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Mean-field spin glasses

Random polynomial over {±1}N or SN = {σ ∈ RN : ‖σ‖ =
√
N}

Sherrington-Kirkpatrick Model:

HN(σ) =
1√
N

N∑
i,j=1

gi,jσiσj σ ∈ {±1}N gi,j
i.i.d.∼ N (0, 1)

Ground state energy: typical max of HN(σ)/N

Random couplings gi,j lead to highly non-trivial behavior

+

+

+ −

?
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Mixed p-spin models

p-spin model: (SK: p = 2)

HN(σ) =
1

N(p−1)/2

∑
i∈[N]p

gi (σ
⊗p)i gi

i.i.d.∼ N (0, 1)

(Ising / spherical) mixed p-spin model: linear mixture of above

HN(σ) =
∑
p≥1

βp
N(p−1)/2

∑
i∈[N]p

gi (σ
⊗p)i , σ ∈ {±1}N or SN

ξ = “model” encodes (βp)p≥1

Connections to tensor PCA, random max-k-SAT, high-dim inference, . . .
(Ben Arous–Mei–Montanari-Nica 17, Dembo–Montanari–Sen 17, Panchenko 18,

Fan–Mei–Montanari 21)
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Free energy, Gibbs measure

Free energy: softmax version of ground state. Let

ZN =

∫
SN

eβHN (σ) dσ (partition function)

Main question: what is the limit of the free energy 1
N logZN?

Gibbs measure:
dµN(σ) =

1
ZN

eHN (σ)dσ

Limiting behavior of µN? E.g. for replicas σ1,σ2 ∼ µN , what is the law of
the overlap 〈σ

1,σ2〉
N ∈ [−1, 1]?
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Physics predictions (now theorems)

Order parameter: probability measure ζ on [0, 1]; identify with CDF:

• q

ζ(q)

1

1

Overlap distribution: ζ∗ = limN→∞ Law(〈σ1,σ2〉/N)

Parisi formula:

lim
N→∞

1
N

logZN = min
ζ
P(ζ; ξ) = P(ζ∗; ξ)

where P = Parisi functional, and recall ξ = model
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Ultrametricity

µN convex combination of pure states with hierarchical clustering
Parisi 83 (heuristic), Panchenko 13 (rigorous)

SN

pure state

cluster

q = 0

q = 1

Tree branches at radii in supp ζ∗ (cts support → cts branching, full RSB)
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History of rigorous results

For both Ising, spherical mixed p-spin models:

Guerra 03: lim supN→∞
1
N logZN ≤ P(ζ∗; ξ) by interpolation argument

Talagrand 06: matching lower bound, proves Parisi formula
Analytic proof, self-bounds the error in Guerra’s upper bound

Panchenko 13: ultrametricity of asymptotic Gibbs measures µN

⇒ New proof of Parisi formula
Inductive proof on # spins, focuses on understanding Gibbs measure precisely

Jagannath 17, Subag 18, Chatterjee–Sloman 21: approximate ultrametricity
for finite N

Jagannath–Tobasco 18: ζ∗ finitely many atomic & continuous pieces, in
spherical models
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Main result

New proof of Parisi lower bound for spherical mixed p-spin models:
lim infN→∞

1
N logZN ≥ P(ζ∗; ξ)

Geometric approach: directly constructs ultrametric tree of pure states in
accordance with Parisi ansatz

• t

ζ∗(t) (minimizer of P(ζ; ξ))

1

1

⇒
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Spherical mixed p-spin model

Recall model: ξ = (βp)p≥1,

HN(σ) =
∑
p≥1

βp
N(p−1)/2

∑
i∈[N]p

gi (σ
⊗p)i gi

i.i.d.∼ N (0, 1)

Domain: SN = {σ ∈ RN : ‖σ‖ =
√
N}

Free energy:
1
N

log

∫
SN

eHN (σ) dσ

Brice Huang (MIT) Spherical Parisi formula 9 / 14



Existence of ultrametric tree

Theorem (H.-Sellke 23)

Let q0 < · · · < qD ∈ supp ζ∗, qD = max supp ζ∗.

Tk,D k-ary tree of depth D. Whp, exists ultrametric {σu : u ∈ Tk,D} such that
each σu, u leaf, is the center of a band B with

1
N

log

∫
B

eHN (σ) dσ ≥ P(ζ∗; ξ)− ε.

⇒ New proof of Parisi LB!

• ζ∗(q)

q

1

1

q0

q1

q2

q0

q1

q2

σ∅

σ1 σ2 σ3

σ11
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Proof idea 1: Decomposition into fundamental types

√
rN

√
N

.

.

By following maxima of successive sub-models, can show: (Subag 18)

FE (ξ) ≥ GSE (ξ0) + · · ·+ GSE (ξD−1) + FE (ξD)

This inequality is tight, since can show:

P(ξ) = PGS(ξ0) + · · ·+ PGS(ξD−1) + P(ξD)

⇒ suffices to analyze fundamental types. Top triv & FRSB known!
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Proof idea 1: Decomposition into fundamental types

Kac-Rice
Fyodorov 15

?

Algorithm
Subag 18

? ?
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Proof idea 2: Truncated 2nd moment method

For RS models, Parisi LB amounts to showing

ZN =

∫
SN

eHN (σ) dσ ≥ e−o(N)EZN

Vanilla 2nd moment on ZN : doesn’t always give sharp LB
Truncation: σ typical if {ρ : 1

N |〈ρ,σ〉| ≥ δ} accounts for ≤ e−εN of ZN

σ

Do 2nd moment on truncation: Z̃N =
∫
σ typical e

HN (σ)dσ
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Proof idea 2: Truncated 2nd moment method (details)

Truncated partition fn Z̃N =
∫
σ typical e

HN (σ)dσ

E[Z̃ 2
N ] ≈ E[ZN ]

2 automatic; main work is to show E[Z̃N ] ≈ E[ZN ]

Idea: E[ZN ] dominated by σ with energy ≈ E∗N
Conditional on HN(σ) ≈ E∗N, HN is spin glass with planted spike at σ

Guerra’s upper bound controls FE of each non-equatorial band:

σ

⇒ conditional on HN(σ) ≈ E∗N, σ is whp typical
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Conclusion

Truncated 2nd moment ⇒ FE of RS models

Truncated 2nd moment on critical points ⇒ GSE of 1RSB models.
Also shows k orthogonal near-maximizers

Construct tree witnessing Parisi LB by taking k maximizers of each sub-model

• t

ζ∗(t)

1

1

Topologically
trivial

1RSB FRSB 1RSB RS

⇒

Q: Can we construct a tree in this way that exhausts the Gibbs measure?

Thanks!
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