Strong Topological Trivialization for Multi-Species Spin Glasses

Brice Huang (MIT)
Harvard Probabilitas Seminar
Joint work with Mark Sellke (Harvard)

Plan for this talk

(1) Introduction and background

- Landscape complexity of random functions
- Topological trivialization
(2) Strong topological trivialization for spin glasses
© Multi-species spin glasses

Random Landscapes

Landscapes of random, high-dimensional functions

Random Landscapes

Landscapes of random, high-dimensional functions

- Connections to optimization, questions about algorithmic tractability

Random Landscapes

Landscapes of random, high-dimensional functions

- Connections to optimization, questions about algorithmic tractability
- Example: loss function over random data in learning applications

Random Landscapes

Landscapes of random, high-dimensional functions

- Connections to optimization, questions about algorithmic tractability
- Example: loss function over random data in learning applications How complicated is the landscape of a random function?

Mean Field Spin Glasses

Polynomials $H_{N}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ with random coefficients, e.g. random cubic

$$
H_{N}(\sigma)=\frac{1}{N} \sum_{i_{\mathbf{1}}, i_{\mathbf{2}}, i_{\mathbf{3}}=1}^{N} g_{i_{1}, i_{\mathbf{2}}, i_{\mathbf{3}}} \cdot \sigma_{i_{\mathbf{1}}} \sigma_{i_{\mathbf{2}}} \sigma_{i_{\mathbf{3}}}
$$

$$
g_{i_{1}, i_{2}, i_{\mathbf{3}}} \underset{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)
$$

Mean Field Spin Glasses

Polynomials $H_{N}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ with random coefficients, e.g. random cubic

$$
H_{N}(\boldsymbol{\sigma})=\frac{1}{N} \sum_{i_{1}, i_{2}, i_{3}=1}^{N} g_{i_{1}, i_{2}, i_{3}} \cdot \sigma_{i_{\mathbf{1}}} \sigma_{i_{2}} \sigma_{i_{3}}=\frac{1}{N}\left\langle\boldsymbol{G}^{(3)}, \boldsymbol{\sigma}^{\otimes 3}\right\rangle \quad g_{i_{1}, i_{2}, i_{3}} \underset{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)
$$

Mean Field Spin Glasses

Polynomials $H_{N}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ with random coefficients, e.g. random cubic

$$
H_{N}(\boldsymbol{\sigma})=\frac{1}{N} \sum_{i_{1}, i_{2}, i_{3}=1}^{N} g_{i_{1}, i_{2}, i_{3}} \cdot \sigma_{i_{\mathbf{1}}} \sigma_{i_{2}} \sigma_{i_{3}}=\frac{1}{N}\left\langle\boldsymbol{G}^{(3)}, \boldsymbol{\sigma}^{\otimes 3}\right\rangle \quad g_{i_{1}, i_{2}, i_{3}} \underset{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)
$$

More generally, mix different degrees. For $\gamma_{1}, \gamma_{2}, \ldots \geq 0$,

$$
H_{N}(\boldsymbol{\sigma})=\sum_{\rho=1}^{P} \frac{\gamma_{p}}{N^{(p-1) / 2}}\left\langle\boldsymbol{G}^{(\rho)}, \boldsymbol{\sigma}^{\otimes \rho}\right\rangle \quad \boldsymbol{G}^{(\rho)} \in\left(\mathbb{R}^{N}\right)^{\otimes p} \text { i.i.d. } \mathcal{N}(0,1) \mathrm{s}
$$

Mean Field Spin Glasses

Polynomials $H_{N}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ with random coefficients, e.g. random cubic

$$
H_{N}(\boldsymbol{\sigma})=\frac{1}{N} \sum_{i_{1}, i_{2}, i_{3}=1}^{N} g_{i_{1}, i_{2}, i_{3}} \cdot \sigma_{i_{\mathbf{1}}} \sigma_{i_{2}} \sigma_{i_{3}}=\frac{1}{N}\left\langle\boldsymbol{G}^{(3)}, \boldsymbol{\sigma}^{\otimes 3}\right\rangle \quad g_{i_{1}, i_{2}, i_{3}} \underset{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)
$$

More generally, mix different degrees. For $\gamma_{1}, \gamma_{2}, \ldots \geq 0$,

$$
H_{N}(\boldsymbol{\sigma})=\sum_{p=1}^{P} \frac{\gamma_{p}}{N^{(p-1) / 2}}\left\langle\boldsymbol{G}^{(p)}, \boldsymbol{\sigma}^{\otimes p}\right\rangle \quad \boldsymbol{G}^{(p)} \in\left(\mathbb{R}^{N}\right)^{\otimes p} \text { i.i.d. } \mathcal{N}(0,1) \mathrm{s}
$$

Inputs on sphere $S_{N}=\left\{\boldsymbol{\sigma} \in \mathbb{R}^{N}:\|\boldsymbol{\sigma}\|_{2}=\sqrt{N}\right\}$

Mean Field Spin Glasses

Polynomials $H_{N}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ with random coefficients, e.g. random cubic

$$
H_{N}(\boldsymbol{\sigma})=\frac{1}{N} \sum_{i_{1}, i_{2}, i_{3}=1}^{N} g_{i_{1}, i_{2}, i_{3}} \cdot \sigma_{i_{\mathbf{1}}} \sigma_{i_{2}} \sigma_{i_{3}}=\frac{1}{N}\left\langle\boldsymbol{G}^{(3)}, \boldsymbol{\sigma}^{\otimes 3}\right\rangle \quad g_{i_{1}, i_{2}, i_{3}} \underset{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)
$$

More generally, mix different degrees. For $\gamma_{1}, \gamma_{2}, \ldots \geq 0$,

$$
H_{N}(\boldsymbol{\sigma})=\sum_{p=1}^{P} \frac{\gamma_{p}}{N^{(p-1) / 2}}\left\langle\boldsymbol{G}^{(p)}, \boldsymbol{\sigma}^{\otimes p}\right\rangle \quad \boldsymbol{G}^{(p)} \in\left(\mathbb{R}^{N}\right)^{\otimes p} \text { i.i.d. } \mathcal{N}(0,1) \mathrm{s}
$$

Inputs on sphere $S_{N}=\left\{\boldsymbol{\sigma} \in \mathbb{R}^{N}:\|\boldsymbol{\sigma}\|_{2}=\sqrt{N}\right\}$
Rotationally invariant Gaussian process with covariance

$$
\mathbb{E}\left[H_{N}(\boldsymbol{\sigma}) H_{N}(\boldsymbol{\rho})\right]=\boldsymbol{N} \xi(\langle\boldsymbol{\sigma}, \boldsymbol{\rho}\rangle / N) \quad \xi(\boldsymbol{q})=\sum_{p=1}^{P} \gamma_{p}^{2} q^{p}
$$

Mean Field Spin Glasses

Polynomials $H_{N}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ with random coefficients, e.g. random cubic

$$
H_{N}(\boldsymbol{\sigma})=\frac{1}{N} \sum_{i_{1}, i_{2}, i_{3}=1}^{N} g_{i_{1}, i_{2}, i_{3}} \cdot \sigma_{i_{\mathbf{1}}} \sigma_{i_{2}} \sigma_{i_{3}}=\frac{1}{N}\left\langle\boldsymbol{G}^{(3)}, \boldsymbol{\sigma}^{\otimes 3}\right\rangle \quad g_{i_{1}, i_{2}, i_{3}} \underset{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)
$$

More generally, mix different degrees. For $\gamma_{1}, \gamma_{2}, \ldots \geq 0$,

$$
H_{N}(\boldsymbol{\sigma})=\sum_{p=1}^{P} \frac{\gamma_{p}}{N^{(p-1) / 2}}\left\langle\boldsymbol{G}^{(p)}, \boldsymbol{\sigma}^{\otimes p}\right\rangle \quad \boldsymbol{G}^{(p)} \in\left(\mathbb{R}^{N}\right)^{\otimes p} \text { i.i.d. } \mathcal{N}(0,1) \mathrm{s}
$$

Inputs on sphere $S_{N}=\left\{\boldsymbol{\sigma} \in \mathbb{R}^{N}:\|\boldsymbol{\sigma}\|_{2}=\sqrt{N}\right\}$
Rotationally invariant Gaussian process with covariance

$$
\mathbb{E}\left[H_{N}(\boldsymbol{\sigma}) H_{N}(\boldsymbol{\rho})\right]=N \xi(\langle\boldsymbol{\sigma}, \boldsymbol{\rho}\rangle / N) \quad \xi(\boldsymbol{q})=\sum_{p=1}^{P} \gamma_{p}^{2} q^{p}
$$

ξ mixture function. Cubic above: $\xi(q)=q^{3}$.

Mean Field Spin Glasses

Polynomials $H_{N}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ with random coefficients, e.g. random cubic

$$
H_{N}(\boldsymbol{\sigma})=\frac{1}{N} \sum_{i_{1}, i_{2}, i_{3}=1}^{N} g_{i_{1}, i_{2}, i_{3}} \cdot \sigma_{i_{\mathbf{1}}} \sigma_{i_{2}} \sigma_{i_{3}}=\frac{1}{N}\left\langle\boldsymbol{G}^{(3)}, \boldsymbol{\sigma}^{\otimes 3}\right\rangle \quad g_{i_{1}, i_{2}, i_{3}} \underset{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)
$$

More generally, mix different degrees. For $\gamma_{1}, \gamma_{2}, \ldots \geq 0$,

$$
H_{N}(\boldsymbol{\sigma})=\sum_{p=1}^{P} \frac{\gamma_{p}}{N^{(p-1) / 2}}\left\langle\boldsymbol{G}^{(p)}, \boldsymbol{\sigma}^{\otimes p}\right\rangle \quad \boldsymbol{G}^{(p)} \in\left(\mathbb{R}^{N}\right)^{\otimes p} \text { i.i.d. } \mathcal{N}(0,1) \mathrm{s}
$$

Inputs on sphere $S_{N}=\left\{\boldsymbol{\sigma} \in \mathbb{R}^{N}:\|\boldsymbol{\sigma}\|_{2}=\sqrt{N}\right\}$
Rotationally invariant Gaussian process with covariance

$$
\mathbb{E}\left[H_{N}(\boldsymbol{\sigma}) H_{N}(\boldsymbol{\rho})\right]=N \xi(\langle\boldsymbol{\sigma}, \boldsymbol{\rho}\rangle / N) \quad \xi(\boldsymbol{q})=\sum_{p=1}^{P} \gamma_{p}^{2} q^{p}
$$

ξ mixture function. Cubic above: $\xi(q)=q^{3} . p=1$ term is external field.

Kac-Rice Formula

Computes expected number of zeros of random function $f: \Omega \times[0, L] \rightarrow \mathbb{R}$

$$
\mathbb{E}[\# \operatorname{zeros}(f)]=\int_{[0, L]} \mathbb{E}\left[\mid f^{\prime}(x) \| f(x)=0\right] \varphi_{f(x)}(0) \mathrm{d} x
$$

Here $\varphi_{f(x)}$ is density of r.v. $f(x)$.

Kac-Rice Formula

Computes expected number of zeros of random function $f: \Omega \times[0, L] \rightarrow \mathbb{R}$

$$
\mathbb{E}[\# \text { zeros }(f)]=\int_{[0, L]} \mathbb{E}\left[\left|f^{\prime}(x)\right| \mid f(x)=0\right] \varphi_{f(x)}(0) \mathrm{d} x .
$$

Here $\varphi_{f(x)}$ is density of r.v. $f(x)$. Heuristic derivation:

$$
\mathbb{E}[\# \operatorname{zeros}(f)]=\mathbb{E} \int_{f([0, L])} \delta(y) \mathrm{d} y
$$

Kac-Rice Formula

Computes expected number of zeros of random function $f: \Omega \times[0, L] \rightarrow \mathbb{R}$

$$
\mathbb{E}[\# \operatorname{zeros}(f)]=\int_{[0, L]} \mathbb{E}\left[\mid f^{\prime}(x) \| f(x)=0\right] \varphi_{f(x)}(0) \mathrm{d} x
$$

Here $\varphi_{f(x)}$ is density of r.v. $f(x)$. Heuristic derivation:

$$
\mathbb{E}[\# \operatorname{zeros}(f)]=\mathbb{E} \int_{f([0, L])} \delta(y) \mathrm{d} y=\mathbb{E} \int_{[0, L]}\left|f^{\prime}(x)\right| \delta(f(x)) \mathrm{d} x
$$

Kac-Rice Formula

Computes expected number of zeros of random function $f: \Omega \times[0, L] \rightarrow \mathbb{R}$

$$
\mathbb{E}[\# \text { zeros }(f)]=\int_{[0, L]} \mathbb{E}\left[\mid f^{\prime}(x) \| f(x)=0\right] \varphi_{f(x)}(0) \mathrm{d} x
$$

Here $\varphi_{f(x)}$ is density of r.v. $f(x)$. Heuristic derivation:

$$
\begin{aligned}
\mathbb{E}[\# \operatorname{zeros}(f)] & =\mathbb{E} \int_{f([0, L])} \delta(y) \mathrm{d} y=\mathbb{E} \int_{[0, L]}\left|f^{\prime}(x)\right| \delta(f(x)) \mathrm{d} x \\
& =\int_{[0, L]} \mathbb{E}\left[\left|f^{\prime}(x)\right| \mid f(x)=0\right] \underbrace{\mathbb{E} \delta(f(x))}_{=\varphi_{f(x)}(0)} \mathrm{d} x .
\end{aligned}
$$

Kac-Rice Formula

Computes expected number of zeros of random function $f: \Omega \times[0, L] \rightarrow \mathbb{R}$

$$
\mathbb{E}[\# \text { zeros }(f)]=\int_{[0, L]} \mathbb{E}\left[\mid f^{\prime}(x) \| f(x)=0\right] \varphi_{f(x)}(0) \mathrm{d} x
$$

Here $\varphi_{f(x)}$ is density of r.v. $f(x)$. Heuristic derivation:

$$
\begin{aligned}
\mathbb{E}[\# \operatorname{zeros}(f)] & =\mathbb{E} \int_{f([0, L])} \delta(y) \mathrm{d} y=\mathbb{E} \int_{[0, L]}\left|f^{\prime}(x)\right| \delta(f(x)) \mathrm{d} x \\
& =\int_{[0, L]} \mathbb{E}\left[\left|f^{\prime}(x)\right| \mid f(x)=0\right] \underbrace{\mathbb{E} \delta(f(x))}_{=\varphi_{f(x)}(0)} \mathrm{d} x .
\end{aligned}
$$

For multi-dimensional $f: \Omega \times[0, L]^{N} \rightarrow \mathbb{R}^{N}$:

$$
\mathbb{E}[\# \operatorname{zeros}(f)]=\int_{[0, L]^{N}} \mathbb{E}[|\operatorname{det} \nabla f(\boldsymbol{x})| \mid f(\boldsymbol{x})=0] \varphi_{f(\boldsymbol{x})}(0) \mathrm{d} \boldsymbol{x}
$$

A simple example

How many zeros does this function have on $[-L, L], L<1$, in expectation?

$$
f(x)=g_{0}+g_{1} x+g_{2} x^{2}+\cdots, \quad g_{i} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)
$$

A simple example

How many zeros does this function have on $[-L, L], L<1$, in expectation?

$$
f(x)=g_{0}+g_{1} x+g_{2} x^{2}+\cdots, \quad g_{i} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)
$$

At any $|x|<1$, r.v.s $f(x), f^{\prime}(x)$ jointly Gaussian with covariance

$$
\mathbb{E} f(x)^{2}=\frac{1}{1-x^{2}} \quad \mathbb{E} f^{\prime}(x)^{2}=\frac{1+x^{2}}{\left(1-x^{2}\right)^{3}} \quad \mathbb{E} f(x) f^{\prime}(x)=\frac{x}{(1-x)^{2}}
$$

A simple example

How many zeros does this function have on $[-L, L], L<1$, in expectation?

$$
f(x)=g_{0}+g_{1} x+g_{2} x^{2}+\cdots, \quad g_{i} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)
$$

At any $|x|<1$, r.v.s $f(x), f^{\prime}(x)$ jointly Gaussian with covariance

$$
\mathbb{E} f(x)^{2}=\frac{1}{1-x^{2}} \quad \mathbb{E} f^{\prime}(x)^{2}=\frac{1+x^{2}}{\left(1-x^{2}\right)^{3}} \quad \mathbb{E} f(x) f^{\prime}(x)=\frac{x}{(1-x)^{2}}
$$

So

$$
\operatorname{Var}\left[f^{\prime}(x) \mid f(x)\right]=\mathbb{E} f^{\prime}(x)^{2}-\frac{\left(\mathbb{E} f(x) f^{\prime}(x)\right)^{2}}{\mathbb{E} f(x)^{2}}=\frac{1}{\left(1-x^{2}\right)^{3}}
$$

A simple example

How many zeros does this function have on $[-L, L], L<1$, in expectation?

$$
f(x)=g_{0}+g_{1} x+g_{2} x^{2}+\cdots, \quad g_{i} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)
$$

At any $|x|<1$, r.v.s $f(x), f^{\prime}(x)$ jointly Gaussian with covariance

$$
\mathbb{E} f(x)^{2}=\frac{1}{1-x^{2}} \quad \mathbb{E} f^{\prime}(x)^{2}=\frac{1+x^{2}}{\left(1-x^{2}\right)^{3}} \quad \mathbb{E} f(x) f^{\prime}(x)=\frac{x}{(1-x)^{2}}
$$

So

$$
\operatorname{Var}\left[f^{\prime}(x) \mid f(x)\right]=\mathbb{E} f^{\prime}(x)^{2}-\frac{\left(\mathbb{E} f(x) f^{\prime}(x)\right)^{2}}{\mathbb{E} f(x)^{2}}=\frac{1}{\left(1-x^{2}\right)^{3}}
$$

Then

$$
\mathbb{E}[\# \text { zeros }(f)]=\int_{-L}^{L} \mathbb{E}\left[\mid f^{\prime}(x) \| f(x)=0\right] \varphi_{f(x)}(0) \mathrm{d} x
$$

A simple example

How many zeros does this function have on $[-L, L], L<1$, in expectation?

$$
f(x)=g_{0}+g_{1} x+g_{2} x^{2}+\cdots, \quad g_{i} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)
$$

At any $|x|<1$, r.v.s $f(x), f^{\prime}(x)$ jointly Gaussian with covariance

$$
\mathbb{E} f(x)^{2}=\frac{1}{1-x^{2}} \quad \mathbb{E} f^{\prime}(x)^{2}=\frac{1+x^{2}}{\left(1-x^{2}\right)^{3}} \quad \mathbb{E} f(x) f^{\prime}(x)=\frac{x}{(1-x)^{2}}
$$

So

$$
\operatorname{Var}\left[f^{\prime}(x) \mid f(x)\right]=\mathbb{E} f^{\prime}(x)^{2}-\frac{\left(\mathbb{E} f(x) f^{\prime}(x)\right)^{2}}{\mathbb{E} f(x)^{2}}=\frac{1}{\left(1-x^{2}\right)^{3}}
$$

Then

$$
\begin{aligned}
\mathbb{E}[\# \text { zeros }(f)] & =\int_{-L}^{L} \mathbb{E}\left[\left|f^{\prime}(x)\right| \mid f(x)=0\right] \varphi_{f(x)}(0) \mathrm{d} x \\
& =\int_{-L}^{L} \sqrt{\frac{2}{\pi}} \frac{1}{\left(1-x^{2}\right)^{3 / 2}} \cdot \sqrt{\frac{1-x^{2}}{2 \pi}} \mathrm{~d} x
\end{aligned}
$$

A simple example

How many zeros does this function have on $[-L, L], L<1$, in expectation?

$$
f(x)=g_{0}+g_{1} x+g_{2} x^{2}+\cdots, \quad g_{i} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)
$$

At any $|x|<1$, r.v.s $f(x), f^{\prime}(x)$ jointly Gaussian with covariance

$$
\mathbb{E} f(x)^{2}=\frac{1}{1-x^{2}} \quad \mathbb{E} f^{\prime}(x)^{2}=\frac{1+x^{2}}{\left(1-x^{2}\right)^{3}} \quad \mathbb{E} f(x) f^{\prime}(x)=\frac{x}{(1-x)^{2}}
$$

So

$$
\operatorname{Var}\left[f^{\prime}(x) \mid f(x)\right]=\mathbb{E} f^{\prime}(x)^{2}-\frac{\left(\mathbb{E} f(x) f^{\prime}(x)\right)^{2}}{\mathbb{E} f(x)^{2}}=\frac{1}{\left(1-x^{2}\right)^{3}}
$$

Then

$$
\begin{aligned}
\mathbb{E}[\# \text { zeros }(f)] & =\int_{-L}^{L} \mathbb{E}\left[\left|f^{\prime}(x)\right| \mid f(x)=0\right] \varphi_{f(x)}(0) \mathrm{d} x \\
& =\int_{-L}^{L} \sqrt{\frac{2}{\pi}} \frac{1}{\left(1-x^{2}\right)^{3 / 2}} \cdot \sqrt{\frac{1-x^{2}}{2 \pi}} \mathrm{~d} x \\
& =\frac{1}{\pi} \int_{-L}^{L} \frac{1}{1-x^{2}} \mathrm{~d} x=\frac{2}{\pi} \operatorname{arctanh} L
\end{aligned}
$$

Kac-Rice to High-Dimensional Landscape Complexity

- Quantify complexity of landscape by \# critical points

Kac-Rice to High-Dimensional Landscape Complexity

- Quantify complexity of landscape by \# critical points
- (Fyodorov 04, Auffinger-Ben Arous-Černý 13): Kac-Rice on ∇H gives $\mathbb{E}|\mathrm{Crt}|$

Kac-Rice to High-Dimensional Landscape Complexity

- Quantify complexity of landscape by \# critical points
- (Fyodorov 04, Auffinger-Ben Arous-Černý 13): Kac-Rice on ∇H gives $\mathbb{E}|\mathrm{Crt}|$
- In high dimensions, reduces to random determinant:

$$
\mathbb{E}|C r t|=(\text { simple term }) \cdot \mathbb{E} \mid \operatorname{det}(\text { random matrix }) \mid .
$$

Kac-Rice to High-Dimensional Landscape Complexity

- Quantify complexity of landscape by \# critical points
- (Fyodorov 04, Auffinger-Ben Arous-Černý 13): Kac-Rice on ∇H gives $\mathbb{E}|\mathrm{Crt}|$
- In high dimensions, reduces to random determinant:

$$
\mathbb{E}|C r t|=(\text { simple term }) \cdot \mathbb{E} \mid \operatorname{det}(\text { random matrix }) \mid .
$$

- For spin glasses, random matrix is $\mathrm{GOE}_{N}+c l_{N}, \mathbb{E}|\operatorname{det}|$ known exactly

Kac-Rice to High-Dimensional Landscape Complexity

- Quantify complexity of landscape by \# critical points
- (Fyodorov 04, Auffinger-Ben Arous-Černý 13): Kac-Rice on ∇H gives $\mathbb{E}|\mathrm{Crt}|$
- In high dimensions, reduces to random determinant:

$$
\mathbb{E}|C r t|=(\text { simple term }) \cdot \mathbb{E} \mid \operatorname{det}(\text { random matrix }) \mid .
$$

- For spin glasses, random matrix is $\mathrm{GOE}_{N}+c l_{N}, \mathbb{E}|\operatorname{det}|$ known exactly
- Other applications:
- (Sagun-Guney-Ben Arous-LeCun 14) neural networks
- (Ben Arous-Mei-Montanari-Nica 19) spiked tensor models
- (Ben Arous-Fyodorov-Khoruzhenko 21, Subag 23) non-gradient vector fields
- (Ben Arous-Bourgarde-McKenna 23) elastic manifold

Critical Point Complexity in Pure Spin Glasses

- (Auffinger-Ben Arous-Černý 13): $\mathbb{E} \#$ critical points at given (energy, index)

Critical Point Complexity in Pure Spin Glasses

- (Auffinger-Ben Arous-Černý 13): $\mathbb{E} \#$ critical points at given (energy, index)

- (Subag 17): this matches typical counts by 2 nd moment method

Critical Point Complexity in Pure Spin Glasses

- (Auffinger-Ben Arous-Černý 13): $\mathbb{E} \#$ critical points at given (energy, index)

- (Subag 17): this matches typical counts by 2nd moment method
- Consequence: ground state energy matching Parisi formula

Topological Trivialization

- If external field large, only 2 critical points are global max and min ...

Topological Trivialization

- If external field large, only 2 critical points are global max and min ...
- At how large external field does this occur? Is there a phase transition?

Topological Trivialization

- If external field large, only 2 critical points are global max and min ...
- At how large external field does this occur? Is there a phase transition?

Theorem (Fyodorov 15, Belius-Černý-Nakajima-Schmidt 22)
(1) If $\xi^{\prime}(1)>\xi^{\prime \prime}(1), \mathbb{E}|\mathrm{Crt}|=2+o(1)$ (so w.h.p. 2 critical points)

Topological Trivialization

- If external field large, only 2 critical points are global max and min ...
- At how large external field does this occur? Is there a phase transition?

Theorem (Fyodorov 15, Belius-Černý-Nakajima-Schmidt 22)
(1) If $\xi^{\prime}(1)>\xi^{\prime \prime}(1), \mathbb{E}|\mathrm{Crt}|=2+o$ (1) (so w.h.p. 2 critical points)
(c) If $\xi^{\prime}(1)<\xi^{\prime \prime}(1), \mathbb{E}|\mathrm{Crt}| \geq e^{c N}$

Topological Trivialization

- If external field large, only 2 critical points are global max and min ...
- At how large external field does this occur? Is there a phase transition?

Theorem (Fyodorov 15, Belius-Černý-Nakajima-Schmidt 22)
(1) If $\xi^{\prime}(1)>\xi^{\prime \prime}(1), \mathbb{E}|\mathrm{Crt}|=2+o(1)$ (so w.h.p. 2 critical points)
(2) If $\xi^{\prime}(1)<\xi^{\prime \prime}(1), \mathbb{E}|\mathrm{Crt}| \geq e^{c N}$

- Phase boundary for annealed topological trivialization

Topological Trivialization

- If external field large, only 2 critical points are global max and min ...
- At how large external field does this occur? Is there a phase transition?

Theorem (Fyodorov 15, Belius-Černý-Nakajima-Schmidt 22)
(1) If $\xi^{\prime}(1)>\xi^{\prime \prime}(1), \mathbb{E}|\mathrm{Crt}|=2+o$ (1) (so w.h.p. 2 critical points)
(2) If $\xi^{\prime}(1)<\xi^{\prime \prime}(1), \mathbb{E}|\mathrm{Crt}| \geq e^{c N}$

- Phase boundary for annealed topological trivialization
- $\xi^{\prime}(1)>\xi^{\prime \prime}(1)$ equivalent to $\gamma_{1}^{2}>\sum_{p \geq 3} p(p-2) \gamma_{p}^{2}$

Topological Trivialization

- If external field large, only 2 critical points are global max and min ...
- At how large external field does this occur? Is there a phase transition?

Theorem (Fyodorov 15, Belius-Černý-Nakajima-Schmidt 22)
(1) If $\xi^{\prime}(1)>\xi^{\prime \prime}(1), \mathbb{E}|\mathrm{Crt}|=2+o(1)$ (so w.h.p. 2 critical points)
(2) If $\xi^{\prime}(1)<\xi^{\prime \prime}(1), \mathbb{E}|\mathrm{Crt}| \geq e^{c N}$

- Phase boundary for annealed topological trivialization
- $\xi^{\prime}(1)>\xi^{\prime \prime}(1)$ equivalent to $\gamma_{1}^{2}>\sum_{p \geq 3} p(p-2) \gamma_{p}^{2}$
- $\mathbb{E}|\mathrm{Crt}|=2+o(1)$ achieved using exact formula for GOE
- If Kac-Rice random matrix not GOE, current tools only achieve $\mathbb{E}|C r t|=e^{o(N)}$

Guiding Questions

- Do phase boundaries of annealed and quenched trivialization coincide? - Or can $|\mathrm{Crt}|=2$ w.h.p. in the regime where $\mathbb{E}|\mathrm{Crt}| \geq e^{c N}$?

Guiding Questions

- Do phase boundaries of annealed and quenched trivialization coincide?
- Or can $|\mathrm{Crt}|=2$ w.h.p. in the regime where $\mathbb{E}|\mathrm{Crt}| \geq e^{c N}$?
- Does trivialization have algorithmic implications, e.g. fast convergence of Langevin dynamics?
- Or can regions of small, nonzero gradient still obstruct algorithms?

Guiding Questions

- Do phase boundaries of annealed and quenched trivialization coincide?
- Or can $|\mathrm{Crt}|=2$ w.h.p. in the regime where $\mathbb{E}|\mathrm{Crt}| \geq e^{c N}$?
- Does trivialization have algorithmic implications, e.g. fast convergence of Langevin dynamics?
- Or can regions of small, nonzero gradient still obstruct algorithms?
- Can we boost $\mathbb{E}|C r t|=e^{o(N)}$ to $|\mathrm{Crt}|=2$ w.h.p. without exact formulas?

Strong Topological Trivialization

H is strongly topologically trivial (STT) if w.h.p.:

Strong Topological Trivialization

H is strongly topologically trivial (STT) if w.h.p.:

- $|\mathrm{Crt}|=O(1)$

Strong Topological Trivialization

H is strongly topologically trivial (STT) if w.h.p.:

- $|\mathrm{Crt}|=O(1)$
- Each ε-approximate critical point $\left(\left\|\nabla_{\text {sp }} H(\sigma)\right\|_{2} \leq \varepsilon \sqrt{N}\right)$ within $O(\varepsilon) \sqrt{N}$ of a true critical point

Strong Topological Trivialization

H is strongly topologically trivial (STT) if w.h.p.:

- $|\mathrm{Crt}|=O(1)$
- Each ε-approximate critical point $\left(\left\|\nabla_{\text {sp }} H(\sigma)\right\|_{2} \leq \varepsilon \sqrt{N}\right)$ within $O(\varepsilon) \sqrt{N}$ of a true critical point
- All critical points well-conditioned, i.e. $\operatorname{spec}\left(\nabla_{\mathrm{sp}}^{2} H(\sigma)\right) \cap[-c, c]=\emptyset$

Strong Topological Trivialization

H is strongly topologically trivial (STT) if w.h.p.:

- $|\mathrm{Crt}|=O(1)$
- Each ε-approximate critical point $\left(\left\|\nabla_{\text {sp }} H(\boldsymbol{\sigma})\right\|_{2} \leq \varepsilon \sqrt{N}\right)$ within $O(\varepsilon) \sqrt{N}$ of a true critical point
- All critical points well-conditioned, i.e. $\operatorname{spec}\left(\nabla_{\mathrm{sp}}^{2} H(\sigma)\right) \cap[-c, c]=\emptyset$
- At each critical point except the global maximum, $\lambda_{c N}\left(\nabla_{\mathrm{sp}}^{2} H(\sigma)\right)>0$

Strong Topological Trivialization

H is strongly topologically trivial (STT) if w.h.p.:

- $|\mathrm{Crt}|=O(1)$
- Each ε-approximate critical point $\left(\left\|\nabla_{\text {sp }} H(\boldsymbol{\sigma})\right\|_{2} \leq \varepsilon \sqrt{N}\right)$ within $O(\varepsilon) \sqrt{N}$ of a true critical point
- All critical points well-conditioned, i.e. $\operatorname{spec}\left(\nabla_{\mathrm{sp}}^{2} H(\sigma)\right) \cap[-c, c]=\emptyset$
- At each critical point except the global maximum, $\lambda_{c N}\left(\nabla_{\text {sp }}^{2} H(\sigma)\right)>0$

Theorem (H.-Sellke 23)
If H is STT, then Langevin dynamics at low enough temperature mixes in $O(\log N)$ time in TV.

Main Result

Theorem (H.-Sellke 23)
(1) If $\xi^{\prime}(1)>\xi^{\prime \prime}(1)$, STT holds (with 2 critical points).

Main Result

Theorem (H.-Sellke 23)
(1) If $\xi^{\prime}(1)>\xi^{\prime \prime}(1), S T T$ holds (with 2 critical points).
(2) If $\xi^{\prime}(1)<\xi^{\prime \prime}(1)$, STT fails.

- There are $e^{c N}$ well-separated approximate critical points w.h.p.

Main Result

Theorem (H.-Sellke 23)
(1) If $\xi^{\prime}(1)>\xi^{\prime \prime}(1), S T T$ holds (with 2 critical points).
(3) If $\xi^{\prime}(1)<\xi^{\prime \prime}(1)$, STT fails.

- There are $e^{c N}$ well-separated approximate critical points w.h.p.

New method to boost $\mathbb{E}|\mathrm{Crt}|=e^{o(N)}$ to STT (and in particular $|\mathrm{Crt}|=2$ w.h.p.) without exact RMT

Main Result

Theorem (H.-Sellke 23)
(1) If $\xi^{\prime}(1)>\xi^{\prime \prime}(1), S T T$ holds (with 2 critical points).
(3) If $\xi^{\prime}(1)<\xi^{\prime \prime}(1)$, STT fails.

- There are $e^{c N}$ well-separated approximate critical points w.h.p.

New method to boost $\mathbb{E}|\mathrm{Crt}|=e^{o(N)}$ to STT (and in particular $|\mathrm{Crt}|=2$ w.h.p.) without exact RMT

More general threshold for multi-species models (later)

Main Result

Theorem (H.-Sellke 23)
(1) If $\xi^{\prime}(1)>\xi^{\prime \prime}(1), S T T$ holds (with 2 critical points).
(3) If $\xi^{\prime}(1)<\xi^{\prime \prime}(1)$, STT fails.

- There are $e^{c N}$ well-separated approximate critical points w.h.p.

New method to boost $\mathbb{E}|\mathrm{Crt}|=e^{o(N)}$ to STT (and in particular $|\mathrm{Crt}|=2$ w.h.p.) without exact RMT

More general threshold for multi-species models (later)

- In these models, phase boundary for annealed trivialization also new

Annealed Critical Point Complexity

Kac-Rice on $\nabla_{\text {sp }} H$:

$$
\mathbb{E}|\mathrm{Crt}|=\int_{S_{N}} \mathbb{E}\left[\left|\operatorname{det} \nabla_{\mathrm{sp}}^{2} H(\boldsymbol{\sigma})\right| \mid \nabla_{\mathrm{sp}} H(\boldsymbol{\sigma})=0\right] \varphi_{\nabla_{\mathrm{sp}} H(\boldsymbol{\sigma})}(0) \mathrm{d} \boldsymbol{\sigma} .
$$

Annealed Critical Point Complexity

Kac-Rice on $\nabla_{\text {sp }} H$:

$$
\mathbb{E}|\operatorname{Crt}|=\int_{S_{N}} \mathbb{E}\left[\left|\operatorname{det} \nabla_{\mathrm{sp}}^{2} H(\boldsymbol{\sigma})\right| \mid \nabla_{\mathrm{sp}} H(\boldsymbol{\sigma})=0\right] \varphi_{\nabla_{\mathrm{sp}} H(\boldsymbol{\sigma})}(0) \mathrm{d} \boldsymbol{\sigma} .
$$

Here $\nabla_{\text {sp }}, \nabla_{\text {sp }}^{2}$ are Riemannian gradient, Hessian

$$
\nabla_{\mathrm{sp}} H(\boldsymbol{\sigma})=\nabla_{\tan } H(\sigma), \quad \nabla_{\mathrm{sp}}^{2} H(\boldsymbol{\sigma})=\nabla_{\tan }^{2} H(\boldsymbol{\sigma})-\underbrace{\partial_{\text {rad }} H(\sigma) I_{N-1}}_{\text {curvature term }}
$$

Annealed Critical Point Complexity

Kac-Rice on $\nabla_{\text {sp }} H$:

$$
\mathbb{E}|\mathrm{Crt}|=\int_{S_{N}} \mathbb{E}\left[\left|\operatorname{det} \nabla_{\mathrm{sp}}^{2} H(\boldsymbol{\sigma})\right| \mid \nabla_{\mathrm{sp}} H(\boldsymbol{\sigma})=0\right] \varphi_{\nabla_{\mathrm{sp}} H(\sigma)}(0) \mathrm{d} \boldsymbol{\sigma} .
$$

Here $\nabla_{\text {sp }}, \nabla_{\text {sp }}^{2}$ are Riemannian gradient, Hessian

$$
\nabla_{\mathrm{sp}} H(\sigma)=\nabla_{\tan } H(\sigma), \quad \nabla_{\mathrm{sp}}^{2} H(\sigma)=\nabla_{\tan }^{2} H(\sigma)-\partial_{\mathrm{rad}} H(\sigma) I_{N-1} .
$$

Annealed Critical Point Complexity

Kac-Rice on $\nabla_{\text {sp }} H$:

$$
\mathbb{E}|\operatorname{Crt}|=\mathbb{E}\left[\left|\operatorname{det} \nabla_{\mathrm{sp}}^{2} H(\sigma)\right| \mid \nabla_{\mathrm{sp}} H(\sigma)=0\right] \cdot \varphi_{\nabla_{\mathrm{sp}} H(\sigma)}(0) \cdot \operatorname{Vol}\left(S_{N}\right) .
$$

Here $\nabla_{\text {sp }}, \nabla_{\text {sp }}^{2}$ are Riemannian gradient, Hessian

$$
\nabla_{\mathrm{sp}} H(\sigma)=\nabla_{\tan } H(\sigma), \quad \nabla_{\mathrm{sp}}^{2} H(\sigma)=\nabla_{\tan }^{2} H(\sigma)-\partial_{\mathrm{rad}} H(\sigma) I_{N-1} .
$$

Annealed Critical Point Complexity

Kac-Rice on $\nabla_{\text {sp }} H$:

$$
\mathbb{E}|\operatorname{Crt}|=\mathbb{E}\left[\left|\operatorname{det} \nabla_{\mathrm{sp}}^{2} H(\boldsymbol{\sigma})\right| \mid \nabla_{\mathrm{sp}} H(\boldsymbol{\sigma})=0\right] \cdot \varphi_{\nabla_{\mathrm{sp}} H(\sigma)}(0) \cdot \operatorname{Vol}\left(S_{N}\right) .
$$

Here $\nabla_{\text {sp }}, \nabla_{\text {sp }}^{2}$ are Riemannian gradient, Hessian

$$
\nabla_{\mathrm{sp}} H(\sigma)=\nabla_{\tan } H(\sigma), \quad \nabla_{\mathrm{sp}}^{2} H(\sigma)=\nabla_{\tan }^{2} H(\sigma)-\partial_{\mathrm{rad}} H(\sigma) I_{N-1} .
$$

Fact: $\partial_{\text {rad }} H(\sigma), \nabla_{\tan }^{2} H(\sigma), \nabla_{\tan } H(\sigma)$ independent.

Annealed Critical Point Complexity

Kac-Rice on $\nabla_{\text {sp }} H$:

$$
\mathbb{E}|\operatorname{Crt}|=\mathbb{E}\left|\operatorname{det}\left(\nabla_{\tan }^{2} H(\sigma)-\partial_{\text {rad }} H(\sigma) I_{N-1}\right)\right| \cdot \varphi_{\nabla_{\tan } H(\sigma)}(0) \cdot \operatorname{Vol}\left(S_{N}\right) .
$$

Here $\nabla_{\text {sp }}, \nabla_{\text {sp }}^{2}$ are Riemannian gradient, Hessian

$$
\nabla_{\mathrm{sp}} H(\sigma)=\nabla_{\tan } H(\sigma), \quad \nabla_{\mathrm{sp}}^{2} H(\sigma)=\nabla_{\tan }^{2} H(\sigma)-\partial_{\mathrm{rad}} H(\sigma) I_{N-1} .
$$

Fact: $\partial_{\text {rad }} H(\sigma), \nabla_{\tan }^{2} H(\sigma), \nabla_{\tan } H(\sigma)$ independent.

Annealed Critical Point Complexity

Kac-Rice on $\nabla_{\text {sp }} H$:

$$
\mathbb{E}|\operatorname{Crt}|=\mathbb{E}\left|\operatorname{det}\left(\nabla_{\tan }^{2} H(\sigma)-\partial_{\text {rad }} H(\sigma) I_{N-1}\right)\right| \cdot \varphi_{\nabla_{\tan } H(\sigma)}(0) \cdot \operatorname{Vol}\left(S_{N}\right) .
$$

Here $\nabla_{\text {sp }}, \nabla_{\text {sp }}^{2}$ are Riemannian gradient, Hessian

$$
\nabla_{\mathrm{sp}} H(\sigma)=\nabla_{\tan } H(\sigma), \quad \nabla_{\mathrm{sp}}^{2} H(\sigma)=\nabla_{\tan }^{2} H(\sigma)-\partial_{\mathrm{rad}} H(\sigma) I_{N-1} .
$$

Fact: $\partial_{\text {rad }} H(\sigma), \nabla_{\tan }^{2} H(\sigma), \nabla_{\tan } H(\sigma)$ independent. They have laws

$$
\begin{aligned}
\partial_{\mathrm{rad}} H(\sigma) & ={ }_{d} c_{1} \mathcal{N}(0,1 / N) \\
\nabla_{\tan } H(\sigma) & ={ }_{d} c_{3} \mathcal{N}\left(0, I_{N-1}\right)
\end{aligned}
$$

$$
\nabla_{\tan }^{2} H(\sigma)={ }_{d} c_{2} \mathrm{GOE}_{N-1}
$$

Annealed Critical Point Complexity

Kac-Rice on $\nabla_{\text {sp }} H$:

$$
\mathbb{E}|\operatorname{Crt}|=\mathbb{E}\left|\operatorname{det}\left(\nabla_{\tan }^{2} H(\sigma)-\partial_{\text {rad }} H(\sigma) I_{N-1}\right)\right| \cdot \varphi_{\nabla_{\tan } H(\sigma)}(0) \cdot \operatorname{Vol}\left(S_{N}\right) .
$$

Here $\nabla_{\text {sp }}, \nabla_{\text {sp }}^{2}$ are Riemannian gradient, Hessian

$$
\nabla_{\mathrm{sp}} H(\sigma)=\nabla_{\tan } H(\sigma), \quad \nabla_{\mathrm{sp}}^{2} H(\sigma)=\nabla_{\tan }^{2} H(\sigma)-\partial_{\mathrm{rad}} H(\sigma) I_{N-1} .
$$

Fact: $\partial_{\text {rad }} H(\sigma), \nabla_{\tan }^{2} H(\sigma), \nabla_{\tan } H(\sigma)$ independent. They have laws

$$
\begin{array}{rlr}
\partial_{\mathrm{rad}} H(\sigma) & ={ }_{d} c_{1} \mathcal{N}(0,1 / N) & \nabla_{\tan }^{2} H(\sigma)={ }_{d} c_{2} \mathrm{GOE}_{N-1} \\
\nabla_{\tan } H(\sigma) & ={ }_{d} c_{3} \mathcal{N}\left(0, I_{N-1}\right) &
\end{array}
$$

Integrate out $\partial_{\text {rad }} H(\sigma)=x$:

$$
\mathbb{E}|\mathrm{Crt}|=(\text { simple term }) \times \int_{\mathbb{R}} \mathbb{E}\left|\operatorname{det}\left(c_{2} \mathrm{GOE}_{N-1}-x l\right)\right| \exp \left(-\frac{N x^{2}}{2 c_{1}}\right) \mathrm{d} x
$$

Annealed Critical Point Complexity

$$
\mathbb{E}|\mathrm{Crt}|=(\text { simple term }) \times \int_{\mathbb{R}} \mathbb{E}\left|\operatorname{det}\left(c_{2} \mathrm{GOE}_{N-1}-x I\right)\right| \exp \left(-\frac{N x^{2}}{2 c_{1}}\right) \mathrm{d} x
$$

Annealed Critical Point Complexity

$$
\mathbb{E}|\operatorname{Crt}|=(\text { simple term }) \times \int_{\mathbb{R}} \mathbb{E}\left|\operatorname{det}\left(c_{2} \mathrm{GOE}_{N-1}-x I\right)\right| \exp \left(-\frac{N x^{2}}{2 c_{1}}\right) \mathrm{d} x
$$

Laplace's principle \Rightarrow maximize exponential rate of integrand

Annealed Critical Point Complexity

$$
\mathbb{E}|\operatorname{Crt}|=(\text { simple term }) \times \int_{\mathbb{R}} \mathbb{E}\left|\operatorname{det}\left(c_{2} \mathrm{GOE}_{N-1}-x I\right)\right| \exp \left(-\frac{N x^{2}}{2 c_{1}}\right) \mathrm{d} x
$$

Laplace's principle \Rightarrow maximize exponential rate of integrand

- $\xi^{\prime}(1)>\xi^{\prime \prime}(1) \Rightarrow \mathbb{E}|\mathrm{Crt}|=e^{o(N)}$, (weak form of) annealed trivialization

Annealed Critical Point Complexity

$$
\mathbb{E}|\operatorname{Crt}|=(\text { simple term }) \times \int_{\mathbb{R}} \mathbb{E}\left|\operatorname{det}\left(c_{2} \mathrm{GOE}_{N-1}-x I\right)\right| \exp \left(-\frac{N x^{2}}{2 c_{1}}\right) \mathrm{d} x
$$

Laplace's principle \Rightarrow maximize exponential rate of integrand

- $\xi^{\prime}(1)>\xi^{\prime \prime}(1) \Rightarrow \mathbb{E}|\mathrm{Crt}|=e^{o(N)}$, (weak form of) annealed trivialization
- $\xi^{\prime}(1)<\xi^{\prime \prime}(1) \Rightarrow \mathbb{E}|\mathrm{Crt}| \geq e^{c N}$, failure of annealed trivialization

Statistics of Critical Points

Suppose we are in trivial regime $\xi^{\prime}(1)>\xi^{\prime \prime}(1)$, so $\mathbb{E}|\mathrm{Crt}|=e^{o(N)}$

Statistics of Critical Points

Suppose we are in trivial regime $\xi^{\prime}(1)>\xi^{\prime \prime}(1)$, so $\mathbb{E}|\mathrm{Crt}|=e^{o(N)}$

For all $\sigma \in \mathrm{Crt}$,

$$
\partial_{\mathrm{rad}} H(\boldsymbol{\sigma})= \pm x_{\mathrm{OPT}}+o(1)
$$

Statistics of Critical Points

Suppose we are in trivial regime $\xi^{\prime}(1)>\xi^{\prime \prime}(1)$, so $\mathbb{E}|\mathrm{Crt}|=e^{o(N)}$

For all $\sigma \in \mathrm{Crt}$,

$$
\partial_{\mathrm{rad}} H(\boldsymbol{\sigma})= \pm x_{\mathrm{OPT}}+o(1)
$$

In fact,

$$
\left(\partial_{\mathrm{rad}} H(\boldsymbol{\sigma}), \frac{1}{N} H(\boldsymbol{\sigma}), \frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle\right)= \pm\left(x_{\mathrm{OPT}}, E_{\mathrm{OPT}}, R_{\mathrm{OPT}}\right)+o(1)
$$

Statistics of Critical Points

Suppose we are in trivial regime $\xi^{\prime}(1)>\xi^{\prime \prime}(1)$, so $\mathbb{E}|\mathrm{Crt}|=e^{o(N)}$

For all $\sigma \in \mathrm{Crt}$,

$$
\partial_{\mathrm{rad}} H(\boldsymbol{\sigma})= \pm x_{\mathrm{OPT}}+o(1)
$$

In fact,

$$
\left(\partial_{\mathrm{rad}} H(\boldsymbol{\sigma}), \frac{1}{N} H(\boldsymbol{\sigma}), \frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle\right)= \pm\left(x_{\mathrm{OPT}}, E_{\mathrm{OPT}}, R_{\mathrm{OPT}}\right)+o(1)
$$

xOPT outside spectral bulk $\left[-2 c_{2}, 2 c_{2}\right]$ of $\nabla_{\tan }^{2} H(\sigma)$ so

$$
\nabla_{\mathrm{sp}}^{2} H(\sigma)=\nabla_{\tan }^{2} H(\sigma)-\partial_{\mathrm{rad}} H(\sigma) I_{N} \quad \text { well-conditioned }
$$

Attempt: from $e^{o(N)}$ Critical Points to 2
For all $\boldsymbol{\sigma} \in \operatorname{Crt}, \frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle= \pm R_{\mathrm{OPT}}+o(1)$.

Attempt: from $e^{o(N)}$ Critical Points to 2
For all $\boldsymbol{\sigma} \in \mathrm{Crt}, \frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle= \pm R_{\mathrm{OPT}}+o(1)$. Suppose $\frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle= \pm R_{\mathrm{OPT}}$

Attempt: from $e^{o(N)}$ Critical Points to 2
For all $\boldsymbol{\sigma} \in \mathrm{Crt}, \frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle= \pm R_{\mathrm{OPT}}+o(1)$. Suppose $\frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle= \pm R_{\mathrm{OPT}}$

Attempt: from $e^{o(N)}$ Critical Points to 2
For all $\boldsymbol{\sigma} \in \mathrm{Crt}, \frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle= \pm R_{\mathrm{OPT}}+o(1)$. Suppose $\frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle= \pm R_{\mathrm{OPT}}$

Attempt: from $e^{o(N)}$ Critical Points to 2

For all $\boldsymbol{\sigma} \in \mathrm{Crt}, \frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle= \pm R_{\mathrm{OPT}}+o(1)$. Suppose $\frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle= \pm R_{\mathrm{OPT}}$

slice along band

Attempt: from $e^{o(N)}$ Critical Points to 2

For all $\boldsymbol{\sigma} \in \operatorname{Crt}, \frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle= \pm R_{\text {OPT }}+o(1)$. Suppose $\frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle= \pm R_{\text {OPT }}$

slice along band

- Conditional on $\boldsymbol{G}^{(1)}$, restriction to band is ($N-1$)-dimensional spin glass

Attempt: from $e^{o(N)}$ Critical Points to 2

For all $\boldsymbol{\sigma} \in \operatorname{Crt}, \frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle= \pm R_{\text {OPT }}+o(1)$. Suppose $\frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle= \pm R_{\text {OPT }}$

slice along band

- Conditional on $\boldsymbol{G}^{(1)}$, restriction to band is ($N-1$)-dimensional spin glass
- Its critical points have known correlation with field $\widetilde{\boldsymbol{G}}^{(1)}$

Attempt: from $e^{o(N)}$ Critical Points to 2

For all $\boldsymbol{\sigma} \in \operatorname{Crt}, \frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle= \pm R_{\text {OPT }}+o(1)$. Suppose $\frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle= \pm R_{\text {OPT }}$

slice along band

- Conditional on $\boldsymbol{G}^{(1)}$, restriction to band is ($N-1$)-dimensional spin glass
- Its critical points have known correlation with field $\widetilde{\boldsymbol{G}}^{(1)}$

Attempt: from $e^{o(N)}$ Critical Points to 2

For all $\boldsymbol{\sigma} \in \mathrm{Crt}^{\mathrm{Ct}}, \frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle= \pm R_{\text {OPT }}+o(1)$. Suppose $\frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle= \pm R_{\text {OPT }}$

slice along band

- Conditional on $\boldsymbol{G}^{(1)}$, restriction to band is ($N-1$)-dimensional spin glass
- Its critical points have known correlation with field $\widetilde{\boldsymbol{G}}^{(1)}$
- Bands shrink. All critical points localize to 2 regions of diameter $o(\sqrt{N})$

Attempt: from $e^{o(N)}$ Critical Points to 2

For all $\boldsymbol{\sigma} \in \mathrm{Crt}^{\mathrm{Ct}}, \frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle= \pm R_{\text {OPT }}+o(1)$. Suppose $\frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle= \pm R_{\text {OPT }}$

slice along band

- Conditional on $\boldsymbol{G}^{(1)}$, restriction to band is ($N-1$)-dimensional spin glass
- Its critical points have known correlation with field $\widetilde{\boldsymbol{G}}^{(1)}$
- Bands shrink. All critical points localize to 2 regions of diameter $o(\sqrt{N})$
- $\nabla_{\text {sp }}^{2} H(\sigma)$ well-conditioned \Rightarrow each region has ≤ 1 critical point

Attempt: from $e^{o(N)}$ Critical Points to 2

For all $\boldsymbol{\sigma} \in \operatorname{Crt}, \frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle= \pm R_{\mathrm{OPT}}+o(1)$. Suppose $\frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle= \pm R_{\mathrm{OPT}}$

slice along band

- Conditional on $\boldsymbol{G}^{(1)}$, restriction to band is ($N-1$)-dimensional spin glass
- Its critical points have known correlation with field $\widetilde{\boldsymbol{G}}^{(1)}$
- Bands shrink. All critical points localize to 2 regions of diameter $o(\sqrt{N})$
- $\nabla_{\text {sp }}^{2} H(\sigma)$ well-conditioned \Rightarrow each region has ≤ 1 critical point
- This does not work! Critical points brittle, cannot tolerate o(1) error $)^{2}$

Approximate to Exact Critical Points

Lemma (H.-Sellke 23)

With probability $1-e^{-c N}$, all ε-approximate critical points σ of H satisfy:

$$
\begin{equation*}
\left\|\left(\partial_{\mathrm{rad}} H(\boldsymbol{\sigma}), \frac{1}{N} H(\boldsymbol{\sigma}), \frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle\right) \pm\left(x_{\mathrm{OPT}}, E_{\mathrm{OPT}}, R_{\mathrm{OPT}}\right)\right\| \leq o(1)+\iota(\varepsilon) \tag{*}
\end{equation*}
$$ and $\nabla_{\mathrm{sp}}^{2} H(\sigma)$ is well-conditioned.

Approximate to Exact Critical Points

Lemma (H.-Sellke 23)

With probability $1-e^{-c N}$, all ε-approximate critical points σ of H satisfy:

$$
\begin{equation*}
\left\|\left(\partial_{\mathrm{rad}} H(\boldsymbol{\sigma}), \frac{1}{N} H(\boldsymbol{\sigma}), \frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle\right) \pm\left(x_{\mathrm{OPT}}, E_{\mathrm{OPT}}, R_{\mathrm{OPT}}\right)\right\| \leq o(1)+\iota(\varepsilon) \tag{*}
\end{equation*}
$$

and $\nabla_{\mathrm{sp}}^{2} H(\sigma)$ is well-conditioned.

- Proof idea: consider rerandomized Hamiltionian

$$
H^{\delta}=\sqrt{1-\delta} H+\sqrt{\delta} H^{\prime}
$$

Approximate to Exact Critical Points

Lemma (H.-Sellke 23)

With probability $1-e^{-c N}$, all ε-approximate critical points σ of H satisfy:

$$
\begin{equation*}
\left\|\left(\partial_{\mathrm{rad}} H(\boldsymbol{\sigma}), \frac{1}{N} H(\boldsymbol{\sigma}), \frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle\right) \pm\left(x_{\mathrm{OPT}}, E_{\mathrm{OPT}}, R_{\mathrm{OPT}}\right)\right\| \leq o(1)+\iota(\varepsilon) \tag{*}
\end{equation*}
$$ and $\nabla_{\mathrm{sp}}^{2} H(\sigma)$ is well-conditioned.

- Proof idea: consider rerandomized Hamiltionian

$$
H^{\delta}=\sqrt{1-\delta} H+\sqrt{\delta} H^{\prime}
$$

- Conditional on H having an ε-approx crit violating $(*), H^{\delta}$ has expected $e^{-o_{\varepsilon}(1) N}$ exact crits violating (*)

Approximate to Exact Critical Points

Lemma (H.-Sellke 23)

With probability $1-e^{-c N}$, all ε-approximate critical points σ of H satisfy:
$\left\|\left(\partial_{\mathrm{rad}} H(\boldsymbol{\sigma}), \frac{1}{N} H(\boldsymbol{\sigma}), \frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle\right) \pm\left(x_{\mathrm{OPT}}, E_{\mathrm{OPT}}, R_{\mathrm{OPT}}\right)\right\| \leq o(1)+\iota(\varepsilon)$
and $\nabla_{\mathrm{sp}}^{2} H(\sigma)$ is well-conditioned.

- Proof idea: consider rerandomized Hamiltionian

$$
H^{\delta}=\sqrt{1-\delta} H+\sqrt{\delta} H^{\prime} .
$$

- Conditional on H having an ε-approx crit violating $(*), H^{\delta}$ has expected $e^{-o_{\varepsilon}(1) N}$ exact crits violating (*)
- Proved by Kac-Rice conditionally on H

Approximate to Exact Critical Points

Lemma (H.-Sellke 23)

With probability $1-e^{-c N}$, all ε-approximate critical points σ of H satisfy:
$\left\|\left(\partial_{\mathrm{rad}} H(\boldsymbol{\sigma}), \frac{1}{N} H(\boldsymbol{\sigma}), \frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle\right) \pm\left(x_{\mathrm{OPT}}, E_{\mathrm{OPT}}, R_{\mathrm{OPT}}\right)\right\| \leq o(1)+\iota(\varepsilon)$
and $\nabla_{\mathrm{sp}}^{2} H(\sigma)$ is well-conditioned.

- Proof idea: consider rerandomized Hamiltionian

$$
H^{\delta}=\sqrt{1-\delta} H+\sqrt{\delta} H^{\prime} .
$$

- Conditional on H having an ε-approx crit violating ($*$), H^{δ} has expected $e^{-o_{\varepsilon}(1) N}$ exact crits violating (*)
- Proved by Kac-Rice conditionally on H
- But there are $\leq e^{-c^{\prime} N}$ such points in (unconditional) expectation!

Band Recursion and Strong Trivialization

For any ε-approximate critical point $\boldsymbol{\sigma}, \frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle= \pm R_{\mathrm{OPT}}+o_{\varepsilon}(1)$

slice along band

- Recursion localizes all approx crits to 2 regions of diameter $o(\sqrt{N})$

Band Recursion and Strong Trivialization

For any ε-approximate critical point $\boldsymbol{\sigma}, \frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle= \pm R_{\mathrm{OPT}}+o_{\varepsilon}(1)$

slice along band

- Recursion localizes all approx crits to 2 regions of diameter $o(\sqrt{N})$
- $\nabla_{\mathrm{sp}}^{2} H(\boldsymbol{\sigma})$ well-conditioned \Rightarrow each region has ≤ 1 exact crit

Band Recursion and Strong Trivialization

For any ε-approximate critical point $\boldsymbol{\sigma}, \frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle= \pm R_{\mathrm{OPT}}+o_{\varepsilon}(1)$

\qquad

- Recursion localizes all approx crits to 2 regions of diameter $o(\sqrt{N})$
- $\nabla_{\mathrm{sp}}^{2} H(\sigma)$ well-conditioned \Rightarrow each region has ≤ 1 exact crit
- ≥ 2 exact crits globally \Rightarrow each region has exactly 1

Band Recursion and Strong Trivialization

For any ε-approximate critical point $\boldsymbol{\sigma}, \frac{1}{N}\left\langle\boldsymbol{G}^{(1)}, \boldsymbol{\sigma}\right\rangle= \pm R_{\mathrm{OPT}}+o_{\varepsilon}(1)$

\qquad

- Recursion localizes all approx crits to 2 regions of diameter $o(\sqrt{N})$
- $\nabla_{\mathrm{sp}}^{2} H(\sigma)$ well-conditioned \Rightarrow each region has ≤ 1 exact crit
- ≥ 2 exact crits globally \Rightarrow each region has exactly 1
- So 2 exact crits, all approx crits near an exact crit. Strong trivialization!

$e^{c N}$ Approximate Critical Points when $\xi^{\prime}(1)<\xi^{\prime \prime}(1)$

Branching OGP (H.-Sellke 21, 23): optimization algorithms can reach states forming ultrametric tree with random root correlated with $\boldsymbol{G}^{(1)}$

$e^{c N}$ Approximate Critical Points when $\xi^{\prime}(1)<\xi^{\prime \prime}(1)$

Branching OGP (H.-Sellke 21, 23): optimization algorithms can reach states forming ultrametric tree with random root correlated with $\boldsymbol{G}^{(1)}$

$$
\boldsymbol{G}^{(1)}=0
$$

$e^{c N}$ Approximate Critical Points when $\xi^{\prime}(1)<\xi^{\prime \prime}(1)$

Branching OGP (H.-Sellke 21, 23): optimization algorithms can reach states forming ultrametric tree with random root correlated with $\boldsymbol{G}^{(1)}$

$$
\boldsymbol{G}^{(1)}=0
$$

$\boldsymbol{G}^{(1)}$ small

$e^{c N}$ Approximate Critical Points when $\xi^{\prime}(1)<\xi^{\prime \prime}(1)$

Branching OGP (H.-Sellke 21, 23): optimization algorithms can reach states forming ultrametric tree with random root correlated with $\boldsymbol{G}^{(1)}$

$\boldsymbol{G}^{(1)}=0$

$\boldsymbol{G}^{(1)}$ small

$e^{c N}$ Approximate Critical Points when $\xi^{\prime}(1)<\xi^{\prime \prime}(1)$

Branching OGP (H.-Sellke 21, 23): optimization algorithms can reach states forming ultrametric tree with random root correlated with $\boldsymbol{G}^{(1)}$

$G^{(1)}=0$

$\boldsymbol{G}^{(1)}$ small

- Algorithmic tree is non-degenerate precisely when $\xi^{\prime}(1)<\xi^{\prime \prime}(1)$
$e^{c N}$ Approximate Critical Points when $\xi^{\prime}(1)<\xi^{\prime \prime}(1)$

Branching OGP (H.-Sellke 21, 23): optimization algorithms can reach states forming ultrametric tree with random root correlated with $\boldsymbol{G}^{(1)}$

$G^{(1)}=0$

$\boldsymbol{G}^{(1)}$ small

$\boldsymbol{G}^{(1)}$ large

- Algorithmic tree is non-degenerate precisely when $\xi^{\prime}(1)<\xi^{\prime \prime}(1)$
- AMP constructs $e^{c N}$ points in algorithmic tree, all approximate critical points

Multi-Species Models

- Up to now: polynomials in variables $\sigma_{1}, \ldots, \sigma_{N}$ that all look alike
- Multi-species models: $r=O(1)$ different "variable types"

Multi-Species Models

- Up to now: polynomials in variables $\sigma_{1}, \ldots, \sigma_{N}$ that all look alike
- Multi-species models: $r=O(1)$ different "variable types"
- Formally, each coordinate part of a species $s \in \mathscr{S}=\{1, \ldots, r\}$

$$
[N]=\mathcal{I}_{1} \cup \cdots \cup \mathcal{I}_{r}, \quad\left|\mathcal{I}_{s}\right|=\lambda_{s} N
$$

Multi-Species Models

- Up to now: polynomials in variables $\sigma_{1}, \ldots, \sigma_{N}$ that all look alike
- Multi-species models: $r=O(1)$ different "variable types"
- Formally, each coordinate part of a species $s \in \mathscr{S}=\{1, \ldots, r\}$

$$
[N]=\mathcal{I}_{1} \cup \cdots \cup \mathcal{I}_{r}, \quad\left|\mathcal{I}_{s}\right|=\lambda_{s} N
$$

- Interaction weights $\gamma_{2}, \gamma_{3}, \ldots$ now $\left(\gamma_{s_{1}, s_{2}}\right)_{s_{1}, s_{2} \in \mathscr{S}},\left(\gamma_{s_{1}, s_{2}, s_{3}}\right)_{s_{1}, s_{2}, s_{3} \in \mathscr{S}}, \ldots$

Multi-Species Models

- Up to now: polynomials in variables $\sigma_{1}, \ldots, \sigma_{N}$ that all look alike
- Multi-species models: $r=O(1)$ different "variable types"
- Formally, each coordinate part of a species $s \in \mathscr{S}=\{1, \ldots, r\}$

$$
[N]=\mathcal{I}_{1} \cup \cdots \cup \mathcal{I}_{r}, \quad\left|\mathcal{I}_{s}\right|=\lambda_{s} N
$$

- Interaction weights $\gamma_{2}, \gamma_{3}, \ldots$ now $\left(\gamma_{s_{1}, s_{2}}\right)_{s_{1}, s_{2} \in \mathscr{S}},\left(\gamma_{s_{1}, s_{2}, s_{3}}\right)_{s_{1}, s_{2}, s_{3} \in \mathscr{S}}, \ldots$
- Input space now product of spheres

$$
\mathcal{P}_{N}=\left\{\sigma \in \mathbb{R}^{N}:\left\|\sigma_{\mid \mathcal{I}_{s}}\right\|_{2}^{2}=\lambda_{s} N \quad \forall s \in \mathscr{S}\right\}
$$

Multi-Species Models

- Up to now: polynomials in variables $\sigma_{1}, \ldots, \sigma_{N}$ that all look alike
- Multi-species models: $r=O(1)$ different "variable types"
- Formally, each coordinate part of a species $s \in \mathscr{S}=\{1, \ldots, r\}$

$$
[N]=\mathcal{I}_{1} \cup \cdots \cup \mathcal{I}_{r}, \quad\left|\mathcal{I}_{s}\right|=\lambda_{s} N
$$

- Interaction weights $\gamma_{2}, \gamma_{3}, \ldots$ now $\left(\gamma_{s_{1}, s_{2}}\right)_{s_{1}, s_{2} \in \mathscr{S}},\left(\gamma_{s_{1}, s_{2}, s_{3}}\right)_{s_{1}, s_{2}, s_{3} \in \mathscr{S}}, \ldots$
- Input space now product of spheres

$$
\mathcal{P}_{N}=\left\{\sigma \in \mathbb{R}^{N}:\left\|\sigma_{\mid \mathcal{I}_{s}}\right\|_{2}^{2}=\lambda_{s} N \quad \forall s \in \mathscr{S}\right\}
$$

- Example: bipartite SK $H(\boldsymbol{x}, \boldsymbol{y})=\langle\boldsymbol{x}, \boldsymbol{G} \boldsymbol{y}\rangle$ where $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{S}_{N / 2}$

Main Result for Multi-Species Models

$\xi\left(q_{1}, \ldots, q_{r}\right)$ now r-variate polynomial (so $\nabla \xi \in \mathbb{R}^{r}, \nabla^{2} \xi \in \mathbb{R}^{r \times r}$)

Main Result for Multi-Species Models

$\xi\left(q_{1}, \ldots, q_{r}\right)$ now r-variate polynomial (so $\nabla \xi \in \mathbb{R}^{r}, \nabla^{2} \xi \in \mathbb{R}^{r \times r}$)
Theorem (H.-Sellke 23)
If $\operatorname{diag}(\nabla \xi(\overrightarrow{1})) \succ \nabla^{2} \xi(\overrightarrow{1})$, both annealed and strong trivialization hold.

Main Result for Multi-Species Models

$\xi\left(q_{1}, \ldots, q_{r}\right)$ now r-variate polynomial (so $\nabla \xi \in \mathbb{R}^{r}, \nabla^{2} \xi \in \mathbb{R}^{r \times r}$)
Theorem (H.-Sellke 23)
If $\operatorname{diag}(\nabla \xi(\overrightarrow{1})) \succ \nabla^{2} \xi(\overrightarrow{1})$, both annealed and strong trivialization hold.

- $\mathbb{E}|C r t|=e^{o(N)}$
- W.h.p. exactly 2^{r} critical points, all well-conditioned, all approx crits near one

Main Result for Multi-Species Models

$\xi\left(q_{1}, \ldots, q_{r}\right)$ now r-variate polynomial (so $\nabla \xi \in \mathbb{R}^{r}, \nabla^{2} \xi \in \mathbb{R}^{r \times r}$)
Theorem (H.-Sellke 23)
If $\operatorname{diag}(\nabla \xi(\overrightarrow{1})) \succ \nabla^{2} \xi(\overrightarrow{1})$, both annealed and strong trivialization hold.

- $\mathbb{E}|C r t|=e^{o(N)}$
- W.h.p. exactly 2^{r} critical points, all well-conditioned, all approx crits near one
- Determine energy, r radial derivatives, r correlations with external field at each

Main Result for Multi-Species Models

$\xi\left(q_{1}, \ldots, q_{r}\right)$ now r-variate polynomial (so $\nabla \xi \in \mathbb{R}^{r}, \nabla^{2} \xi \in \mathbb{R}^{r \times r}$)
Theorem (H.-Sellke 23)
If $\operatorname{diag}(\nabla \xi(\overrightarrow{1})) \succ \nabla^{2} \xi(\overrightarrow{1})$, both annealed and strong trivialization hold.

- $\mathbb{E}|C r t|=e^{o(N)}$
- W.h.p. exactly 2^{r} critical points, all well-conditioned, all approx crits near one
- Determine energy, r radial derivatives, r correlations with external field at each
- 2^{r} critical points minimal for any Morse function on product of r spheres

Main Result for Multi-Species Models

$\xi\left(q_{1}, \ldots, q_{r}\right)$ now r-variate polynomial (so $\nabla \xi \in \mathbb{R}^{r}, \nabla^{2} \xi \in \mathbb{R}^{r \times r}$)

Theorem (H.-Sellke 23)

If $\operatorname{diag}(\nabla \xi(\overrightarrow{1})) \succ \nabla^{2} \xi(\overrightarrow{1})$, both annealed and strong trivialization hold.

- $\mathbb{E}|C r t|=e^{o(N)}$
- W.h.p. exactly 2^{r} critical points, all well-conditioned, all approx crits near one
- Determine energy, r radial derivatives, r correlations with external field at each
- 2^{r} critical points minimal for any Morse function on product of r spheres
- Consequence: ground state energy when $\operatorname{diag}(\nabla \xi(\overrightarrow{1})) \succ \nabla^{2} \xi(\overrightarrow{1})$

Main Result for Multi-Species Models

$\xi\left(q_{1}, \ldots, q_{r}\right)$ now r-variate polynomial (so $\nabla \xi \in \mathbb{R}^{r}, \nabla^{2} \xi \in \mathbb{R}^{r \times r}$)
Theorem (H.-Sellke 23)
If $\operatorname{diag}(\nabla \xi(\overrightarrow{1})) \succ \nabla^{2} \xi(\overrightarrow{1})$, both annealed and strong trivialization hold.

- $\mathbb{E}|\mathrm{Crt}|=e^{o(N)}$
- W.h.p. exactly 2^{r} critical points, all well-conditioned, all approx crits near one
- Determine energy, r radial derivatives, r correlations with external field at each
- 2^{r} critical points minimal for any Morse function on product of r spheres
- Consequence: ground state energy when $\operatorname{diag}(\nabla \xi(\overrightarrow{1})) \succ \nabla^{2} \xi(\overrightarrow{1})$

Theorem (H.-Sellke 23)
If $\operatorname{diag}(\nabla \xi(\overrightarrow{1})) \nsucceq \nabla^{2} \xi(\overrightarrow{1})$, both annealed and strong trivialization fail.

- $\mathbb{E}|\mathrm{Crt}| \geq e^{c N}$
- $e^{c N}$ well-separated approximate critical points w.h.p.

Annealed Complexity for Multi-Species

$$
\begin{aligned}
\mathbb{E}|\mathrm{Crt}| & =(\text { simple term }) \times \mathbb{E}\left|\operatorname{det} \nabla_{\mathrm{sp}}^{2} H(\boldsymbol{\sigma})\right| \\
& =(\text { simple term }) \times \mathbb{E} \mid \operatorname{det}\left(\nabla_{\tan }^{2} H(\sigma)-\text { Curv }\right) \mid
\end{aligned}
$$

Annealed Complexity for Multi-Species

$$
\begin{aligned}
\mathbb{E}|\mathrm{Crt}| & =(\text { simple term }) \times \mathbb{E}\left|\operatorname{det} \nabla_{\mathrm{sp}}^{2} H(\boldsymbol{\sigma})\right| \\
& =(\text { simple term }) \times \mathbb{E} \mid \operatorname{det}\left(\nabla_{\tan }^{2} H(\boldsymbol{\sigma})-\text { Curv }\right) \mid
\end{aligned}
$$

In this setting (with r blocks of size $\lambda_{1} N, \ldots, \lambda_{r} N$)

$$
\nabla_{\tan }^{2} H(\sigma)=\left[\begin{array}{c|c}
c_{11} & c_{12} \\
\hline c_{12} & c_{22}
\end{array}\right] \odot \operatorname{GOE}_{N}, \quad \text { Curv }=\left[\begin{array}{l|l}
\partial_{\mathrm{rad}, 1} H(\sigma) I & \\
\hline & \partial_{\mathrm{rad}, 2} H(\sigma) I
\end{array}\right],
$$

and $\nabla_{\text {rad }} H(\sigma)=\left(\partial_{\text {rad }, 1} H(\sigma), \ldots, \partial_{\text {rad }, r} H(\sigma)\right)={ }_{d} \mathcal{N}(0, \Sigma / N)$

Annealed Complexity for Multi-Species

$$
\begin{aligned}
\mathbb{E}|\mathrm{Crt}| & =(\text { simple term }) \times \mathbb{E}\left|\operatorname{det} \nabla_{\mathrm{sp}}^{2} H(\boldsymbol{\sigma})\right| \\
& =(\text { simple term }) \times \mathbb{E} \mid \operatorname{det}\left(\nabla_{\tan }^{2} H(\boldsymbol{\sigma})-\text { Curv }\right) \mid
\end{aligned}
$$

In this setting (with r blocks of size $\lambda_{1} N, \ldots, \lambda_{r} N$)

$$
\nabla_{\tan }^{2} H(\sigma)=\left[\begin{array}{c|c}
c_{11} & c_{12} \\
\hline c_{12} & c_{22}
\end{array}\right] \odot \operatorname{GOE}_{N}, \quad \text { Curv }=\left[\begin{array}{l|l}
\partial_{\mathrm{rad}, 1} H(\sigma) I & \\
\hline & \partial_{\mathrm{rad}, 2} H(\sigma) I
\end{array}\right],
$$

and $\nabla_{\text {rad }} H(\sigma)=\left(\partial_{\text {rad }, 1} H(\sigma), \ldots, \partial_{\text {rad }, r} H(\sigma)\right)={ }_{d} \mathcal{N}(0, \Sigma / N)$
Integrate out $\nabla_{\text {rad }} H(\sigma)=\vec{x}$:

$$
\mathbb{E}|\operatorname{Crt}|=(\text { simple term }) \times \int_{\mathbb{R}^{r}} \mathbb{E}\left|\operatorname{det} M_{N}(\vec{x})\right| \exp \left(-\frac{N}{2}\left\langle\vec{x}, \Sigma^{-1} \vec{x}\right\rangle\right) \mathrm{d} \vec{x}
$$

Annealed Complexity for Multi-Species

$$
\begin{aligned}
\mathbb{E}|\mathrm{Crt}| & =(\text { simple term }) \times \mathbb{E}\left|\operatorname{det} \nabla_{\mathrm{sp}}^{2} H(\sigma)\right| \\
& =(\text { simple term }) \times \mathbb{E} \mid \operatorname{det}\left(\nabla_{\tan }^{2} H(\sigma)-\text { Curv }\right) \mid
\end{aligned}
$$

In this setting (with r blocks of size $\lambda_{1} N, \ldots, \lambda_{r} N$)

$$
\nabla_{\tan }^{2} H(\sigma)=\left[\begin{array}{c|c}
c_{11} & c_{12} \\
\hline c_{12} & c_{22}
\end{array}\right] \odot \operatorname{GOE}_{N}, \quad \text { Curv }=\left[\begin{array}{l|l}
\partial_{\mathrm{rad}, 1} H(\sigma) I & \\
\hline & \partial_{\mathrm{rad}, 2} H(\sigma) I
\end{array}\right],
$$

and $\nabla_{\text {rad }} H(\sigma)=\left(\partial_{\text {rad }, 1} H(\sigma), \ldots, \partial_{\text {rad }, r} H(\sigma)\right)={ }_{d} \mathcal{N}(0, \Sigma / N)$
Integrate out $\nabla_{\text {rad }} H(\sigma)=\vec{x}$:

$$
\mathbb{E}|\operatorname{Crt}|=(\text { simple term }) \times \int_{\mathbb{R}^{r}} \mathbb{E}\left|\operatorname{det} M_{N}(\vec{x})\right| \exp \left(-\frac{N}{2}\left\langle\vec{x}, \Sigma^{-1} \vec{x}\right\rangle\right) \mathrm{d} \vec{x}
$$

Laplace's principle \Rightarrow maximize exponential rate of integrand over $\vec{x} \in \mathbb{R}^{r}$

Random Determinants Beyond GOE

- How to calculate $\mathbb{E}\left|\operatorname{det} M_{N}(\vec{x})\right|$ when $M_{N}(\vec{x})$ is not $G O E$?

Random Determinants Beyond GOE

- How to calculate $\mathbb{E}\left|\operatorname{det} M_{N}(\vec{x})\right|$ when $M_{N}(\vec{x})$ is not GOE ?
- Free probability \Rightarrow limiting spectral distribution μ of $M_{N}(\vec{x})$

Random Determinants Beyond GOE

- How to calculate $\mathbb{E}\left|\operatorname{det} M_{N}(\vec{x})\right|$ when $M_{N}(\vec{x})$ is not GOE?
- Free probability \Rightarrow limiting spectral distribution μ of $M_{N}(\vec{x})$

- Heuristically,

$$
\frac{1}{N} \log \mathbb{E}\left|\operatorname{det}\left(M_{N}(\vec{x})\right)\right| \approx \frac{1}{N} \sum_{i=1}^{N} \log \left|\lambda_{i}\right| \approx \int \log |\lambda| \mathrm{d} \mu(\lambda)
$$

Random Determinants Beyond GOE

- How to calculate $\mathbb{E}\left|\operatorname{det} M_{N}(\vec{x})\right|$ when $M_{N}(\vec{x})$ is not GOE?
- Free probability \Rightarrow limiting spectral distribution μ of $M_{N}(\vec{x})$

- Heuristically,

$$
\frac{1}{N} \log \mathbb{E}\left|\operatorname{det}\left(M_{N}(\vec{x})\right)\right| \approx \frac{1}{N} \sum_{i=1}^{N} \log \left|\lambda_{i}\right| \approx \int \log |\lambda| \mathrm{d} \mu(\lambda)
$$

- (Ben Arous-Bourgade-McKenna 23, McKenna 21): this is correct to leading exponential order

Annealed Complexity for Multi-Species: Log Determinant

Unfortunately $\mathbb{E}\left|\operatorname{det} M_{N}(\vec{x})\right|$ is still very non-explicit.

Annealed Complexity for Multi-Species: Log Determinant

Unfortunately $\mathbb{E}\left|\operatorname{det} M_{N}(\vec{x})\right|$ is still very non-explicit.
Let $m_{1}(z), \ldots, m_{r}(z) \in \mathbb{H}$ solve vector Dyson equation

$$
x_{s}+z=-\frac{1}{m_{s}(z)}-\sum_{s^{\prime}=1}^{r} c_{s, s^{\prime}} m_{s^{\prime}}(z), \quad z \in \mathbb{H}
$$

and $m(z)=\sum_{s} \lambda_{s} m_{s}(z)$.

Annealed Complexity for Multi-Species: Log Determinant

Unfortunately $\mathbb{E}\left|\operatorname{det} M_{N}(\vec{x})\right|$ is still very non-explicit.
Let $m_{1}(z), \ldots, m_{r}(z) \in \mathbb{H}$ solve vector Dyson equation

$$
x_{s}+z=-\frac{1}{m_{s}(z)}-\sum_{s^{\prime}=1}^{r} c_{s, s^{\prime}} m_{s^{\prime}}(z), \quad z \in \mathbb{H}
$$

and $m(z)=\sum_{s} \lambda_{s} m_{s}(z)$.
Limiting spectral measure $\mu_{\vec{x}}$ of $M_{N}(\vec{x})$ is unique measure on \mathbb{R} satisfying

$$
m(z)=\int_{\mathbb{R}} \frac{\mu_{\vec{x}}(\mathrm{~d} \lambda)}{\lambda-z}, \quad z \in \mathbb{H} .
$$

Annealed Complexity for Multi-Species: Log Determinant

Unfortunately $\mathbb{E}\left|\operatorname{det} M_{N}(\vec{x})\right|$ is still very non-explicit.
Let $m_{1}(z), \ldots, m_{r}(z) \in \mathbb{H}$ solve vector Dyson equation

$$
x_{s}+z=-\frac{1}{m_{s}(z)}-\sum_{s^{\prime}=1}^{r} c_{s, s^{\prime}} m_{s^{\prime}}(z), \quad z \in \mathbb{H}
$$

and $m(z)=\sum_{s} \lambda_{s} m_{s}(z)$.
Limiting spectral measure $\mu_{\vec{x}}$ of $M_{N}(\vec{x})$ is unique measure on \mathbb{R} satisfying

$$
m(z)=\int_{\mathbb{R}} \frac{\mu_{\bar{x}}(\mathrm{~d} \lambda)}{\lambda-z}, \quad z \in \mathbb{H} .
$$

Then

$$
\frac{1}{N} \log \mathbb{E}\left|\operatorname{det} M_{N}(\vec{x})\right|=\int \log |\lambda| \mu_{\vec{x}}(\mathrm{~d} \lambda)+o(1)
$$

Annealed Trivialization: Solving the Variational Problem

- Wish to maximize $F(\vec{x})=C+\int \log |\lambda| \mu_{\vec{x}}(\mathrm{~d} \lambda)-\frac{1}{2}\left\langle\vec{x}, \Sigma^{-1} \vec{x}\right\rangle$

Annealed Trivialization: Solving the Variational Problem

- Wish to maximize $F(\vec{x})=C+\int \log |\lambda| \mu_{\vec{x}}(\mathrm{~d} \lambda)-\frac{1}{2}\left\langle\vec{x}, \Sigma^{-1} \vec{x}\right\rangle$
- We find closed form $\left(\xi^{\prime}=\nabla \xi(\overrightarrow{1}), \xi^{\prime \prime}=\nabla^{2} \xi(\overrightarrow{1})\right)$

$$
\int \log |\lambda| \mu_{\vec{x}}(\mathrm{~d} \lambda)=\frac{1}{2} \operatorname{Re}\left(\left\langle\vec{m}(0), \xi^{\prime \prime} \vec{m}(0)\right\rangle\right)-\sum_{s \in[r]} \lambda_{s} \log \left|m_{s}(0)\right| .
$$

Annealed Trivialization: Solving the Variational Problem

- Wish to maximize $F(\vec{x})=C+\int \log |\lambda| \mu_{\vec{x}}(\mathrm{~d} \lambda)-\frac{1}{2}\left\langle\vec{x}, \Sigma^{-1} \vec{x}\right\rangle$
- We find closed form $\left(\xi^{\prime}=\nabla \xi(\overrightarrow{1}), \xi^{\prime \prime}=\nabla^{2} \xi(\overrightarrow{1})\right)$

$$
\int \log |\lambda| \mu_{\vec{x}}(\mathrm{~d} \lambda)=\frac{1}{2} \operatorname{Re}\left(\left\langle\vec{m}(0), \xi^{\prime \prime} \vec{m}(0)\right\rangle\right)-\sum_{s \in[r]} \lambda_{s} \log \left|m_{s}(0)\right| .
$$

- If $\nabla F(\vec{x})=0$, then $\operatorname{Re}\left(m_{s}(0)\right)=0$ or $\left|m_{s}(0)\right|=\sqrt{\lambda_{s} / \xi_{s}^{\prime}}$

Annealed Trivialization: Solving the Variational Problem

- Wish to maximize $F(\vec{x})=C+\int \log |\lambda| \mu_{\vec{x}}(\mathrm{~d} \lambda)-\frac{1}{2}\left\langle\vec{x}, \Sigma^{-1} \vec{x}\right\rangle$
- We find closed form $\left(\xi^{\prime}=\nabla \xi(\overrightarrow{1}), \xi^{\prime \prime}=\nabla^{2} \xi(\overrightarrow{1})\right)$

$$
\int \log |\lambda| \mu_{\vec{x}}(\mathrm{~d} \lambda)=\frac{1}{2} \operatorname{Re}\left(\left\langle\vec{m}(0), \xi^{\prime \prime} \vec{m}(0)\right\rangle\right)-\sum_{s \in[r]} \lambda_{s} \log \left|m_{s}(0)\right| .
$$

- If $\nabla F(\vec{x})=0$, then $\operatorname{Re}\left(m_{s}(0)\right)=0$ or $\left|m_{s}(0)\right|=\sqrt{\lambda_{s} / \xi_{s}^{\prime}}$

- About 3^{r} solutions, one for each choice of $\Re\left(m_{s}(0)\right)=0,<0,>0$

Annealed Trivialization: Solving the Variational Problem

- Wish to maximize $F(\vec{x})=C+\int \log |\lambda| \mu_{\vec{x}}(\mathrm{~d} \lambda)-\frac{1}{2}\left\langle\vec{x}, \Sigma^{-1} \vec{x}\right\rangle$
- We find closed form $\left(\xi^{\prime}=\nabla \xi(\overrightarrow{1}), \xi^{\prime \prime}=\nabla^{2} \xi(\overrightarrow{1})\right)$

$$
\int \log |\lambda| \mu_{\vec{x}}(\mathrm{~d} \lambda)=\frac{1}{2} \operatorname{Re}\left(\left\langle\vec{m}(0), \xi^{\prime \prime} \vec{m}(0)\right\rangle\right)-\sum_{s \in[r]} \lambda_{s} \log \left|m_{s}(0)\right| .
$$

- If $\nabla F(\vec{x})=0$, then $\operatorname{Re}\left(m_{s}(0)\right)=0$ or $\left|m_{s}(0)\right|=\sqrt{\lambda_{s} / \xi_{s}^{\prime}}$

- About 3^{r} solutions, one for each choice of $\Re\left(m_{s}(0)\right)=0,<0,>0$
- Of these 2^{r} satisfy $F(\vec{x})=0$, where $m_{s}(0)= \pm \sqrt{\lambda_{s} / \xi_{s}^{\prime}}$

Annealed Trivialization: Solving the Variational Problem

Annealed Trivialization: Solving the Variational Problem

- Need to show the remaining stationary points of F are not maxima

Annealed Trivialization: Solving the Variational Problem

- Need to show the remaining stationary points of F are not maxima
- At each, construct \vec{w} where $\left\langle\vec{w}, \nabla^{2} F(\vec{x}) \vec{w}\right\rangle>0$

Annealed Trivialization: Solving the Variational Problem

- Need to show the remaining stationary points of F are not maxima
- At each, construct \vec{w} where $\left\langle\vec{w}, \nabla^{2} F(\vec{x}) \vec{w}\right\rangle>0$
- Thus $\max F=0 \Rightarrow \mathbb{E}|\mathrm{Crt}|=e^{o(N)}$

From Annealed to Strong Trivialization

- Annealed trivialization $\Rightarrow \mathbb{E}|\mathrm{Crt}|=e^{o(N)}$, and for each $\sigma \in \mathrm{Crt}$:

From Annealed to Strong Trivialization

- Annealed trivialization $\Rightarrow \mathbb{E}|\mathrm{Crt}|=e^{o(N)}$, and for each $\sigma \in \mathrm{Crt}$:
- $\left(\nabla_{\text {rad }} H(\boldsymbol{\sigma}), \frac{1}{N} H(\boldsymbol{\sigma}),\left(\frac{1}{N}\left\langle\boldsymbol{G}_{s}^{(1)}, \boldsymbol{\sigma}\right\rangle\right)_{s \in \mathscr{S}}\right)$ one of 2^{r} possible values, up to o(1)

From Annealed to Strong Trivialization

- Annealed trivialization $\Rightarrow \mathbb{E}|\mathrm{Crt}|=e^{o(N)}$, and for each $\sigma \in \mathrm{Crt}$:
- $\left(\nabla_{\mathrm{rad}} H(\boldsymbol{\sigma}), \frac{1}{N} H(\boldsymbol{\sigma}),\left(\frac{1}{N}\left\langle\boldsymbol{G}_{s}^{(1)}, \boldsymbol{\sigma}\right\rangle\right)_{s \in \mathscr{S}}\right)$ one of 2^{r} possible values, up to o(1)
- $\nabla_{\text {sp }}^{2} H(\sigma)$ well-conditioned

From Annealed to Strong Trivialization

- Annealed trivialization $\Rightarrow \mathbb{E}|\mathrm{Crt}|=e^{o(N)}$, and for each $\sigma \in \mathrm{Crt}$:
- $\left(\nabla_{\mathrm{rad}} H(\boldsymbol{\sigma}), \frac{1}{N} H(\boldsymbol{\sigma}),\left(\frac{1}{N}\left\langle\boldsymbol{G}_{s}^{(1)}, \boldsymbol{\sigma}\right\rangle\right)_{s \in \mathscr{S}}\right)$ one of 2^{r} possible values, up to o(1)
- $\nabla_{\text {sp }}^{2} H(\sigma)$ well-conditioned
- Approximate to exact lemma \Rightarrow all approx crits satisfy this too

From Annealed to Strong Trivialization

- Annealed trivialization $\Rightarrow \mathbb{E}|\mathrm{Crt}|=e^{o(N)}$, and for each $\sigma \in \mathrm{Crt}$:
- $\left(\nabla_{\mathrm{rad}} H(\boldsymbol{\sigma}), \frac{1}{N} H(\boldsymbol{\sigma}),\left(\frac{1}{N}\left\langle\boldsymbol{G}_{s}^{(1)}, \boldsymbol{\sigma}\right\rangle\right)_{s \in \mathscr{S}}\right)$ one of 2^{r} possible values, up to $o(1)$
- $\nabla_{\mathrm{sp}}^{2} H(\sigma)$ well-conditioned
- Approximate to exact lemma \Rightarrow all approx crits satisfy this too
- Band recursion \Rightarrow localize all approx crits to 2^{r} small regions

From Annealed to Strong Trivialization

- Annealed trivialization $\Rightarrow \mathbb{E}|\mathrm{Crt}|=e^{o(N)}$, and for each $\sigma \in \mathrm{Crt}$:
- $\left(\nabla_{\mathrm{rad}} H(\boldsymbol{\sigma}), \frac{1}{N} H(\boldsymbol{\sigma}),\left(\frac{1}{N}\left\langle\boldsymbol{G}_{s}^{(1)}, \boldsymbol{\sigma}\right\rangle\right)_{s \in \mathscr{S}}\right)$ one of 2^{r} possible values, up to $o(1)$
- $\nabla_{\mathrm{sp}}^{2} H(\sigma)$ well-conditioned
- Approximate to exact lemma \Rightarrow all approx crits satisfy this too
- Band recursion \Rightarrow localize all approx crits to 2^{r} small regions
- $\nabla_{\mathrm{sp}}^{2} H(\sigma)$ well-conditioned \Rightarrow each region has ≤ 1 exact crit

From Annealed to Strong Trivialization

- Annealed trivialization $\Rightarrow \mathbb{E}|\mathrm{Crt}|=e^{o(N)}$, and for each $\sigma \in \mathrm{Crt}$:
- $\left(\nabla_{\mathrm{rad}} H(\boldsymbol{\sigma}), \frac{1}{N} H(\boldsymbol{\sigma}),\left(\frac{1}{N}\left\langle\boldsymbol{G}_{s}^{(1)}, \boldsymbol{\sigma}\right\rangle\right)_{s \in \mathscr{S}}\right)$ one of 2^{r} possible values, up to $o(1)$
- $\nabla_{\mathrm{sp}}^{2} H(\sigma)$ well-conditioned
- Approximate to exact lemma \Rightarrow all approx crits satisfy this too
- Band recursion \Rightarrow localize all approx crits to 2^{r} small regions
- $\nabla_{\mathrm{sp}}^{2} H(\sigma)$ well-conditioned \Rightarrow each region has ≤ 1 exact crit
- But $\geq 2^{r}$ exact crits by Morse theory \Rightarrow each region has 1 exact crit, all approx crits near one

From Annealed to Strong Trivialization

- Annealed trivialization $\Rightarrow \mathbb{E}|\mathrm{Crt}|=e^{o(N)}$, and for each $\sigma \in \mathrm{Crt}$:
- $\left(\nabla_{\text {rad }} H(\boldsymbol{\sigma}), \frac{1}{N} H(\boldsymbol{\sigma}),\left(\frac{1}{N}\left\langle\boldsymbol{G}_{s}^{(1)}, \boldsymbol{\sigma}\right\rangle\right)_{s \in \mathscr{S}}\right)$ one of 2^{r} possible values, up to o(1)
- $\nabla_{\text {sp }}^{2} H(\sigma)$ well-conditioned
- Approximate to exact lemma \Rightarrow all approx crits satisfy this too
- Band recursion \Rightarrow localize all approx crits to 2^{r} small regions
- $\nabla_{\mathrm{sp}}^{2} H(\sigma)$ well-conditioned \Rightarrow each region has ≤ 1 exact crit
- But $\geq 2^{r}$ exact crits by Morse theory \Rightarrow each region has 1 exact crit, all approx crits near one
- Converse: algorithmically construct $e^{c N}$ approx crits with AMP

Summary

- We determine phase boundary for annealed and strong topological trivialization in multi-species spherical spin glasses

Summary

- We determine phase boundary for annealed and strong topological trivialization in multi-species spherical spin glasses
- Approximate critical points controlled by approximate-to-exact lemma

Summary

- We determine phase boundary for annealed and strong topological trivialization in multi-species spherical spin glasses
- Approximate critical points controlled by approximate-to-exact lemma
- Band recursion \Rightarrow strong trivialization, given only $e^{o(N)}$-resolution annealed inputs

Summary

- We determine phase boundary for annealed and strong topological trivialization in multi-species spherical spin glasses
- Approximate critical points controlled by approximate-to-exact lemma
- Band recursion \Rightarrow strong trivialization, given only $e^{o(N)}$-resolution annealed inputs

Thank you!

