equiv \frac{1}{Z} e^{H_N(\sigma)} d\sigma$. If $\xi''(q) < (1-q)^{-2} \quad \forall q \in [0,1)$

a poly-time algorithm samples from μ with **TV** error $o_N(1)$.

Otherwise*, a generalized class of SL algorithms fails. (*in RS phase)

For pure *p*-spin model $\xi(q) = \beta^2 q^p$,

$$\frac{\beta_{\mathsf{SL}}}{\beta_{\mathsf{sh}}} \in \left[\frac{\sqrt{e}}{2} \approx 0.824, 1\right]$$

• Simulate SL process y_t with improved mean estimator

Simulate SL process y_t with improved mean estimator

AMS22: estimator \widetilde{m}_t with $\mathbb{E} \| \widetilde{m}_t - m_t \|^2 = o(N) \Rightarrow$ Wasserstein sampling

$$\mathop{\mathbb{E}}_{(\widetilde{\sigma},\sigma)\sim\operatorname{Coupling}(\mu^{\mathsf{alg}},\mu)}\|\widetilde{\sigma}-\sigma\|^2=o(N)$$

Simulate SL process y_t with improved mean estimator

AMS22: estimator \widetilde{m}_t with $\mathbb{E} \| \widetilde{m}_t - m_t \|^2 = o(N) \Rightarrow$ Wasserstein sampling

$$\mathbb{E}_{(\widetilde{\sigma},\sigma)\sim ext{Coupling}(\mu^{\mathsf{alg}},\mu)} \|\widetilde{\sigma} - \sigma\|^2 = o(N)$$

This work: improved $\widehat{\boldsymbol{m}}_t$ with $\mathbb{E}\|\widehat{\boldsymbol{m}}_t - \boldsymbol{m}_t\|^2 = o(1) \Rightarrow$ can show

$$\mathsf{KL}(\widehat{\boldsymbol{y}}_{\mathcal{T}}, \boldsymbol{y}_{\mathcal{T}}) \leq \int_0^{\mathcal{T}} \mathbb{E} \|\widehat{\boldsymbol{m}}_t - \boldsymbol{m}_t\|^2 \, \mathrm{d}t = o(1)$$

(and $\mathsf{TV} \leq \sqrt{\mathsf{KL}} = o(1)$)

Simulate SL process y_t with improved mean estimator

AMS22: estimator \widetilde{m}_t with $\mathbb{E} \| \widetilde{m}_t - m_t \|^2 = o(N) \Rightarrow$ Wasserstein sampling

$$\mathbb{E}_{(\widetilde{\sigma},\sigma)\sim ext{Coupling}(\mu^{\mathsf{alg}},\mu)} \|\widetilde{\sigma} - \sigma\|^2 = o(N)$$

This work: improved $\widehat{\boldsymbol{m}}_t$ with $\mathbb{E}\|\widehat{\boldsymbol{m}}_t - \boldsymbol{m}_t\|^2 = o(1) \Rightarrow$ can show

$$\mathsf{KL}(\widehat{\boldsymbol{y}}_{\mathcal{T}}, \boldsymbol{y}_{\mathcal{T}}) \leq \int_0^{\mathcal{T}} \mathbb{E} \|\widehat{\boldsymbol{m}}_t - \boldsymbol{m}_t\|^2 \, \mathrm{d}t = o(1)$$

(and $\mathsf{TV} \leq \sqrt{\mathsf{KL}} = o(1)$)

3 Sample from $\mu_T = \mathcal{L}(\mathbf{x}_0 | \mathbf{y}_T)$, which is **log-concave** for large T = O(1)

 $\mu_t = \mathcal{L}(\mathbf{x}_0 | \mathbf{y}_t)$ is Gibbs measure of tilted model: $\mu_t(d\sigma) \equiv \frac{1}{7} e^{H_{N,t}(\sigma)} d\sigma$ for

$$H_{N,t}(\sigma) = H_N(\sigma) + (\mathbf{y}_t, \sigma)$$

 $\mu_t = \mathcal{L}(\mathbf{x}_0 | \mathbf{y}_t)$ is Gibbs measure of tilted model: $\mu_t(d\sigma) \equiv \frac{1}{Z} e^{H_{N,t}(\sigma)} d\sigma$ for

$$H_{N,t}(\sigma) = H_N(\sigma) + (\mathbf{y}_t, \sigma)$$

Estimator of AMS22: solution $\widetilde{\boldsymbol{m}}_t = \boldsymbol{m}^{\text{TAP}}$ to **TAP equation**

 $\boldsymbol{m} = \boldsymbol{a}(\|\boldsymbol{m}\|) \nabla \boldsymbol{H}_{N,t}(\boldsymbol{m}) - \boldsymbol{b}(\|\boldsymbol{m}\|)\boldsymbol{m}$

 $\mu_t = \mathcal{L}(\mathbf{x}_0 | \mathbf{y}_t)$ is Gibbs measure of **tilted** model: $\mu_t(d\sigma) \equiv \frac{1}{Z} e^{H_{N,t}(\sigma)} d\sigma$ for

$$H_{N,t}(\sigma) = H_N(\sigma) + (\mathbf{y}_t, \sigma)$$

Estimator of AMS22: solution $\widetilde{\boldsymbol{m}}_t = \boldsymbol{m}^{\text{TAP}}$ to **TAP equation**

 $\boldsymbol{m} = \boldsymbol{a}(\|\boldsymbol{m}\|) \nabla \boldsymbol{H}_{N,t}(\boldsymbol{m}) - \boldsymbol{b}(\|\boldsymbol{m}\|)\boldsymbol{m}$

found via AMP iteration

$$\boldsymbol{m}^{k+1} = \boldsymbol{a}_k \nabla \boldsymbol{H}_{N,t}(\boldsymbol{m}^k) - \boldsymbol{b}_k \boldsymbol{m}^{k-1}$$

 $\mu_t = \mathcal{L}(\mathbf{x}_0 | \mathbf{y}_t)$ is Gibbs measure of **tilted** model: $\mu_t(\mathbf{d}\boldsymbol{\sigma}) \equiv \frac{1}{Z} e^{H_{N,t}(\boldsymbol{\sigma})} \mathbf{d}\boldsymbol{\sigma}$ for

$$H_{N,t}(\sigma) = H_N(\sigma) + (\mathbf{y}_t, \sigma)$$

Estimator of AMS22: solution $\tilde{m}_t = m^{\text{TAP}}$ to **TAP equation**

 $\boldsymbol{m} = \boldsymbol{a}(\|\boldsymbol{m}\|) \nabla \boldsymbol{H}_{N,t}(\boldsymbol{m}) - \boldsymbol{b}(\|\boldsymbol{m}\|)\boldsymbol{m}$

found via AMP iteration

$$\boldsymbol{m}^{k+1} = \boldsymbol{a}_k \nabla \boldsymbol{H}_{N,t}(\boldsymbol{m}^k) - \boldsymbol{b}_k \boldsymbol{m}^{k-1}$$

Analyze by AMP state evolution $\Rightarrow \mathbb{E} \| \boldsymbol{m}^{\mathsf{TAP}} - \mathsf{mean}(\mu_t) \|^2 = o(N)$

 $\mu_t = \mathcal{L}(\mathbf{x}_0 | \mathbf{y}_t)$ is Gibbs measure of **tilted** model: $\mu_t(\mathbf{d}\boldsymbol{\sigma}) \equiv \frac{1}{Z} e^{H_{N,t}(\boldsymbol{\sigma})} \mathbf{d}\boldsymbol{\sigma}$ for

$$H_{N,t}(\sigma) = H_N(\sigma) + (\mathbf{y}_t, \sigma)$$

Estimator of AMS22: solution $\tilde{m}_t = m^{\text{TAP}}$ to **TAP equation**

$$\boldsymbol{m} = \boldsymbol{a}(\|\boldsymbol{m}\|)\nabla \boldsymbol{H}_{N,t}(\boldsymbol{m}) - \boldsymbol{b}(\|\boldsymbol{m}\|)\boldsymbol{m}$$

found via AMP iteration

$$\boldsymbol{m}^{k+1} = \boldsymbol{a}_k \nabla \boldsymbol{H}_{N,t}(\boldsymbol{m}^k) - \boldsymbol{b}_k \boldsymbol{m}^{k-1}$$

Analyze by AMP state evolution $\Rightarrow \mathbb{E} \| \boldsymbol{m}^{\mathsf{TAP}} - \mathsf{mean}(\mu_t) \|^2 = o(N)$

Our analysis:

- Actually, $\mathbb{E} \| \boldsymbol{m}^{\mathsf{TAP}} \mathsf{mean}(\mu_t) \|^2 = O(1)$
- Compute correction Δ , so $\hat{\boldsymbol{m}}_t = \boldsymbol{m}^{\mathsf{TAP}} + \Delta$ has error o(1)

- $\bullet\,$ In spherical models, algorithmic SL samples in total variation for $\beta < \beta_{\rm SL}$
- Generalized class of SL algorithms fails for $\beta \ge \beta_{\rm SL}$

- In spherical models, algorithmic SL samples in total variation for $\beta < \beta_{\rm SL}$
- Generalized class of SL algorithms fails for $\beta \ge \beta_{\rm SL}$
- Main step: more accurate mean estimator for tilted measures

- In spherical models, algorithmic SL samples in total variation for $\beta < \beta_{SL}$
- Generalized class of SL algorithms fails for $\beta \geq \beta_{\rm SL}$
- Main step: more accurate mean estimator for tilted measures
- **Q**: sampling between β_{SL} and β_{sh} ?

- $\bullet\,$ In spherical models, algorithmic SL samples in total variation for $\beta < \beta_{\rm SL}$
- Generalized class of SL algorithms fails for $\beta \geq \beta_{\rm SL}$
- Main step: more accurate mean estimator for tilted measures
- **Q**: sampling between β_{SL} and β_{sh} ?

 $\label{eq:Glauber/Langevin} Glauber/Langevin dynamics mix rapidly$

Algorithmic SL samples in total variation

Prediction: Glauber/Langevin succeeds Prediction: shattering; sampling hard

Thanks!