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Plan for this talk

@ Introduction and background

o Landscape complexity of random functions
e Topological trivialization

@ Strong topological trivialization for spin glasses

© Multi-species spin glasses
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Random Landscapes

Landscapes of random, high-dimensional functions

e Connections to optimization, questions about algorithmic tractability
@ Example: loss function over random data in learning applications

How complicated is the landscape of a random function?
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Mean Field Spin Glasses

Polynomials Hy : RY — R with random coefficients, e.g. random cubic

N
1
Hn(o) = > Bais  0a0R0k 8nizis  ~ N(0,1)

i1,i2,i3=1

=

Brice Huang (MIT) Topological Trivialization 4/28



|
Mean Field Spin Glasses

Polynomials Hy : RY — R with random coefficients, e.g. random cubic

N
1 1
HN(U) = Z 8ix,i2,i3 " OO Oiz = N<G(3)7 J®3> 8ix,iz,i3 i.?d. N(07 1)

i1,i2,i3=1

=

Brice Huang (MIT) Topological Trivialization 4/28



|
Mean Field Spin Glasses

Polynomials Hy : RY — R with random coefficients, e.g. random cubic
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More generally, mix different degrees. For v1,72,... >0,
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Mean Field Spin Glasses

Polynomials Hy : RY — R with random coefficients, e.g. random cubic

N
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Polynomials Hy : RY — R with random coefficients, e.g. random cubic
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Rotationally invariant Gaussian process with covariance

P

E[Hn(o)Hu(p)] = NE((o. p)/N)  E(@) =D 72d”

p=1

¢ mixture function. Cubic above: £(q) = ¢°.
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Mean Field Spin Glasses

Polynomials Hy : RY — R with random coefficients, e.g. random cubic

N

1 1
Hn(o) = N Z 8ir,iz,i3 " Oin 02 Oiz = N<G(3)7a'®3> Bz T N(0,1)
i,i2,i3=1 o
More generally, mix different degrees. For v1,72,... >0,

P
o7 ..
Hu(o) =Y N(Tpl)/zw“’% a®) 6P e (R")®Piid. N(0,1)s
p=1

Inputs on sphere Sy = {o € R" : || o], = VN}

Rotationally invariant Gaussian process with covariance

E[Hn(o)Hu(p)] = NE((o. p)/N)  E(@) =D 72d”

¢ mixture function. Cubic above: £(q) = ¢°. p =1 term is external field.
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Kac-Rice Formula

Computes expected number of zeros of random function f: Q x [0, L] - R

E[#zeros(f)] = /[ ]IE [ ()| £(x) = 0] @r(x)(0) dx.

s

Here () is density of r.v. f(x).
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Computes expected number of zeros of random function f: Q x [0, L] - R

E[#zeros(f)] = /[ ]IE [ ()| £(x) = 0] @r(x)(0) dx.

s

Here () is density of r.v. f(x). Heuristic derivation:

E[#zeros(f)] = IE/ o(y) dy = IE/ [F'(x)|6(f(x)) dx

f([o,L]) [0,4]
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Kac-Rice Formula

Computes expected number of zeros of random function f: Q x [0, L] - R

E[#zeros(f)] = /[ y E [|f'(x)||f(x) = 0] ¢r()(0) dx.
o,
Here () is density of r.v. f(x). Heuristic derivation:

E[#zeros(f)] = IE/

f([o,L])

5(y) dy =E / I ()[6(F(x)) dx
[0,L]
- / E[|F'(x)[|F(x) = 0] E(F(x)) dx.
[0,L] N———

=¢r(x)(0)

For multi-dimensional f : Q x [0, L]V — RN:

E[#zeros(f)] = /[0 " E [|det V£(x)||f(x) = 0] ¢£(x)(0) dx.
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A simple example
How many zeros does this function have on [—L, L], L < 1, in expectation?

f(x)=go+gix +gx" +-, g "= N(0,1)
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A simple example
How many zeros does this function have on [—L, L], L < 1, in expectation?

fx)=go+ex+@xX’+-+, &~ N(01)
At any |x| < 1, r.v.s f(x), f'(x) jointly Gaussian with covariance

1+ x?
(1 —x2)3

_ 1
T 1-—x2

X

IE‘J‘(X)2 m

Ef'(x)? = Ef(x)f'(x) =
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@ Quantify complexity of landscape by # critical points
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Kac-Rice to High-Dimensional Landscape Complexity

@ Quantify complexity of landscape by # critical points

(Fyodorov 04, Auffinger-Ben Arous-Cerny 13): Kac-Rice on VH gives E|Crt|

@ In high dimensions, reduces to random determinant:
E|Crt] = (simple term) - E| det(random matrix)|.
@ For spin glasses, random matrix is GOEy + cly, E| det | known exactly

Other applications:

(Sagun-Guney-Ben Arous-LeCun 14) neural networks

(Ben Arous-Mei-Montanari-Nica 19) spiked tensor models

(Ben Arous-Fyodorov-Khoruzhenko 21, Subag 23) non-gradient vector fields
(

]
o
°
o (Ben Arous-Bourgarde-McKenna 23) elastic manifold
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Critical Point Complexity in Pure Spin Glasses

o (Auffinger-Ben Arous-Cerny 13): E# critical points at given (energy, index)

0.02

0.01 -

2 log E|Crt(E, k)|

Ej index k

-0.01 | - e

-0.02*- -
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Critical Point Complexity in Pure Spin Glasses

o (Auffinger-Ben Arous-Cerny 13): E# critical points at given (energy, index)

0.02

0.01 -

2 log E|Crt(E, k)|

. —L -7 .-165 . -164 | —E.-163
Ey index k P - : N

-0.01 | - e

-0.02*- -
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Brice Huang (MIT) Topological Trivialization 8/28



|
Critical Point Complexity in Pure Spin Glasses

o (Auffinger-Ben Arous-Cerny 13): E# critical points at given (energy, index)

0.02

0.01 -

2 log E|Crt(E, k)|

. —L -7 .-165 . -164 | —E.-163
Ey index k P - : N

-0.01 | - e

-0.02*- -

@ (Subag 17): this matches typical counts by 2nd moment method

o Consequence: ground state energy matching Parisi formula
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Topological Trivialization

o If external field large, only 2 critical points are global max and min ...
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Topological Trivialization

o If external field large, only 2 critical points are global max and min ...

@ At how large external field does this occur? Is there a phase transition?

Theorem (Fyodorov 15, Belius-Cerny-Nakajima-Schmidt 22)
Q If¢'(1) > &"(1), E|Crt| =2+ o(1) (so w.h.p. 2 critical points)
Q If¢(1) < &"(1), E|Crt| > eV

@ Phase boundary for annealed topological trivialization
o ¢'(1) > ¢"(1) equivalent to 77 > > o5 p(p — 2)7;

e E|Crt| =2+ o(1) achieved using exact formula for GOE

o If Kac-Rice random matrix not GOE, current tools only achieve E|Crt| = e°V)
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Guiding Questions

@ Do phase boundaries of annealed and quenched trivialization coincide?

o Or can |Crt| = 2 w.h.p. in the regime where E|Crt| > e?
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Guiding Questions

@ Do phase boundaries of annealed and quenched trivialization coincide?

o Or can |Crt| =2 w.h.p. in the regime where E|Crt| > eV?

@ Does trivialization have algorithmic implications, e.g. fast convergence of
Langevin dynamics?
e Or can regions of small, nonzero gradient still obstruct algorithms?

o Can we boost E|Crt| = e°(M) to |Crt| = 2 w.h.p. without exact formulas?
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Strong Topological Trivialization

H is strongly topologically trivial (STT) if w.h.p.:
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Strong Topological Trivialization

H is strongly topologically trivial (STT) if w.h.p.:
e |Crt| = O(1)

o Each e-approximate critical point (||VepH(a)||2 < ev/N) within O(g)v/N of a
true critical point

o All critical points well-conditioned, i.e. spec(VZ H(o)) N[—c,c] =0
@ At each critical point except the global maximum, Acn(VZ,H(o)) > 0

Theorem (H.-Sellke 23)

If His STT, then Langevin dynamics at low enough temperature mixes in
O(log N) time in TV.
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Main Result

Theorem (H.-Sellke 23)
Q If¢(1) > ¢"(1), STT holds (with 2 critical points).
Q Ife'(1) < £"(1), STT fails.

o There are eN well-separated approximate critical points w.h.p.

New method to boost E|Crt| = ™) to STT (and in particular |Crt| = 2 w.h.p.)
without exact RMT

More general threshold for multi-species models (later)

@ In these models, phase boundary for annealed trivialization also new
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Annealed Critical Point Complexity

Kac-Rice on V4, H:

]E\crt|:/ E [|det V2,H(o)||VspH(a) = 0] ©v,, H(e)(0) do.
Sn
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Annealed Critical Point Complexity

Kac-Rice on V4, H:
E\crt|:/ E [|det V2,H(o)||VspH(a) = 0] ©v,, H(e)(0) do.
Sn

Here Vs, VEP are Riemannian gradient, Hessian

VspH(o) = VianH(o), pr"'/( ) = VianH(0) = OaaH(o ) In—1 -
—_———
curvature term

8radH(U)

VtanH(O')
VianH(o)

ViH(o)
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Annealed Critical Point Complexity

Kac-Rice on V4, H:
E|Crt| = / E [|det V2,H(o)||VspH(o) = 0] ©v,, H(e)(0) do.
Sn

Here Vs, VEP are Riemannian gradient, Hessian

VpH(0) = VianH(o), Vi H(o) = V& H(0) — OraaH(o)In-1.
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Annealed Critical Point Complexity

Kac-Rice on V4, H:
E|Crt| = E [|det V2,H(a)||VspH(o) = 0] - o5, (o) (0) - Vol(Sn).
Here Vg, V2, are Riemannian gradient, Hessian

VepH(0) = VianH(o), Vi,H(o) = Vi, H(o) = OraaH(o)In-1 .

tan
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E|Crt| = E [|det V2,H(a)||VspH(o) = 0] - o5, (o) (0) - Vol(Sn).
Here Vg, V2, are Riemannian gradient, Hessian

VepH(0) = VianH(o), Vi,H(o) = Vi, H(o) = OraaH(o)In-1 .

tan

Fact: O,aqH (o), V2, ,H(o), VianH(o) independent.
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Annealed Critical Point Complexity
Kac-Rice on V4, H:
E|Crt| = E |det(V, H(0) — OraaH (o) In-1)| - @5 ri(e) (0) - VoI(Sp).
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Annealed Critical Point Complexity
Kac-Rice on V4, H:
E|Crt| = E |det(V, H(0) — OraaH (o) In-1)| - @5 ri(e) (0) - VoI(Sp).
Here Vg, V2, are Riemannian gradient, Hessian
VepH(0) = VianH(o), Vi, H(o) = Vi, H(o) = OraaH(o) In-1 .

Fact: OraaH (o), V2,,H(o), VianH(o) independent. They have laws

OradH(o) =4 aN(0,1/N) VinH(0) =4 2GOEN_1
vtanH(C") =d C3N(O, INfl)
Topological Trivialization
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E|Crt| = E |det(V, H(0) — OraaH (o) In-1)| - @5 ri(e) (0) - VoI(Sp).
Here Vg, V2, are Riemannian gradient, Hessian

VepH(0) = VianH(o), Vi, H(o) = Vi, H(o) = OraaH(o) In-1 .

tan

Fact: OraaH (o), V2,,H(o), VianH(o) independent. They have laws

aradH(U) —d CIN(O, ]-/N) v%anH(O') =d CQGOEN_l
vtanH(C") =d C3N(O, INfl)

Integrate out O,.qaH(o) = x:
. NX2
E|Crt| = (simple term) x [ E|det(c;GOEyn_1 — x/)|exp oo dx
R 1
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Annealed Critical Point Complexity

Nx2
E|Crt| = (simple term) x /E |det(c2GOEp_1 — x| exp (_2>C<> dx
® 1
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Annealed Critical Point Complexity

Nx2
E|Crt| = (simple term) x /E |det(c2GOEp_1 — x| exp (_2>C<> dx
® 1

Laplace’s principle = maximize exponential rate of integrand

£1)>¢"(1) £(1)<¢")
0. H -
01
-0.1 0.0
-0.2 01!
1 log i -0.2{
og integrand(x) -o0.3
N -03
-04
-0.4
-0.5] | -05
B T T -3 2 A 0 i 2 3
x x
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Laplace’s principle = maximize exponential rate of integrand
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Annealed Critical Point Complexity

Nx2
E|Crt| = (simple term) x /E |det(c2GOEp_1 — x| exp (_2>C<> dx
® 1

Laplace’s principle = maximize exponential rate of integrand

£1)>¢"(1) £(1)<¢")
0. H -
01
-0.1 0.0
-0.2 01!
1 log i -0.2{
og integrand(x) -o0.3
N -03
-04
-0.4
-0.5] | -05
B T T -3 2 A 0 i 2 3
x x

o ¢'(1) > ¢"(1) = E|Crt| = e°V), (weak form of) annealed trivialization
o ¢'(1) < ¢"(1) = E|Crt| > eV, failure of annealed trivialization
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Statistics of Critical Points

Suppose we are in trivial regime ¢'(1) > £”(1), so E|Crt| = e°V)

Brice Huang (MIT)
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0.0

-0.1

For all o € Crt,
aradH(o') = txopT + 0(1)
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Statistics of Critical Points

Suppose we are in trivial regime ¢'(1) > £”(1), so E|Crt| = e°V)

0.0

-0.1

For all o € Crt,
aradH(o') = txopT + 0(1)

In fact,

(aradH(o-)a nH(o), <G(1)70>> = +(xopT, EopT, RopT) + 0(1)

=l
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N
Statistics of Critical Points

Suppose we are in trivial regime ¢'(1) > £”(1), so E|Crt| = e°V)

0.0 —— T

-0.1

For all o € Crt,
aradH(o') = txopT + 0(1)
In fact,

(aradH(o-)a nH(o), %<G(1)7 0'>> = +(xopT, EopT, RopT) + 0(1)

xopT outside spectral bulk [~2¢,,2¢,] of V2, H(o) so

tan
Vi, H(o) = Vi, H(o) — OraH(a)In well-conditioned

Brice Huang (MIT) Topological Trivialization 15 /28
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Attempt: from e°™) Critical Points to 2

For all o € Crt, %(G(l),zﬂ = £Ropt + o(1).
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Attempt: from e°™) Critical Points to 2

For all o € Crt, £(GM o) = +Ropt + 0(1). Suppose (G o) = +Ropr

e |
=
slice along band

—
G = VH(0)
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Attempt: from e°™) Critical Points to 2

1

For all o € Crt, + = +Ropt + 0o(1). Suppose % G(l) o) = tRopT

1) = VH = Pbande )

e Conditional on G, restriction to band is (N — 1)-dimensional spin glass
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Attempt: from e°™) Critical Points to 2

Forall o € Crt, £ (GW, o) = +Ropt + o(1). Suppose % G, o) = +Ropt

777777777777 |

! I

! I

slice along band i ‘ :

I

! I

I |

1) —
VH G = PbandVH

e Conditional on G, restriction to band is (N — 1)-dimensional spin glass

o Its critical points have known correlation with field &(

Brice Huang (MIT) Topological Trivialization 16 /28



|
Attempt: from e°™) Critical Points to 2

For all o € Crt, + (1) = +Ropt + 0o(1). Suppose % G(l) = +RopT
777777777777 |
! I
! I
slice along band i :
| l
Lo l
1) = VH = PbandVH

e Conditional on G, restriction to band is (N — 1)-dimensional spin glass

o Its critical points have known correlation with field &(

Brice Huang (MIT) Topological Trivialization 16 /28



|
Attempt: from e°™) Critical Points to 2

For all o € Crt, + (1) = +Ropt + 0o(1). Suppose % G(l) = +RopT
777777777777 |
! I
! I
slice along band i :
| l
Lo l
1) = VH = PbandVH

e Conditional on G, restriction to band is (N — 1)-dimensional spin glass

o Its critical points have known correlation with field &(

o Bands shrink. All critical points localize to 2 regions of diameter o(v/N)
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Attempt: from e°™) Critical Points to 2

For all o € Crt, + (1) = +Ropt + 0o(1). Suppose % G(l) = +RopT
777777777777 |
! I
! I
slice along band i :
| l
Lo l
1) = VH = PbandVH

e Conditional on G, restriction to band is (N — 1)-dimensional spin glass

o lts critical points have known correlation with field &(
@ Bands shrink. All critical points localize to 2 regions of diameter o(v/' /)
o V2, H(o) well-conditioned = each region has < 1 critical point
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Attempt: from e°™) Critical Points to 2

For all o € Crt, + (1) = +Ropt + 0o(1). Suppose % G(l) = +RopT

777777777777 |
! I
! I

slice along band : :
I
| l
Lo l

1) = VH = PbandVH

e Conditional on G, restriction to band is (N — 1)-dimensional spin glass

o lts critical points have known correlation with field &(
@ Bands shrink. All critical points localize to 2 regions of diameter o(v/' /)
o V2, H(o) well-conditioned = each region has < 1 critical point

e This does not work! Critical points brittle, cannot tolerate o(1) error @

Brice Huang (MIT) Topological Trivialization 16 / 28



Approximate to Exact Critical Points

Lemma (H.-Sellke 23)
With probability 1 — e=<N, all e-approximate critical points o of H satisfy:
| (9aH(@), 4 H(@), (G, 0)) + (xopt, Eopr, Ropr) | < 0(1) + 1(e)

and V2,H(o) is well-conditioned.

(*)

Brice Huang (MIT)
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With probability 1 — e=<N, all e-approximate critical points o of H satisfy:
| (9aH(@), 4 H(@), (G, 0)) + (xopt, Eopr, Ropr) | < 0(1) + 1(e)

and V2,H(o) is well-conditioned.

@ Proof idea: consider rerandomized Hamiltionian

HY = /1 —6H +VoH'.
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Lemma (H.-Sellke 23)
With probability 1 — e=<N, all e-approximate critical points o of H satisfy:
| (9aH(@), 4 H(@), (G, 0)) + (xopt, Eopr, Ropr) | < 0(1) + 1(e)

and V2,H(o) is well-conditioned.

(*)

@ Proof idea: consider rerandomized Hamiltionian
H® = V1 —0H + VéH'.

o Conditional on H having an e-approx crit violating (), H® has expected
e—°-(N exact crits violating (*)
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| (9aH(@), 4 H(@), (G, 0)) + (xopt, Eopr, Ropr) | < 0(1) + 1(e)

and V2,H(o) is well-conditioned.

(*)

@ Proof idea: consider rerandomized Hamiltionian
H® = V1 —0H + VéH'.

o Conditional on H having an e-approx crit violating (), H® has expected
e—°-(N exact crits violating (*)
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Approximate to Exact Critical Points

Lemma (H.-Sellke 23)
With probability 1 — e=<N, all e-approximate critical points o of H satisfy:
| (9aH(@), 4 H(@), (G, 0)) + (xopt, Eopr, Ropr) | < 0(1) + 1(e)

and V2,H(o) is well-conditioned.

(*)

@ Proof idea: consider rerandomized Hamiltionian
H® = V1 —0H + VéH'.

o Conditional on H having an e-approx crit violating (), H® has expected
e—°-(N exact crits violating (*)

e Proved by Kac-Rice conditionally on H

o But there are < e’V such points in (unconditional) expectation!

Brice Huang (MIT)

Topological Trivialization 17 /28




Band Recursion and Strong Trivialization

For any e-approximate critical point o, G(1 ,0) = *Ropt + 0.(1)

slice along band

1
) = Pbande(Xl)

@ Recursion localizes all approx crits to 2 regions of diameter o(v/ N)
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For any e-approximate critical point o, & (1), o) = +Ropt + 0.(1)

slice along band

1
) = Pbande(Xl)

@ Recursion localizes all approx crits to 2 regions of diameter o(v/ N)

e V2,H(o) well-conditioned = each region has < 1 exact crit
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Band Recursion and Strong Trivialization

For any e-approximate critical point o, & (1), o) = +Ropt + 0.(1)

slice along band

1
) = Pbande(Xl)
@ Recursion localizes all approx crits to 2 regions of diameter o(v/ N)

e V2,H(o) well-conditioned = each region has < 1 exact crit

@ > 2 exact crits globally = each region has exactly 1
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Band Recursion and Strong Trivialization

For any e-approximate critical point o, & (1), o) = +Ropt + 0.(1)

slice along band

1
) = Pbande(Xl)

Recursion localizes all approx crits to 2 regions of diameter o(v/N)

V2,H(o) well-conditioned = each region has < 1 exact crit

> 2 exact crits globally = each region has exactly 1

@ So 2 exact crits, all approx crits near an exact crit. Strong trivialization!

Brice Huang (MIT) Topological Trivialization 18 /28
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eV Approximate Critical Points when £'(1) < £"(1)

Branching OGP (H.-Sellke 21, 23): optimization algorithms can reach states
forming ultrametric tree with random root correlated with W
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-
eV Approximate Critical Points when £'(1) < £"(1)

Branching OGP (H.-Sellke 21, 23): optimization algorithms can reach states
forming ultrametric tree with random root correlated with W

@ O O

= small 1) large

@ Algorithmic tree is non-degenerate precisely when &'(1) < £”(1)

e AMP constructs eV points in algorithmic tree, all approximate critical points

Brice Huang (MIT) Topological Trivialization 19 /28



|
Multi-Species Models

@ Up to now: polynomials in variables o1, ..., oy that all look alike
o Multi-species models: r = O(1) different “variable types"
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Multi-species models: r = O(1) different “variable types"

Formally, each coordinate part of a species s € . = {1,...,r}

IN|l=Z, U---UZ, |Zs| = AsN

Interaction weights 72,73, ... NOW (Vs; 55 )s1,52€.55 (Vs1.52,55 )s1,52,55€.5 1 - - -
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Multi-Species Models

@ Up to now: polynomials in variables o1, ..., oy that all look alike

o Multi-species models: r = O(1) different “variable types"

@ Formally, each coordinate part of a species s € ¥ = {1,...,r}
IN|l=Z, U---UZ, |Zs| = AsN

@ Interaction weights 72,73, ... NOW (Vs; 5, )s1,50€.5 > (Vs1,50.55 )51,52,53€.5» - - -

@ Input space now product of spheres

Py = {0‘ eRV: ||0'\LH§ =N Vse ;7}
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Multi-Species Models

@ Up to now: polynomials in variables o1, ..., oy that all look alike

o Multi-species models: r = O(1) different “variable types"

@ Formally, each coordinate part of a species s € ¥ = {1,...,r}
IN|l=Z, U---UZ, |Zs| = AsN

@ Interaction weights 72,73, ... NOW (Vs; 5, )s1,50€.5 > (Vs1,50.55 )51,52,53€.5» - - -

@ Input space now product of spheres

Py = {0‘ eRV: ||0'\LH§ =N Vse ;7}

o Example: bipartite SK H(x,y) = (x, Gy) where x,y € Sy/»

Brice Huang (MIT) Topological Trivialization 20/28
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Main Result for Multi-Species Models

&(qu,- -, q,) now r-variate polynomial (so V¢ € R", V2¢ € R™")
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@ W.h.p. exactly 2" critical points, all well-conditioned, all approx crits near one
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Main Result for Multi-Species Models

&(qu,- -, q,) now r-variate polynomial (so V¢ € R", V2¢ € R™")
Theorem (H.-Sellke 23)

If diag(VE(T)) = V2£(I), both annealed and strong trivialization hold.
e E|Crt| = oV
@ W.h.p. exactly 2" critical points, all well-conditioned, all approx crits near one

@ Determine energy, r radial derivatives, r correlations with external field at each

2" critical points minimal for any Morse function on product of r spheres

Consequence: ground state energy when diag(V£(1)) = V2¢(1)

Theorem (H.-Sellke 23)

If diag(VE(T)) ¥ V2¢(1), both annealed and strong trivialization fail.
@ E|Crt| > e

o &N well-separated approximate critical points w.h.p.

Brice Huang (MIT) Topological Trivialization 21/28
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Annealed Complexity for Multi-Species

E|Crt] = (simple term) x E| det prH(a)|
= (simple term) x E|det (V,,H(o) — Curv) |
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Annealed Complexity for Multi-Species
E|Crt] = (simple term) x E| det prH(a)|
= (simple term) x E|det (V,,H(o) — Curv) |

In this setting (with r blocks of size A{ N, ..., A\N)

Cc11 | C12 Orad,lH(G)I
V2. H(o) = ® GOEy, Curv =

tan

C12 | C22 arad,Z H(o)l

and VradH(U) = (Orad,lH(U), ceey 8rad,rH(0')) =d N(O, Z/N)

Brice Huang (MIT) Topological Trivialization 22/28



|
Annealed Complexity for Multi-Species
E|Crt] = (simple term) x E| det prH(a)|
= (simple term) x E|det (V,,H(o) — Curv) |

In this setting (with r blocks of size A{ N, ..., A\N)

€11 | C12 Orad,lH(‘T)l

VfanH(U) = ® GOEy, Curv =

C12 | C22 arad,Z H(o)l

and V,agH(0) = (Oraa 1 H(@), . .., Opaa H(c)) =4 N'(0,Z/N)

Integrate out V,.qH (o) = X:

E|Crt| = (simple term) x / E| det Mp(X)] exp <N<)_<', Zl>?>) dx

r
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Annealed Complexity for Multi-Species
E|Crt] = (simple term) x E| det prH(a)|
= (simple term) x E|det (V,,H(o) — Curv) |

In this setting (with r blocks of size A{ N, ..., A\N)

€11 | C12 Orad,lH(‘T)l

VfanH(U) = ® GOEy, Curv =

C12 | C22 arad,Z H(o)l

and V,agH(0) = (Oraa 1 H(@), . .., Opaa H(c)) =4 N'(0,Z/N)

Integrate out V,.qH (o) = X:

E|Crt| = (simple term) x / E| det Mp(X)] exp <N<)_<', Zl>?>) dx

2

r

Laplace’s principle = maximize exponential rate of integrand over X € R”
Topological Trivialization 22/28



|
Random Determinants Beyond GOE

@ How to calculate E|det My(X)| when My(X) is not GOE?
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NIogE\det(MN )| ngu | N/Iog\)\|du(/\).
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Random Determinants Beyond GOE

@ How to calculate E|det My(X)| when My(X) is not GOE?
o Free probability = limiting spectral distribution u of My(X)

@ Heuristically,
NIogIE\det(l\/lN ngu | N/Iog\)\|du(/\).

o (Ben Arous-Bourgade-McKenna 23, McKenna 21): this is correct to leading
exponential order

Brice Huang (MIT) Topological Trivialization 23/28
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Annealed Complexity for Multi-Species: Log Determinant

Unfortunately E|det My(X)] is still very non-explicit.
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Annealed Complexity for Multi-Species: Log Determinant
Unfortunately E|det My(X)] is still very non-explicit.

Let mi(z),...,m,(z) € H solve vector Dyson equation

1 r
=Y cams(2), cH
Xs +z ) 2 Cs,s'Ms(2) z

and m(z) = 3, Asms(2).
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Annealed Complexity for Multi-Species: Log Determinant
Unfortunately E|det My(X)] is still very non-explicit.
Let mi(z),...,m,(z) € H solve vector Dyson equation
1 r
X$+Z:_?(Z)_S,Z,lcs’s,m$/(2)’ zeH

and m(z) = 3, Asms(2).

Limiting spectral measure puz of My(X) is unique measure on R satisfying

_ [ p=(dA)
m(z)_/R N2 zec H.
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Annealed Complexity for Multi-Species: Log Determinant
Unfortunately E|det My(X)] is still very non-explicit.
Let mi(z),...,m,(z) € H solve vector Dyson equation
1 r
X$+Z:_?(Z)_S,Z,lcs’s,m$/(2)’ zeH

and m(z) = 3, Asms(2).

Limiting spectral measure puz of My(X) is unique measure on R satisfying

m(z) = /R ,u;(d)\)’ zec H.

A—2z
Then )
N log E| det My (X)| = /Iog [Alz(dA) + o(1).
Topological Trivialization

24 /28



Annealed Trivialization: Solving the Variational Problem

e Wish to maximize F(X) = C + [ log|A|ug(d\) — (%, Z71%)
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Annealed Trivialization: Solving the Variational Problem

e Wish to maximize F(X) = C + [ log|A|ug(d\) — (%, Z71%)
e We find closed form (¢/ = V¢(1), ¢ = V2¢(1))

[ 108 Nlus(@) = SRe((i(0).€" () ~ 3 Aslog |m.(0)

s€[r]

o If VF(X) = 0, then Re(m;(0)) = 0 or |my(0)| = /As/€L

@ About 3" solutions, one for each choice of ®(ms(0)) =0, <0, >0
@ Of these 2" satisfy F(X) = 0, where ms(0) = £4/As/&L
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Need to show the remaining stationary points of F are not maxima

@ At each, construct w where (w, V2F(X)w) > 0

Brice Huang (MIT) Topological Trivialization 26 /28



|
Annealed Trivialization: Solving the Variational Problem
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@ Need to show the remaining stationary points of F are not maxima
@ At each, construct w where (w, V2F(X)w) > 0
o Thus max F = 0 = E|Crt| = e°V)

Brice Huang (MIT) Topological Trivialization 26 /28



From Annealed to Strong Trivialization
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From Annealed to Strong Trivialization

o Annealed trivialization = E|Crt| = e°™), and for each o € Crt:
° (V,adH(a), ~H(o), (%(Ggl), U))sey) one of 2" possible values, up to o(1)
o V2 H(o) well-conditioned

@ Approximate to exact lemma = all approx crits satisfy this too

@ Band recursion = localize all approx crits to 2" small regions
o VZ,H(o) well-conditioned = each region has < 1 exact crit

@ But > 2" exact crits by Morse theory = each region has 1 exact crit, all
approx crits near one

e Converse: algorithmically construct eN approx crits with AMP
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Summary

@ We determine phase boundary for annealed and strong topological
trivialization in multi-species spherical spin glasses
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Summary

@ We determine phase boundary for annealed and strong topological
trivialization in multi-species spherical spin glasses

@ Approximate critical points controlled by approximate-to-exact lemma

@ Band recursion = strong trivialization, given only e°(M)-resolution annealed
inputs
4 4
-01 2 2 B >
8—02 <0 <0
T-03
-2 -2 *
-0.5
R i 2 3 —a -4
-4 -2 0 2 4 -4 -2 0 2 4
X1 X1
Thank you!
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