Strong Topological Trivialization for Multi-Species Spin Glasses

Brice Huang (MIT)

Harvard Probabilitas Seminar Joint work with Mark Sellke (Harvard)

- Introduction and background
 - Landscape complexity of random functions
 - Topological trivialization
- Strong topological trivialization for spin glasses
- Multi-species spin glasses

Landscapes of random, high-dimensional functions

Landscapes of random, high-dimensional functions

• Connections to optimization, questions about algorithmic tractability

Landscapes of random, high-dimensional functions

• Connections to optimization, questions about algorithmic tractability

• Example: loss function over random data in learning applications

Landscapes of random, high-dimensional functions

• Connections to optimization, questions about algorithmic tractability

• Example: loss function over random data in learning applications

How complicated is the landscape of a random function?

Polynomials $H_N : \mathbb{R}^N \to \mathbb{R}$ with random coefficients, e.g. random cubic

$$H_N(\boldsymbol{\sigma}) = \frac{1}{N} \sum_{i_1, i_2, i_3=1}^{N} g_{i_1, i_2, i_3} \cdot \sigma_{i_1} \sigma_{i_2} \sigma_{i_3}$$

 $g_{i_1,i_2,i_3} \underset{\mathrm{i.i.d.}}{\sim} \mathcal{N}(0,1)$

Polynomials $H_N : \mathbb{R}^N \to \mathbb{R}$ with random coefficients, e.g. random cubic

$$H_N(\boldsymbol{\sigma}) = \frac{1}{N} \sum_{i_1, i_2, i_3=1}^N g_{i_1, i_2, i_3} \cdot \sigma_{i_1} \sigma_{i_2} \sigma_{i_3} = \frac{1}{N} \langle \boldsymbol{G}^{(3)}, \boldsymbol{\sigma}^{\otimes 3} \rangle \qquad g_{i_1, i_2, i_3} \underset{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$$

Polynomials $H_N : \mathbb{R}^N \to \mathbb{R}$ with random coefficients, e.g. random cubic

$$H_N(\boldsymbol{\sigma}) = \frac{1}{N} \sum_{i_1, i_2, i_3=1}^N g_{i_1, i_2, i_3} \cdot \sigma_{i_1} \sigma_{i_2} \sigma_{i_3} = \frac{1}{N} \langle \boldsymbol{G}^{(3)}, \boldsymbol{\sigma}^{\otimes 3} \rangle \qquad g_{i_1, i_2, i_3} \underset{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$$

More generally, mix different degrees. For $\gamma_1,\gamma_2,\ldots\geq 0,$

$$H_{N}(\boldsymbol{\sigma}) = \sum_{p=1}^{P} \frac{\gamma_{p}}{N^{(p-1)/2}} \langle \boldsymbol{G}^{(p)}, \boldsymbol{\sigma}^{\otimes p} \rangle \qquad \boldsymbol{G}^{(p)} \in (\mathbb{R}^{N})^{\otimes p} \text{ i.i.d. } \mathcal{N}(0,1)s$$

Polynomials $H_N : \mathbb{R}^N \to \mathbb{R}$ with **random** coefficients, e.g. random cubic

$$H_{N}(\sigma) = \frac{1}{N} \sum_{i_{1}, i_{2}, i_{3}=1}^{N} g_{i_{1}, i_{2}, i_{3}} \cdot \sigma_{i_{1}} \sigma_{i_{2}} \sigma_{i_{3}} = \frac{1}{N} \langle \boldsymbol{G}^{(3)}, \sigma^{\otimes 3} \rangle \qquad g_{i_{1}, i_{2}, i_{3}} \underset{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$$

More generally, mix different degrees. For $\gamma_1,\gamma_2,\ldots\geq 0,$

$$H_{N}(\boldsymbol{\sigma}) = \sum_{p=1}^{P} \frac{\gamma_{P}}{N^{(p-1)/2}} \langle \boldsymbol{G}^{(p)}, \boldsymbol{\sigma}^{\otimes p} \rangle \qquad \boldsymbol{G}^{(p)} \in (\mathbb{R}^{N})^{\otimes p} \text{ i.i.d. } \mathcal{N}(0,1)s$$

Inputs on sphere $S_N = \{ \boldsymbol{\sigma} \in \mathbb{R}^N : \|\boldsymbol{\sigma}\|_2 = \sqrt{N} \}$

Polynomials $H_N : \mathbb{R}^N \to \mathbb{R}$ with **random** coefficients, e.g. random cubic

$$H_{N}(\sigma) = \frac{1}{N} \sum_{i_{1}, i_{2}, i_{3}=1}^{N} g_{i_{1}, i_{2}, i_{3}} \cdot \sigma_{i_{1}} \sigma_{i_{2}} \sigma_{i_{3}} = \frac{1}{N} \langle \boldsymbol{G}^{(3)}, \boldsymbol{\sigma}^{\otimes 3} \rangle \qquad g_{i_{1}, i_{2}, i_{3}} \underset{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$$

More generally, mix different degrees. For $\gamma_{1},\gamma_{2},\ldots\geq$ 0,

$$H_{N}(\boldsymbol{\sigma}) = \sum_{p=1}^{P} \frac{\gamma_{P}}{N^{(p-1)/2}} \langle \boldsymbol{G}^{(p)}, \boldsymbol{\sigma}^{\otimes p} \rangle \qquad \boldsymbol{G}^{(p)} \in (\mathbb{R}^{N})^{\otimes p} \text{ i.i.d. } \mathcal{N}(0,1) s$$

Inputs on sphere $S_N = \{ \boldsymbol{\sigma} \in \mathbb{R}^N : \| \boldsymbol{\sigma} \|_2 = \sqrt{N} \}$

Rotationally invariant Gaussian process with covariance

$$\mathbb{E}[H_N(\sigma)H_N(\rho)] = N\xi(\langle \sigma, \rho \rangle / N) \qquad \xi(q) = \sum_{p=1}^{P} \gamma_p^2 q^p$$

Polynomials $H_N : \mathbb{R}^N \to \mathbb{R}$ with **random** coefficients, e.g. random cubic

$$H_N(\sigma) = \frac{1}{N} \sum_{i_1, i_2, i_3 = 1}^N g_{i_1, i_2, i_3} \cdot \sigma_{i_1} \sigma_{i_2} \sigma_{i_3} = \frac{1}{N} \langle G^{(3)}, \sigma^{\otimes 3} \rangle \qquad g_{i_1, i_2, i_3} \underset{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$$

More generally, mix different degrees. For $\gamma_1,\gamma_2,\ldots\geq 0,$

$$H_{N}(\boldsymbol{\sigma}) = \sum_{p=1}^{P} \frac{\gamma_{P}}{N^{(p-1)/2}} \langle \boldsymbol{G}^{(p)}, \boldsymbol{\sigma}^{\otimes p} \rangle \qquad \boldsymbol{G}^{(p)} \in (\mathbb{R}^{N})^{\otimes p} \text{ i.i.d. } \mathcal{N}(0,1) s$$

Inputs on sphere $S_N = \{ \boldsymbol{\sigma} \in \mathbb{R}^N : \| \boldsymbol{\sigma} \|_2 = \sqrt{N} \}$

Rotationally invariant Gaussian process with covariance

$$\mathbb{E}[H_N(\sigma)H_N(\rho)] = N\xi(\langle \sigma, \rho \rangle / N) \qquad \xi(q) = \sum_{p=1}^{P} \gamma_p^2 q^p$$

n

 ξ mixture function. Cubic above: $\xi(q) = q^3$.

Polynomials $H_N : \mathbb{R}^N \to \mathbb{R}$ with **random** coefficients, e.g. random cubic

$$H_{N}(\boldsymbol{\sigma}) = \frac{1}{N} \sum_{i_{1}, i_{2}, i_{3}=1}^{N} g_{i_{1}, i_{2}, i_{3}} \cdot \sigma_{i_{1}} \sigma_{i_{2}} \sigma_{i_{3}} = \frac{1}{N} \langle \boldsymbol{G}^{(3)}, \boldsymbol{\sigma}^{\otimes 3} \rangle \qquad g_{i_{1}, i_{2}, i_{3}} \underset{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$$

More generally, mix different degrees. For $\gamma_1,\gamma_2,\ldots\geq 0,$

$$H_N(\boldsymbol{\sigma}) = \sum_{p=1}^{P} \frac{\gamma_P}{N^{(p-1)/2}} \langle \boldsymbol{G}^{(p)}, \boldsymbol{\sigma}^{\otimes p} \rangle \qquad \boldsymbol{G}^{(p)} \in (\mathbb{R}^N)^{\otimes p} \text{ i.i.d. } \mathcal{N}(0,1) s$$

Inputs on sphere $S_N = \{ \boldsymbol{\sigma} \in \mathbb{R}^N : \| \boldsymbol{\sigma} \|_2 = \sqrt{N} \}$

Rotationally invariant Gaussian process with covariance

$$\mathbb{E}[H_N(\sigma)H_N(\rho)] = N\xi(\langle \sigma, \rho \rangle / N) \qquad \xi(q) = \sum_{p=1}^{P} \gamma_p^2 q^p$$

 ξ mixture function. Cubic above: $\xi(q) = q^3$. p = 1 term is external field.

Computes expected number of zeros of random function $f: \Omega \times [0, L] \rightarrow \mathbb{R}$

$$\mathbb{E}[\#\operatorname{zeros}(f)] = \int_{[0,L]} \mathbb{E}\left[|f'(x)| \middle| f(x) = 0\right] \varphi_{f(x)}(0) \, \mathrm{d}x.$$

Here $\varphi_{f(x)}$ is density of r.v. f(x).

Computes expected number of zeros of random function $f: \Omega \times [0, L] \rightarrow \mathbb{R}$

$$\mathbb{E}[\#\mathsf{zeros}(f)] = \int_{[0,L]} \mathbb{E}\left[|f'(x)| \left| f(x) = 0\right] \varphi_{f(x)}(0) \, \mathsf{d}x.\right]$$

Here $\varphi_{f(x)}$ is density of r.v. f(x). Heuristic derivation:

$$\mathbb{E}[\#\mathsf{zeros}(f)] = \mathbb{E} \int_{f([0,L])} \delta(y) \, \mathrm{d}y$$

Computes expected number of zeros of random function $f: \Omega \times [0, L] \rightarrow \mathbb{R}$

$$\mathbb{E}[\#\operatorname{zeros}(f)] = \int_{[0,L]} \mathbb{E}\left[|f'(x)| \left| f(x) = 0\right] \varphi_{f(x)}(0) \, \mathrm{d}x.\right]$$

Here $\varphi_{f(x)}$ is density of r.v. f(x). Heuristic derivation:

$$\mathbb{E}[\#\mathsf{zeros}(f)] = \mathbb{E} \int_{f([0,L])} \delta(y) \, \mathrm{d}y = \mathbb{E} \int_{[0,L]} |f'(x)| \delta(f(x)) \, \mathrm{d}x$$

Computes expected number of zeros of random function $f: \Omega \times [0, L] \rightarrow \mathbb{R}$

$$\mathbb{E}[\#\operatorname{zeros}(f)] = \int_{[0,L]} \mathbb{E}\left[|f'(x)| \left| f(x) = 0\right] \varphi_{f(x)}(0) \, \mathrm{d}x.\right]$$

Here $\varphi_{f(x)}$ is density of r.v. f(x). Heuristic derivation:

$$\mathbb{E}[\#\operatorname{zeros}(f)] = \mathbb{E} \int_{f([0,L])} \delta(y) \, \mathrm{d}y = \mathbb{E} \int_{[0,L]} |f'(x)| \delta(f(x)) \, \mathrm{d}x$$
$$= \int_{[0,L]} \mathbb{E}[|f'(x)|| f(x) = 0] \underbrace{\mathbb{E}\delta(f(x))}_{=\varphi_{f(x)}(0)} \, \mathrm{d}x.$$

Computes expected number of zeros of random function $f: \Omega \times [0, L] \rightarrow \mathbb{R}$

$$\mathbb{E}[\#\mathsf{zeros}(f)] = \int_{[0,L]} \mathbb{E}\left[|f'(x)| \middle| f(x) = 0\right] \varphi_{f(x)}(0) \, \mathsf{d}x.$$

Here $\varphi_{f(x)}$ is density of r.v. f(x). Heuristic derivation:

$$\mathbb{E}[\#\operatorname{zeros}(f)] = \mathbb{E} \int_{f([0,L])} \delta(y) \, \mathrm{d}y = \mathbb{E} \int_{[0,L]} |f'(x)| \delta(f(x)) \, \mathrm{d}x$$
$$= \int_{[0,L]} \mathbb{E} [|f'(x)|| f(x) = 0] \underbrace{\mathbb{E}\delta(f(x))}_{=\varphi_{f(x)}(0)} \, \mathrm{d}x.$$

For multi-dimensional $f: \Omega \times [0, L]^N \to \mathbb{R}^N$:

$$\mathbb{E}[\#\mathsf{zeros}(f)] = \int_{[0,L]^N} \mathbb{E}\left[|\det \nabla f(\boldsymbol{x})| \left| f(\boldsymbol{x}) = 0 \right] \varphi_{f(\boldsymbol{x})}(0) \, \mathrm{d}\boldsymbol{x}.$$

How many zeros does this function have on [-L, L], L < 1, in expectation?

$$f(x) = g_0 + g_1 x + g_2 x^2 + \cdots, \qquad g_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,1)$$

How many zeros does this function have on [-L, L], L < 1, in expectation?

$$f(x) = g_0 + g_1 x + g_2 x^2 + \cdots, \qquad g_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,1)$$

At any |x| < 1, r.v.s f(x), f'(x) jointly Gaussian with covariance

$$\mathbb{E}f(x)^2 = rac{1}{1-x^2}$$
 $\mathbb{E}f'(x)^2 = rac{1+x^2}{(1-x^2)^3}$ $\mathbb{E}f(x)f'(x) = rac{x}{(1-x)^2}$

How many zeros does this function have on [-L, L], L < 1, in expectation?

$$f(x) = g_0 + g_1 x + g_2 x^2 + \cdots, \qquad g_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,1)$$

At any |x| < 1, r.v.s f(x), f'(x) jointly Gaussian with covariance

$$\mathbb{E}f(x)^2 = \frac{1}{1-x^2}$$
 $\mathbb{E}f'(x)^2 = \frac{1+x^2}{(1-x^2)^3}$ $\mathbb{E}f(x)f'(x) = \frac{x}{(1-x)^2}$

So

$$\operatorname{Var}[f'(x)|f(x)] = \mathbb{E}f'(x)^2 - \frac{(\mathbb{E}f(x)f'(x))^2}{\mathbb{E}f(x)^2} = \frac{1}{(1-x^2)^3}$$

How many zeros does this function have on [-L, L], L < 1, in expectation?

$$f(x) = g_0 + g_1 x + g_2 x^2 + \cdots, \qquad g_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,1)$$

At any |x| < 1, r.v.s f(x), f'(x) jointly Gaussian with covariance

$$\mathbb{E}f(x)^2 = \frac{1}{1-x^2}$$
 $\mathbb{E}f'(x)^2 = \frac{1+x^2}{(1-x^2)^3}$ $\mathbb{E}f(x)f'(x) = \frac{x}{(1-x)^2}$

So

$$\operatorname{Var}[f'(x)|f(x)] = \mathbb{E}f'(x)^2 - \frac{(\mathbb{E}f(x)f'(x))^2}{\mathbb{E}f(x)^2} = \frac{1}{(1-x^2)^3}$$

Then

$$\mathbb{E}[\#\operatorname{zeros}(f)] = \int_{-L}^{L} \mathbb{E}\left[|f'(x)||f(x) = 0\right] \varphi_{f(x)}(0) \, \mathrm{d}x$$

How many zeros does this function have on [-L, L], L < 1, in expectation?

$$f(x) = g_0 + g_1 x + g_2 x^2 + \cdots, \qquad g_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,1)$$

At any |x| < 1, r.v.s f(x), f'(x) jointly Gaussian with covariance

$$\mathbb{E}f(x)^2 = \frac{1}{1-x^2}$$
 $\mathbb{E}f'(x)^2 = \frac{1+x^2}{(1-x^2)^3}$ $\mathbb{E}f(x)f'(x) = \frac{x}{(1-x)^2}$

So

$$\operatorname{Var}[f'(x)|f(x)] = \mathbb{E}f'(x)^2 - \frac{(\mathbb{E}f(x)f'(x))^2}{\mathbb{E}f(x)^2} = \frac{1}{(1-x^2)^3}$$

Then

$$\mathbb{E}[\# \operatorname{zeros}(f)] = \int_{-L}^{L} \mathbb{E}\left[|f'(x)| \left| f(x) = 0\right] \varphi_{f(x)}(0) \, \mathrm{d}x\right]$$
$$= \int_{-L}^{L} \sqrt{\frac{2}{\pi}} \frac{1}{(1 - x^2)^{3/2}} \cdot \sqrt{\frac{1 - x^2}{2\pi}} \, \mathrm{d}x$$

How many zeros does this function have on [-L, L], L < 1, in expectation?

$$f(x) = g_0 + g_1 x + g_2 x^2 + \cdots, \qquad g_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,1)$$

At any |x| < 1, r.v.s f(x), f'(x) jointly Gaussian with covariance

$$\mathbb{E}f(x)^2 = \frac{1}{1-x^2}$$
 $\mathbb{E}f'(x)^2 = \frac{1+x^2}{(1-x^2)^3}$ $\mathbb{E}f(x)f'(x) = \frac{x}{(1-x)^2}$

So

$$\operatorname{Var}[f'(x)|f(x)] = \mathbb{E}f'(x)^2 - \frac{(\mathbb{E}f(x)f'(x))^2}{\mathbb{E}f(x)^2} = \frac{1}{(1-x^2)^3}$$

Then

$$\mathbb{E}[\# \operatorname{zeros}(f)] = \int_{-L}^{L} \mathbb{E}\left[|f'(x)| \left| f(x) = 0\right] \varphi_{f(x)}(0) \, \mathrm{d}x\right]$$
$$= \int_{-L}^{L} \sqrt{\frac{2}{\pi}} \frac{1}{(1 - x^2)^{3/2}} \cdot \sqrt{\frac{1 - x^2}{2\pi}} \, \mathrm{d}x$$
$$= \frac{1}{\pi} \int_{-L}^{L} \frac{1}{1 - x^2} \, \mathrm{d}x = \frac{2}{\pi} \operatorname{arctanh} L$$

• Quantify complexity of landscape by # critical points

- Quantify complexity of landscape by # critical points
- (Fyodorov 04, Auffinger-Ben Arous-Černý 13): Kac-Rice on ∇H gives $\mathbb{E}|\mathsf{Crt}|$

- Quantify complexity of landscape by # critical points
- (Fyodorov 04, Auffinger-Ben Arous-Černý 13): Kac-Rice on abla H gives $\mathbb{E}|\mathsf{Crt}|$
- In high dimensions, reduces to random determinant:

 $\mathbb{E}|\mathsf{Crt}| = (\mathsf{simple term}) \cdot \mathbb{E}|\det(\mathsf{random matrix})|.$

- Quantify complexity of landscape by # critical points
- (Fyodorov 04, Auffinger-Ben Arous-Černý 13): Kac-Rice on ∇H gives $\mathbb{E}|\mathsf{Crt}|$
- In high dimensions, reduces to random determinant:

 $\mathbb{E}|\mathsf{Crt}| = (\mathsf{simple term}) \cdot \mathbb{E}|\det(\mathsf{random matrix})|.$

• For spin glasses, random matrix is $GOE_N + cI_N$, $\mathbb{E}|\det|$ known exactly

- Quantify complexity of landscape by # critical points
- (Fyodorov 04, Auffinger-Ben Arous-Černý 13): Kac-Rice on ∇H gives $\mathbb{E}|\mathsf{Crt}|$
- In high dimensions, reduces to random determinant:

 $\mathbb{E}|\mathsf{Crt}| = (\mathsf{simple term}) \cdot \mathbb{E}|\det(\mathsf{random matrix})|.$

- For spin glasses, random matrix is $GOE_N + cI_N$, $\mathbb{E}|\det|$ known exactly
- Other applications:
 - (Sagun-Guney-Ben Arous-LeCun 14) neural networks
 - (Ben Arous-Mei-Montanari-Nica 19) spiked tensor models
 - (Ben Arous-Fyodorov-Khoruzhenko 21, Subag 23) non-gradient vector fields
 - (Ben Arous-Bourgarde-McKenna 23) elastic manifold

Critical Point Complexity in Pure Spin Glasses

• (Auffinger-Ben Arous-Černý 13): $\mathbb{E}\#$ critical points at given (energy, index)

Critical Point Complexity in Pure Spin Glasses

• (Auffinger-Ben Arous-Černý 13): $\mathbb{E}\#$ critical points at given (energy, index)

• (Subag 17): this matches typical counts by 2nd moment method

Critical Point Complexity in Pure Spin Glasses

• (Auffinger-Ben Arous-Černý 13): $\mathbb{E}\#$ critical points at given (energy, index)

- (Subag 17): this matches typical counts by 2nd moment method
- Consequence: ground state energy matching Parisi formula

• If external field large, only 2 critical points are global max and min ...

- If external field large, only 2 critical points are global max and min ...
- At how large external field does this occur? Is there a phase transition?

Topological Trivialization

- $\bullet\,$ If external field large, only 2 critical points are global max and min $\ldots\,$
- At how large external field does this occur? Is there a phase transition?

Theorem (Fyodorov 15, Belius-Černý-Nakajima-Schmidt 22)

• If $\xi'(1) > \xi''(1)$, $\mathbb{E}|Crt| = 2 + o(1)$ (so w.h.p. 2 critical points)

Topological Trivialization

- If external field large, only 2 critical points are global max and min ...
- At how large external field does this occur? Is there a phase transition?

Theorem (Fyodorov 15, Belius-Černý-Nakajima-Schmidt 22)
Topological Trivialization

- If external field large, only 2 critical points are global max and min ...
- At how large external field does this occur? Is there a phase transition?

Theorem (Fyodorov 15, Belius-Černý-Nakajima-Schmidt 22)

• Phase boundary for annealed topological trivialization

Topological Trivialization

- If external field large, only 2 critical points are global max and min ...
- At how large external field does this occur? Is there a phase transition?

Theorem (Fyodorov 15, Belius-Černý-Nakajima-Schmidt 22)

- If ξ'(1) > ξ''(1), ℝ|Crt| = 2 + o(1) (so w.h.p. 2 critical points)
 If ξ'(1) < ξ''(1), ℝ|Crt| ≥ e^{cN}
 - Phase boundary for annealed topological trivialization
 - $\xi'(1) > \xi''(1)$ equivalent to $\gamma_1^2 > \sum_{p \ge 3} p(p-2) \gamma_p^2$

- $\bullet\,$ If external field large, only 2 critical points are global max and min $\ldots\,$
- At how large external field does this occur? Is there a phase transition?

Theorem (Fyodorov 15, Belius-Černý-Nakajima-Schmidt 22)

- If ξ'(1) > ξ''(1), ℝ|Crt| = 2 + o(1) (so w.h.p. 2 critical points)
 If ξ'(1) < ξ''(1), ℝ|Crt| ≥ e^{cN}
 - Phase boundary for annealed topological trivialization
 - $\xi'(1) > \xi''(1)$ equivalent to $\gamma_1^2 > \sum_{p \ge 3} p(p-2) \gamma_p^2$
 - $\mathbb{E}|\mathsf{Crt}| = 2 + o(1)$ achieved using exact formula for GOE
 - If Kac-Rice random matrix not GOE, current tools only achieve $\mathbb{E}|\mathsf{Crt}| = e^{o(N)}$

- Do phase boundaries of annealed and quenched trivialization coincide?
 - Or can |Crt| = 2 w.h.p. in the regime where $\mathbb{E}|Crt| \ge e^{cN}$?

- Do phase boundaries of annealed and quenched trivialization coincide?
 - Or can |Crt| = 2 w.h.p. in the regime where $\mathbb{E}|Crt| \ge e^{cN}$?
- Does trivialization have algorithmic implications, e.g. fast convergence of Langevin dynamics?
 - Or can regions of small, nonzero gradient still obstruct algorithms?

- Do phase boundaries of annealed and quenched trivialization coincide?
 - Or can |Crt| = 2 w.h.p. in the regime where $\mathbb{E}|Crt| \ge e^{cN}$?
- Does trivialization have algorithmic implications, e.g. fast convergence of Langevin dynamics?
 - Or can regions of small, nonzero gradient still obstruct algorithms?
- Can we boost $\mathbb{E}|Crt| = e^{o(N)}$ to |Crt| = 2 w.h.p. without exact formulas?

H is strongly topologically trivial (STT) if w.h.p.:

• |Crt| = O(1)

- |Crt| = O(1)
- Each ε -approximate critical point $(\|\nabla_{sp}H(\sigma)\|_2 \le \varepsilon \sqrt{N})$ within $O(\varepsilon)\sqrt{N}$ of a true critical point

- |Crt| = O(1)
- Each ε -approximate critical point $(\|\nabla_{sp}H(\sigma)\|_2 \le \varepsilon \sqrt{N})$ within $O(\varepsilon)\sqrt{N}$ of a true critical point
- All critical points well-conditioned, i.e. $\operatorname{spec}(
 abla^2_{\operatorname{sp}}\mathcal{H}(\sigma))\cap [-c,c]=\emptyset$

- |Crt| = O(1)
- Each ε -approximate critical point $(\|\nabla_{sp}H(\sigma)\|_2 \le \varepsilon \sqrt{N})$ within $O(\varepsilon)\sqrt{N}$ of a true critical point
- All critical points well-conditioned, i.e. $\operatorname{spec}(\nabla^2_{\operatorname{sp}} H(\sigma)) \cap [-c,c] = \emptyset$
- At each critical point except the global maximum, $\lambda_{cN}(
 abla^2_{sp}H(\sigma))>0$

H is strongly topologically trivial (STT) if w.h.p.:

- |Crt| = O(1)
- Each ε -approximate critical point $(\|\nabla_{sp}H(\sigma)\|_2 \le \varepsilon \sqrt{N})$ within $O(\varepsilon)\sqrt{N}$ of a true critical point
- All critical points well-conditioned, i.e. $\operatorname{spec}(
 abla^2_{\operatorname{sp}}\mathcal{H}(\sigma))\cap [-c,c]=\emptyset$
- At each critical point except the global maximum, $\lambda_{cN}(\nabla_{sp}^2 H(\sigma)) > 0$

Theorem (H.-Sellke 23)

If H is STT, then Langevin dynamics at low enough temperature mixes in $O(\log N)$ time in TV.

Theorem (H.-Sellke 23)

• If $\xi'(1) > \xi''(1)$, STT holds (with 2 critical points).

Main Result

Theorem (H.-Sellke 23)

- If $\xi'(1) > \xi''(1)$, STT holds (with 2 critical points).
- **3** If $\xi'(1) < \xi''(1)$, STT fails.
 - There are e^{cN} well-separated approximate critical points w.h.p.

Main Result

Theorem (H.-Sellke 23)

- If $\xi'(1) > \xi''(1)$, STT holds (with 2 critical points).
- **a** If $\xi'(1) < \xi''(1)$, STT fails.
 - There are e^{cN} well-separated approximate critical points w.h.p.

New method to boost $\mathbb{E}|Crt| = e^{o(N)}$ to STT (and in particular |Crt| = 2 w.h.p.) without exact RMT

Main Result

Theorem (H.-Sellke 23)

- If $\xi'(1) > \xi''(1)$, STT holds (with 2 critical points).
- **a** If $\xi'(1) < \xi''(1)$, STT fails.
 - There are e^{cN} well-separated approximate critical points w.h.p.

New method to boost $\mathbb{E}|Crt| = e^{o(N)}$ to STT (and in particular |Crt| = 2 w.h.p.) without exact RMT

More general threshold for multi-species models (later)

Theorem (H.-Sellke 23)

- If $\xi'(1) > \xi''(1)$, STT holds (with 2 critical points).
- **a** If $\xi'(1) < \xi''(1)$, STT fails.
 - There are e^{cN} well-separated approximate critical points w.h.p.

New method to boost $\mathbb{E}|Crt| = e^{o(N)}$ to STT (and in particular |Crt| = 2 w.h.p.) without exact RMT

More general threshold for multi-species models (later)

• In these models, phase boundary for *annealed* trivialization also new

Kac-Rice on $\nabla_{sp} H$:

$$\mathbb{E}|\mathsf{Crt}| = \int_{S_N} \mathbb{E}\left[|\det \nabla^2_{\mathsf{sp}} H(\sigma)| |\nabla_{\mathsf{sp}} H(\sigma) = 0 \right] \varphi_{\nabla_{\mathsf{sp}} H(\sigma)}(0) \, \mathrm{d}\sigma.$$

Kac-Rice on $\nabla_{sp}H$:

$$\mathbb{E}|\mathsf{Crt}| = \int_{S_N} \mathbb{E}\left[|\det \nabla^2_{\mathsf{sp}} H(\sigma)| \big| \nabla_{\mathsf{sp}} H(\sigma) = 0 \right] \varphi_{\nabla_{\mathsf{sp}} H(\sigma)}(0) \, \mathrm{d}\sigma.$$

Here $\nabla_{\text{sp}}, \, \nabla_{\text{sp}}^2$ are Riemannian gradient, Hessian

$$\nabla_{\rm sp} H(\sigma) = \nabla_{\rm tan} H(\sigma), \qquad \nabla_{\rm sp}^2 H(\sigma) = \nabla_{\rm tan}^2 H(\sigma) - \underbrace{\partial_{\rm rad} H(\sigma) I_{N-1}}_{N-1}.$$

curvature term

Kac-Rice on $\nabla_{sp}H$:

$$\mathbb{E}|\mathsf{Crt}| = \int_{S_N} \mathbb{E}\left[|\det \nabla_{\mathsf{sp}}^2 H(\sigma)| \big| \nabla_{\mathsf{sp}} H(\sigma) = 0 \right] \varphi_{\nabla_{\mathsf{sp}} H(\sigma)}(0) \, \mathrm{d}\sigma.$$

Here $\nabla_{\text{sp}},\,\nabla_{\text{sp}}^2$ are Riemannian gradient, Hessian

$$\nabla_{\rm sp} H(\boldsymbol{\sigma}) = \nabla_{\rm tan} H(\boldsymbol{\sigma}), \qquad \nabla_{\rm sp}^2 H(\boldsymbol{\sigma}) = \nabla_{\rm tan}^2 H(\boldsymbol{\sigma}) - \frac{\partial_{\rm rad} H(\boldsymbol{\sigma})}{N-1}.$$

Kac-Rice on $\nabla_{sp}H$:

$$\mathbb{E}|\mathsf{Crt}| = \mathbb{E}\left[|\det \nabla_{\mathsf{sp}}^2 H(\boldsymbol{\sigma})| |\nabla_{\mathsf{sp}} H(\boldsymbol{\sigma}) = 0\right] \cdot \varphi_{\nabla_{\mathsf{sp}} H(\boldsymbol{\sigma})}(0) \cdot \mathsf{Vol}(S_N).$$

Here $\nabla_{\text{sp}}, \, \nabla_{\text{sp}}^2$ are Riemannian gradient, Hessian

$$\nabla_{\rm sp} H(\boldsymbol{\sigma}) = \nabla_{\rm tan} H(\boldsymbol{\sigma}), \qquad \nabla_{\rm sp}^2 H(\boldsymbol{\sigma}) = \nabla_{\rm tan}^2 H(\boldsymbol{\sigma}) - \frac{\partial_{\rm rad} H(\boldsymbol{\sigma})}{N-1}.$$

Kac-Rice on $\nabla_{sp}H$:

$$\mathbb{E}|\mathsf{Crt}| = \mathbb{E}\left[|\det \nabla_{\mathsf{sp}}^2 H(\boldsymbol{\sigma})| |\nabla_{\mathsf{sp}} H(\boldsymbol{\sigma}) = 0\right] \cdot \varphi_{\nabla_{\mathsf{sp}} H(\boldsymbol{\sigma})}(0) \cdot \mathsf{Vol}(S_N).$$

Here $\nabla_{\text{sp}},\,\nabla_{\text{sp}}^2$ are Riemannian gradient, Hessian

 $\nabla_{\rm sp} H(\boldsymbol{\sigma}) = \nabla_{\rm tan} H(\boldsymbol{\sigma}), \qquad \nabla_{\rm sp}^2 H(\boldsymbol{\sigma}) = \nabla_{\rm tan}^2 H(\boldsymbol{\sigma}) - \partial_{\rm rad} H(\boldsymbol{\sigma}) I_{N-1}.$

Fact: $\partial_{\mathsf{rad}} H(\sigma)$, $\nabla^2_{\mathsf{tan}} H(\sigma)$, $\nabla_{\mathsf{tan}} H(\sigma)$ independent.

Kac-Rice on $\nabla_{sp}H$:

 $\mathbb{E}|\mathsf{Crt}| = \mathbb{E}\left|\mathsf{det}(\nabla_{\mathsf{tan}}^2 H(\sigma) - \partial_{\mathsf{rad}} H(\sigma) I_{N-1})\right| \cdot \varphi_{\nabla_{\mathsf{tan}} H(\sigma)}(0) \cdot \mathsf{Vol}(S_N).$

Here $\nabla_{\text{sp}},\,\nabla_{\text{sp}}^2$ are Riemannian gradient, Hessian

 $\nabla_{\rm sp} H(\boldsymbol{\sigma}) = \nabla_{\rm tan} H(\boldsymbol{\sigma}), \qquad \nabla_{\rm sp}^2 H(\boldsymbol{\sigma}) = \nabla_{\rm tan}^2 H(\boldsymbol{\sigma}) - \frac{\partial_{\rm rad} H(\boldsymbol{\sigma})}{N-1}.$

Fact: $\partial_{\mathsf{rad}} H(\sigma)$, $\nabla^2_{\mathsf{tan}} H(\sigma)$, $\nabla_{\mathsf{tan}} H(\sigma)$ independent.

Kac-Rice on $\nabla_{sp}H$:

 $\mathbb{E}|\mathsf{Crt}| = \mathbb{E}\left|\mathsf{det}(\nabla_{\mathsf{tan}}^2 H(\sigma) - \partial_{\mathsf{rad}} H(\sigma) I_{N-1})\right| \cdot \varphi_{\nabla_{\mathsf{tan}} H(\sigma)}(0) \cdot \mathsf{Vol}(S_N).$

Here $\nabla_{\text{sp}},\,\nabla_{\text{sp}}^2$ are Riemannian gradient, Hessian

 $\nabla_{\rm sp} H(\boldsymbol{\sigma}) = \nabla_{\rm tan} H(\boldsymbol{\sigma}), \qquad \nabla_{\rm sp}^2 H(\boldsymbol{\sigma}) = \nabla_{\rm tan}^2 H(\boldsymbol{\sigma}) - \frac{\partial_{\rm rad} H(\boldsymbol{\sigma})}{N-1}.$

Fact: $\partial_{rad} H(\sigma)$, $\nabla^2_{tan} H(\sigma)$, $\nabla_{tan} H(\sigma)$ independent. They have laws

 $\begin{array}{l} \partial_{\mathsf{rad}} \mathcal{H}(\boldsymbol{\sigma}) =_d c_1 \mathcal{N}(0, 1/N) & \nabla_{\mathsf{tan}}^2 \mathcal{H}(\boldsymbol{\sigma}) =_d c_2 \mathsf{GOE}_{N-1} \\ \nabla_{\mathsf{tan}} \mathcal{H}(\boldsymbol{\sigma}) =_d c_3 \mathcal{N}(0, I_{N-1}) \end{array}$

Kac-Rice on $\nabla_{sp}H$:

 $\mathbb{E}|\mathsf{Crt}| = \mathbb{E}\left|\mathsf{det}(\nabla_{\mathsf{tan}}^2 H(\sigma) - \frac{\partial_{\mathsf{rad}} H(\sigma)}{\partial_{\mathsf{rad}} H(\sigma)}|_{N-1})\right| \cdot \varphi_{\nabla_{\mathsf{tan}} H(\sigma)}(0) \cdot \mathsf{Vol}(S_N).$

Here $\nabla_{\text{sp}},\,\nabla_{\text{sp}}^2$ are Riemannian gradient, Hessian

$$\nabla_{\mathsf{sp}} H(\boldsymbol{\sigma}) = \nabla_{\mathsf{tan}} H(\boldsymbol{\sigma}), \qquad \nabla_{\mathsf{sp}}^2 H(\boldsymbol{\sigma}) = \nabla_{\mathsf{tan}}^2 H(\boldsymbol{\sigma}) - \frac{\partial_{\mathsf{rad}} H(\boldsymbol{\sigma})}{N-1}.$$

Fact: $\partial_{rad} H(\sigma)$, $\nabla_{tan}^2 H(\sigma)$, $\nabla_{tan} H(\sigma)$ independent. They have laws

$$\begin{array}{l} \partial_{\mathsf{rad}} \mathcal{H}(\boldsymbol{\sigma}) =_d c_1 \mathcal{N}(0, 1/N) & \nabla_{\mathsf{tan}}^2 \mathcal{H}(\boldsymbol{\sigma}) =_d c_2 \mathsf{GOE}_{N-1} \\ \nabla_{\mathsf{tan}} \mathcal{H}(\boldsymbol{\sigma}) =_d c_3 \mathcal{N}(0, I_{N-1}) \end{array}$$

Integrate out $\partial_{rad} H(\sigma) = x$:

$$\mathbb{E}|\mathsf{Crt}| = (\mathsf{simple term}) \times \int_{\mathbb{R}} \mathbb{E} |\mathsf{det}(c_2\mathsf{GOE}_{N-1} - xI)| \exp\left(-\frac{Nx^2}{2c_1}\right) \, \mathsf{d}x$$

$$\mathbb{E}|\mathsf{Crt}| = (\mathsf{simple term}) \times \int_{\mathbb{R}} \mathbb{E} |\mathsf{det}(c_2\mathsf{GOE}_{N-1} - xI)| \exp\left(-\frac{Nx^2}{2c_1}\right) \, \mathsf{d}x$$

$$\mathbb{E}|\mathsf{Crt}| = (\mathsf{simple term}) \times \int_{\mathbb{R}} \mathbb{E} |\mathsf{det}(c_2\mathsf{GOE}_{N-1} - xI)| \exp\left(-\frac{Nx^2}{2c_1}\right) \, \mathsf{d}x$$

Laplace's principle \Rightarrow maximize exponential rate of integrand

$$\mathbb{E}|\mathsf{Crt}| = (\mathsf{simple term}) \times \int_{\mathbb{R}} \mathbb{E} |\mathsf{det}(c_2\mathsf{GOE}_{N-1} - xI)| \exp\left(-\frac{Nx^2}{2c_1}\right) \, \mathsf{d}x$$

Laplace's principle \Rightarrow maximize exponential rate of integrand

• $\xi'(1) > \xi''(1) \Rightarrow \mathbb{E}|\mathsf{Crt}| = e^{o(N)}$, (weak form of) annealed trivialization

Topological Trivialization

$$\mathbb{E}|\mathsf{Crt}| = (\mathsf{simple term}) \times \int_{\mathbb{R}} \mathbb{E} |\mathsf{det}(c_2\mathsf{GOE}_{N-1} - xI)| \exp\left(-\frac{Nx^2}{2c_1}\right) \, \mathsf{d}x$$

Laplace's principle \Rightarrow maximize exponential rate of integrand

• $\xi'(1) > \xi''(1) \Rightarrow \mathbb{E}|\operatorname{Crt}| = e^{o(N)}$, (weak form of) annealed trivialization • $\xi'(1) < \xi''(1) \Rightarrow \mathbb{E}|\operatorname{Crt}| \ge e^{cN}$, failure of annealed trivialization

Topological Trivialization

Suppose we are in trivial regime $\xi'(1) > \xi''(1)$, so $\mathbb{E}|\mathsf{Crt}| = e^{o(N)}$

Suppose we are in trivial regime $\xi'(1) > \xi''(1)$, so $\mathbb{E}|\mathsf{Crt}| = e^{o(N)}$

For all $\pmb{\sigma} \in \mathsf{Crt}$,

$$\partial_{\mathsf{rad}} H(\boldsymbol{\sigma}) = \pm x_{\mathsf{OPT}} + o(1)$$

Suppose we are in trivial regime $\xi'(1) > \xi''(1)$, so $\mathbb{E}|\mathsf{Crt}| = e^{o(N)}$

For all $oldsymbol{\sigma}\in\mathsf{Crt}$,

$$\partial_{\mathsf{rad}} \mathcal{H}(\boldsymbol{\sigma}) = \pm x_{\mathsf{OPT}} + o(1)$$

In fact,

$$\left(\partial_{\mathsf{rad}} H(\boldsymbol{\sigma}), \frac{1}{N} H(\boldsymbol{\sigma}), \frac{1}{N} \langle \boldsymbol{G}^{(1)}, \boldsymbol{\sigma} \rangle \right) = \pm (x_{\mathsf{OPT}}, \mathcal{E}_{\mathsf{OPT}}, \mathcal{R}_{\mathsf{OPT}}) + o(1)$$

Suppose we are in trivial regime $\xi'(1) > \xi''(1)$, so $\mathbb{E}|\mathsf{Crt}| = e^{o(N)}$

For all $oldsymbol{\sigma}\in\mathsf{Crt}$,

$$\partial_{\mathsf{rad}} H(\boldsymbol{\sigma}) = \pm x_{\mathsf{OPT}} + o(1)$$

In fact,

$$\left(\partial_{\mathsf{rad}} \mathcal{H}(\boldsymbol{\sigma}), rac{1}{N} \mathcal{H}(\boldsymbol{\sigma}), rac{1}{N} \langle \boldsymbol{G}^{(1)}, \boldsymbol{\sigma}
angle
ight) = \pm(x_{\mathsf{OPT}}, \mathcal{E}_{\mathsf{OPT}}, \mathcal{R}_{\mathsf{OPT}}) + o(1)$$

 x_{OPT} outside spectral bulk $[-2c_2, 2c_2]$ of $abla^2_{\mathsf{tan}} \mathcal{H}({\pmb\sigma})$ so

 $\nabla^2_{\sf sp} {\cal H}({\boldsymbol\sigma}) = \nabla^2_{\sf tan} {\cal H}({\boldsymbol\sigma}) - \partial_{\sf rad} {\cal H}({\boldsymbol\sigma}) {\it I}_N \qquad {\sf well-conditioned}$

Attempt: from $e^{o(N)}$ Critical Points to 2

For all $\boldsymbol{\sigma} \in \mathsf{Crt}$, $\frac{1}{N} \langle \boldsymbol{G}^{(1)}, \boldsymbol{\sigma} \rangle = \pm R_\mathsf{OPT} + o(1)$.

Attempt: from $e^{o(N)}$ Critical Points to 2

For all $\sigma \in Crt$, $\frac{1}{N} \langle \boldsymbol{G}^{(1)}, \sigma \rangle = \pm R_{\mathsf{OPT}} + o(1)$. Suppose $\frac{1}{N} \langle \boldsymbol{G}^{(1)}, \sigma \rangle = \pm R_{\mathsf{OPT}}$

Attempt: from $e^{o(N)}$ Critical Points to 2

For all $\sigma \in Crt$, $\frac{1}{N} \langle \boldsymbol{G}^{(1)}, \sigma \rangle = \pm R_{OPT} + o(1)$. Suppose $\frac{1}{N} \langle \boldsymbol{G}^{(1)}, \sigma \rangle = \pm R_{OPT}$

For all $\sigma \in Crt$, $\frac{1}{N} \langle \boldsymbol{G}^{(1)}, \sigma \rangle = \pm R_{OPT} + o(1)$. Suppose $\frac{1}{N} \langle \boldsymbol{G}^{(1)}, \sigma \rangle = \pm R_{OPT}$

For all $\sigma \in Crt$, $\frac{1}{N} \langle \boldsymbol{G}^{(1)}, \sigma \rangle = \pm R_{OPT} + o(1)$. Suppose $\frac{1}{N} \langle \boldsymbol{G}^{(1)}, \sigma \rangle = \pm R_{OPT}$

For all $\sigma \in Crt$, $\frac{1}{N} \langle \boldsymbol{G}^{(1)}, \sigma \rangle = \pm R_{OPT} + o(1)$. Suppose $\frac{1}{N} \langle \boldsymbol{G}^{(1)}, \sigma \rangle = \pm R_{OPT}$

• Conditional on $\boldsymbol{G}^{(1)}$, restriction to band is (N-1)-dimensional spin glass

For all $\sigma \in Crt$, $\frac{1}{N} \langle \boldsymbol{G}^{(1)}, \sigma \rangle = \pm R_{OPT} + o(1)$. Suppose $\frac{1}{N} \langle \boldsymbol{G}^{(1)}, \sigma \rangle = \pm R_{OPT}$

Conditional on G⁽¹⁾, restriction to band is (N - 1)-dimensional spin glass
 Its critical points have known correlation with field G̃⁽¹⁾

For all $\sigma \in Crt$, $\frac{1}{N} \langle \boldsymbol{G}^{(1)}, \sigma \rangle = \pm R_{OPT} + o(1)$. Suppose $\frac{1}{N} \langle \boldsymbol{G}^{(1)}, \sigma \rangle = \pm R_{OPT}$

• Conditional on $G^{(1)}$, restriction to band is (N-1)-dimensional spin glass • Its critical points have known correlation with field $\tilde{G}^{(1)}$

• Conditional on $G^{(1)}$, restriction to band is (N-1)-dimensional spin glass • Its critical points have known correlation with field $\tilde{G}^{(1)}$

• Bands shrink. All critical points localize to 2 regions of diameter $o(\sqrt{N})$

• Conditional on $G^{(1)}$, restriction to band is (N-1)-dimensional spin glass • Its critical points have known correlation with field $\tilde{G}^{(1)}$

- Bands shrink. All critical points localize to 2 regions of diameter $o(\sqrt{N})$
- $abla^2_{\sf sp} H({\pmb \sigma})$ well-conditioned \Rightarrow each region has ≤ 1 critical point

• Conditional on $G^{(1)}$, restriction to band is (N-1)-dimensional spin glass • Its critical points have known correlation with field $\tilde{G}^{(1)}$

- Bands shrink. All critical points localize to 2 regions of diameter $o(\sqrt{N})$
- $abla^2_{\sf sp} {\it H}({\pmb \sigma})$ well-conditioned \Rightarrow each region has ≤ 1 critical point
- This does not work! Critical points brittle, cannot tolerate o(1) error Θ

Lemma (H.-Sellke 23)

With probability $1 - e^{-cN}$, all ε -approximate critical points σ of H satisfy:

$$\left\| \left(\partial_{\mathsf{rad}} H(\boldsymbol{\sigma}), \frac{1}{N} H(\boldsymbol{\sigma}), \frac{1}{N} \langle \boldsymbol{G}^{(1)}, \boldsymbol{\sigma} \rangle \right) \pm (\mathsf{x}_{\mathsf{OPT}}, \mathsf{E}_{\mathsf{OPT}}, \mathsf{R}_{\mathsf{OPT}}) \right\| \le o(1) + \iota(\varepsilon) \qquad (*)$$

and $\nabla^2_{sp} H(\sigma)$ is well-conditioned.

Lemma (H.-Sellke 23)

With probability $1 - e^{-cN}$, all ε -approximate critical points σ of H satisfy:

$$\left\| \left(\partial_{\mathsf{rad}} H(\boldsymbol{\sigma}), \frac{1}{N} H(\boldsymbol{\sigma}), \frac{1}{N} \langle \boldsymbol{G}^{(1)}, \boldsymbol{\sigma} \rangle \right) \pm (\mathsf{x}_{\mathsf{OPT}}, \mathsf{E}_{\mathsf{OPT}}, \mathsf{R}_{\mathsf{OPT}}) \right\| \le o(1) + \iota(\varepsilon) \qquad (*)$$

and $\nabla^2_{sp} H(\sigma)$ is well-conditioned.

• Proof idea: consider rerandomized Hamiltionian

$$H^{\delta} = \sqrt{1 - \delta}H + \sqrt{\delta}H'.$$

Lemma (H.-Sellke 23)

With probability $1 - e^{-cN}$, all ε -approximate critical points σ of H satisfy:

$$\left\| \left(\partial_{\mathsf{rad}} H(\boldsymbol{\sigma}), \frac{1}{N} H(\boldsymbol{\sigma}), \frac{1}{N} \langle \boldsymbol{G}^{(1)}, \boldsymbol{\sigma} \rangle \right) \pm (x_{\mathsf{OPT}}, \mathcal{E}_{\mathsf{OPT}}, \mathcal{R}_{\mathsf{OPT}}) \right\| \le o(1) + \iota(\varepsilon) \qquad (*)$$

and $\nabla^2_{sp} H(\sigma)$ is well-conditioned.

• Proof idea: consider rerandomized Hamiltionian

$$H^{\delta} = \sqrt{1 - \delta} H + \sqrt{\delta} H'.$$

• Conditional on H having an ε -approx crit violating (*), H^{δ} has expected $e^{-o_{\varepsilon}(1)N}$ exact crits violating (*)

Lemma (H.-Sellke 23)

With probability $1 - e^{-cN}$, all ε -approximate critical points σ of H satisfy:

$$\left\| \left(\partial_{\mathsf{rad}} H(\boldsymbol{\sigma}), \frac{1}{N} H(\boldsymbol{\sigma}), \frac{1}{N} \langle \boldsymbol{G}^{(1)}, \boldsymbol{\sigma} \rangle \right) \pm (x_{\mathsf{OPT}}, \mathcal{E}_{\mathsf{OPT}}, \mathcal{R}_{\mathsf{OPT}}) \right\| \le o(1) + \iota(\varepsilon) \qquad (*)$$

and $\nabla^2_{sp} H(\sigma)$ is well-conditioned.

• Proof idea: consider rerandomized Hamiltionian

$$H^{\delta} = \sqrt{1-\delta}H + \sqrt{\delta}H'.$$

- Conditional on H having an ε -approx crit violating (*), H^{δ} has expected $e^{-o_{\varepsilon}(1)N}$ exact crits violating (*)
 - Proved by Kac-Rice conditionally on H

Lemma (H.-Sellke 23)

With probability $1 - e^{-cN}$, all ε -approximate critical points σ of H satisfy:

$$\left\| \left(\partial_{\mathsf{rad}} H(\boldsymbol{\sigma}), \frac{1}{N} H(\boldsymbol{\sigma}), \frac{1}{N} \langle \boldsymbol{G}^{(1)}, \boldsymbol{\sigma} \rangle \right) \pm (\mathsf{x}_{\mathsf{OPT}}, \mathsf{E}_{\mathsf{OPT}}, \mathsf{R}_{\mathsf{OPT}}) \right\| \le o(1) + \iota(\varepsilon) \qquad (*)$$

and $\nabla^2_{sp} H(\sigma)$ is well-conditioned.

• Proof idea: consider rerandomized Hamiltionian

$$H^{\delta} = \sqrt{1-\delta}H + \sqrt{\delta}H'.$$

- Conditional on H having an ε -approx crit violating (*), H^{δ} has expected $e^{-o_{\varepsilon}(1)N}$ exact crits violating (*)
 - Proved by Kac-Rice conditionally on H

• But there are $\leq e^{-c'N}$ such points in (unconditional) expectation!

For any ε -approximate critical point $\boldsymbol{\sigma}$, $\frac{1}{N} \langle \boldsymbol{G}^{(1)}, \boldsymbol{\sigma} \rangle = \pm R_{\mathsf{OPT}} + o_{\varepsilon}(1)$

• Recursion localizes all approx crits to 2 regions of diameter $o(\sqrt{N})$

For any ε -approximate critical point σ , $\frac{1}{N} \langle \boldsymbol{G}^{(1)}, \sigma \rangle = \pm R_{\mathsf{OPT}} + o_{\varepsilon}(1)$

• Recursion localizes all approx crits to 2 regions of diameter $o(\sqrt{N})$

• $abla^2_{sp} H(\sigma)$ well-conditioned \Rightarrow each region has ≤ 1 exact crit

For any ε -approximate critical point σ , $\frac{1}{N} \langle \boldsymbol{G}^{(1)}, \sigma \rangle = \pm R_{\mathsf{OPT}} + o_{\varepsilon}(1)$

• Recursion localizes all approx crits to 2 regions of diameter $o(\sqrt{N})$

- $\nabla^2_{sp} H(\sigma)$ well-conditioned \Rightarrow each region has ≤ 1 exact crit
- ullet \geq 2 exact crits globally \Rightarrow each region has exactly 1

For any ε -approximate critical point σ , $\frac{1}{N} \langle \boldsymbol{G}^{(1)}, \sigma \rangle = \pm R_{\text{OPT}} + o_{\varepsilon}(1)$

• Recursion localizes all approx crits to 2 regions of diameter $o(\sqrt{N})$

- $abla^2_{\sf sp} {\cal H}({\pmb \sigma})$ well-conditioned \Rightarrow each region has ≤ 1 exact crit
- \geq 2 exact crits globally \Rightarrow each region has exactly 1
- So 2 exact crits, all approx crits near an exact crit. Strong trivialization!

$$G^{(1)} = 0$$

Branching OGP (H.-Sellke 21, 23): optimization algorithms can reach states forming ultrametric tree with **random** root correlated with $G^{(1)}$

• Algorithmic tree is non-degenerate precisely when $\xi'(1) < \xi''(1)$

- Algorithmic tree is non-degenerate precisely when $\xi'(1) < \xi''(1)$
- AMP constructs e^{cN} points in algorithmic tree, all approximate critical points

- Up to now: polynomials in variables $\sigma_1, \ldots, \sigma_N$ that all look alike
- Multi-species models: r = O(1) different "variable types"

- Up to now: polynomials in variables $\sigma_1, \ldots, \sigma_N$ that all look alike
- Multi-species models: r = O(1) different "variable types"
- Formally, each coordinate part of a species $s \in \mathscr{S} = \{1, \dots, r\}$

$$[N] = \mathcal{I}_1 \cup \cdots \cup \mathcal{I}_r, \qquad |\mathcal{I}_s| = \lambda_s N$$

- Up to now: polynomials in variables $\sigma_1, \ldots, \sigma_N$ that all look alike
- Multi-species models: r = O(1) different "variable types"
- Formally, each coordinate part of a species $s \in \mathscr{S} = \{1, \ldots, r\}$

$$[N] = \mathcal{I}_1 \cup \cdots \cup \mathcal{I}_r, \qquad |\mathcal{I}_s| = \lambda_s N$$

• Interaction weights $\gamma_2, \gamma_3, \ldots$ now $(\gamma_{s_1, s_2})_{s_1, s_2 \in \mathscr{S}}, (\gamma_{s_1, s_2, s_3})_{s_1, s_2, s_3 \in \mathscr{S}}, \ldots$

- Up to now: polynomials in variables $\sigma_1, \ldots, \sigma_N$ that all look alike
- Multi-species models: r = O(1) different "variable types"
- Formally, each coordinate part of a species $s \in \mathscr{S} = \{1, \ldots, r\}$

$$[N] = \mathcal{I}_1 \cup \cdots \cup \mathcal{I}_r, \qquad |\mathcal{I}_s| = \lambda_s N$$

- Interaction weights $\gamma_2, \gamma_3, \ldots$ now $(\gamma_{s_1, s_2})_{s_1, s_2 \in \mathscr{S}}, (\gamma_{s_1, s_2, s_3})_{s_1, s_2, s_3 \in \mathscr{S}}, \ldots$
- Input space now product of spheres

$$\mathcal{P}_{N} = \left\{ \boldsymbol{\sigma} \in \mathbb{R}^{N} : \left\| \boldsymbol{\sigma}_{\mid \mathcal{I}_{s}}
ight\|_{2}^{2} = \lambda_{s} N \quad \forall s \in \mathscr{S}
ight\}$$

- Up to now: polynomials in variables $\sigma_1, \ldots, \sigma_N$ that all look alike
- Multi-species models: r = O(1) different "variable types"
- Formally, each coordinate part of a species $s \in \mathscr{S} = \{1, \ldots, r\}$

$$[N] = \mathcal{I}_1 \cup \cdots \cup \mathcal{I}_r, \qquad |\mathcal{I}_s| = \lambda_s N$$

- Interaction weights $\gamma_2, \gamma_3, \ldots$ now $(\gamma_{s_1, s_2})_{s_1, s_2 \in \mathscr{S}}, (\gamma_{s_1, s_2, s_3})_{s_1, s_2, s_3 \in \mathscr{S}}, \ldots$
- Input space now product of spheres

$$\mathcal{P}_{N} = \left\{ \boldsymbol{\sigma} \in \mathbb{R}^{N} : \left\| \boldsymbol{\sigma}_{|\mathcal{I}_{s}} \right\|_{2}^{2} = \lambda_{s} N \quad \forall s \in \mathscr{S}
ight\}$$

• Example: bipartite SK $H(x, y) = \langle x, Gy \rangle$ where $x, y \in \mathcal{S}_{N/2}$

 $\xi(q_1,\ldots,q_r)$ now *r*-variate polynomial (so $abla \xi \in \mathbb{R}^r$, $abla^2 \xi \in \mathbb{R}^{r imes r}$)

 $\xi(q_1,\ldots,q_r)$ now *r*-variate polynomial (so $abla \xi \in \mathbb{R}^r$, $abla^2 \xi \in \mathbb{R}^{r imes r}$)

Theorem (H.-Sellke 23)

 $\xi(q_1,\ldots,q_r)$ now *r*-variate polynomial (so $abla \xi \in \mathbb{R}^r$, $abla^2 \xi \in \mathbb{R}^{r imes r}$)

Theorem (H.-Sellke 23)

- $\mathbb{E}|\mathsf{Crt}| = e^{o(N)}$
- W.h.p. exactly 2^r critical points, all well-conditioned, all approx crits near one

 $\xi(q_1,\ldots,q_r)$ now *r*-variate polynomial (so $abla \xi \in \mathbb{R}^r$, $abla^2 \xi \in \mathbb{R}^{r imes r}$)

Theorem (H.-Sellke 23)

- $\mathbb{E}|\mathsf{Crt}| = e^{o(N)}$
- W.h.p. exactly 2^r critical points, all well-conditioned, all approx crits near one
- Determine energy, r radial derivatives, r correlations with external field at each

 $\xi(q_1,\ldots,q_r)$ now *r*-variate polynomial (so $abla \xi \in \mathbb{R}^r$, $abla^2 \xi \in \mathbb{R}^{r imes r}$)

Theorem (H.-Sellke 23)

- $\mathbb{E}|\mathsf{Crt}| = e^{o(N)}$
- W.h.p. exactly 2^r critical points, all well-conditioned, all approx crits near one
- Determine energy, r radial derivatives, r correlations with external field at each
- 2^r critical points minimal for any Morse function on product of r spheres

 $\xi(q_1,\ldots,q_r)$ now *r*-variate polynomial (so $abla \xi \in \mathbb{R}^r$, $abla^2 \xi \in \mathbb{R}^{r imes r}$)

Theorem (H.-Sellke 23)

- $\mathbb{E}|\mathsf{Crt}| = e^{o(N)}$
- W.h.p. exactly 2^r critical points, all well-conditioned, all approx crits near one
- Determine energy, r radial derivatives, r correlations with external field at each
- 2^r critical points minimal for any Morse function on product of r spheres
- Consequence: ground state energy when $diag(\nabla \xi(\vec{1})) \succ \nabla^2 \xi(\vec{1})$

 $\xi(q_1,\ldots,q_r)$ now *r*-variate polynomial (so $abla \xi \in \mathbb{R}^r$, $abla^2 \xi \in \mathbb{R}^{r imes r}$)

Theorem (H.-Sellke 23)

If $diag(\nabla \xi(\vec{1})) \succ \nabla^2 \xi(\vec{1})$, both annealed and strong trivialization hold.

- $\mathbb{E}|\mathsf{Crt}| = e^{o(N)}$
- W.h.p. exactly 2^r critical points, all well-conditioned, all approx crits near one
- Determine energy, r radial derivatives, r correlations with external field at each
- 2^r critical points minimal for any Morse function on product of r spheres
- Consequence: ground state energy when $\text{diag}(\nabla \xi(\vec{1})) \succ \nabla^2 \xi(\vec{1})$

Theorem (H.-Sellke 23)

- $\mathbb{E}|\mathsf{Crt}| \geq e^{cN}$
- e^{cN} well-separated approximate critical points w.h.p.

Annealed Complexity for Multi-Species

$$\begin{split} \mathbb{E}|\mathsf{Crt}| &= (\mathsf{simple term}) \times \mathbb{E}|\det \nabla^2_{\mathsf{sp}} \mathcal{H}(\boldsymbol{\sigma})| \\ &= (\mathsf{simple term}) \times \mathbb{E}|\det \left(\nabla^2_{\mathsf{tan}} \mathcal{H}(\boldsymbol{\sigma}) - \mathsf{Curv}\right) \end{split}$$
Annealed Complexity for Multi-Species

$$\begin{split} \mathbb{E}|\mathsf{Crt}| &= (\mathsf{simple term}) \times \mathbb{E}|\det \nabla^2_{\mathsf{sp}} H(\boldsymbol{\sigma})| \\ &= (\mathsf{simple term}) \times \mathbb{E}|\det \left(\nabla^2_{\mathsf{tan}} H(\boldsymbol{\sigma}) - \mathsf{Curv}\right)| \end{split}$$

In this setting (with *r* blocks of size $\lambda_1 N, \ldots, \lambda_r N$)

and $\nabla_{\mathsf{rad}} H(\boldsymbol{\sigma}) = (\partial_{\mathsf{rad},1} H(\boldsymbol{\sigma}), \dots, \partial_{\mathsf{rad},r} H(\boldsymbol{\sigma})) =_d \mathcal{N}(0, \Sigma/N)$

Annealed Complexity for Multi-Species

$$\begin{split} \mathbb{E}|\mathsf{Crt}| &= (\mathsf{simple term}) \times \mathbb{E}|\det \nabla^2_{\mathsf{sp}} H(\boldsymbol{\sigma})| \\ &= (\mathsf{simple term}) \times \mathbb{E}|\det \left(\nabla^2_{\mathsf{tan}} H(\boldsymbol{\sigma}) - \mathsf{Curv}\right)| \end{split}$$

In this setting (with *r* blocks of size $\lambda_1 N, \ldots, \lambda_r N$)

and $\nabla_{\mathsf{rad}} H(\sigma) = (\partial_{\mathsf{rad},1} H(\sigma), \dots, \partial_{\mathsf{rad},r} H(\sigma)) =_d \mathcal{N}(0, \Sigma/N)$

Integrate out $\nabla_{\mathsf{rad}} H(\sigma) = \vec{x}$:

$$\mathbb{E}|\mathsf{Crt}| = (\mathsf{simple term}) \times \int_{\mathbb{R}^r} \mathbb{E}|\det M_N(\vec{x})| \exp\left(-\frac{N}{2} \langle \vec{x}, \Sigma^{-1} \vec{x} \rangle\right) \; \mathsf{d}\vec{x}$$

Annealed Complexity for Multi-Species

$$\begin{split} \mathbb{E}|\mathsf{Crt}| &= (\mathsf{simple term}) \times \mathbb{E}|\det \nabla^2_{\mathsf{sp}} H(\boldsymbol{\sigma})| \\ &= (\mathsf{simple term}) \times \mathbb{E}|\det \left(\nabla^2_{\mathsf{tan}} H(\boldsymbol{\sigma}) - \mathsf{Curv}\right)| \end{split}$$

In this setting (with *r* blocks of size $\lambda_1 N, \ldots, \lambda_r N$)

and $\nabla_{\mathsf{rad}} H(\sigma) = (\partial_{\mathsf{rad},1} H(\sigma), \dots, \partial_{\mathsf{rad},r} H(\sigma)) =_d \mathcal{N}(0, \Sigma/N)$

Integrate out $\nabla_{\mathsf{rad}} H(\sigma) = \vec{x}$:

$$\mathbb{E}|\mathsf{Crt}| = (\mathsf{simple term}) imes \int_{\mathbb{R}^r} \mathbb{E}|\det M_N(ec{x})| \exp\left(-rac{N}{2} \langle ec{x}, \Sigma^{-1}ec{x}
angle
ight) \; \mathsf{d}ec{x}$$

Laplace's principle \Rightarrow maximize exponential rate of integrand over $\vec{x} \in \mathbb{R}^r$

Brice Huang (MIT)

Topological Trivialization

• How to calculate $\mathbb{E} |\det M_N(\vec{x})|$ when $M_N(\vec{x})$ is not GOE?

- How to calculate $\mathbb{E} |\det M_N(\vec{x})|$ when $M_N(\vec{x})$ is not GOE?
- Free probability \Rightarrow limiting spectral distribution μ of $M_N(\vec{x})$

- How to calculate $\mathbb{E} |\det M_N(\vec{x})|$ when $M_N(\vec{x})$ is not GOE?
- Free probability \Rightarrow limiting spectral distribution μ of $M_N(\vec{x})$

• Heuristically,

$$rac{1}{N}\log \mathbb{E} |\det(M_N(ec{x}))| pprox rac{1}{N}\sum_{i=1}^N \log |\lambda_i| pprox \int \log |\lambda| \mathrm{d} \mu(\lambda).$$

- How to calculate $\mathbb{E} |\det M_N(\vec{x})|$ when $M_N(\vec{x})$ is not GOE?
- Free probability \Rightarrow limiting spectral distribution μ of $M_N(\vec{x})$

• Heuristically,

$$rac{1}{N}\log \mathbb{E} |\det(M_{\mathcal{N}}(ec{x}))| pprox rac{1}{N}\sum_{i=1}^{N}\log |\lambda_i| pprox \int \log |\lambda| \mathrm{d} \mu(\lambda).$$

• (Ben Arous-Bourgade-McKenna 23, McKenna 21): this is correct **to leading** exponential order

Brice Huang (MIT)

Topological Trivialization

Unfortunately $\mathbb{E} |\det M_N(\vec{x})|$ is still very non-explicit.

Unfortunately $\mathbb{E} |\det M_N(\vec{x})|$ is still very non-explicit.

Let $m_1(z), \ldots, m_r(z) \in \mathbb{H}$ solve vector Dyson equation

$$x_{s}+z=-rac{1}{m_{s}(z)}-\sum_{s'=1}^{r}c_{s,s'}m_{s'}(z), \qquad z\in\mathbb{H}$$

and $m(z) = \sum_{s} \lambda_{s} m_{s}(z)$.

Unfortunately $\mathbb{E} |\det M_N(\vec{x})|$ is still very non-explicit.

Let $m_1(z), \ldots, m_r(z) \in \mathbb{H}$ solve vector Dyson equation

$$x_s+z=-rac{1}{m_s(z)}-\sum_{s'=1}^r c_{s,s'}m_{s'}(z),\qquad z\in\mathbb{H}$$

and $m(z) = \sum_{s} \lambda_{s} m_{s}(z)$.

Limiting spectral measure $\mu_{\vec{x}}$ of $M_N(\vec{x})$ is unique measure on \mathbb{R} satisfying

$$m(z) = \int_{\mathbb{R}} rac{\mu_{ec{x}}(\mathsf{d}\lambda)}{\lambda-z}, \qquad z \in \mathbb{H}$$

Unfortunately $\mathbb{E} |\det M_N(\vec{x})|$ is still very non-explicit.

Let $m_1(z), \ldots, m_r(z) \in \mathbb{H}$ solve vector Dyson equation

$$x_s+z=-rac{1}{m_s(z)}-\sum_{s'=1}^r c_{s,s'}m_{s'}(z),\qquad z\in\mathbb{H}$$

and $m(z) = \sum_{s} \lambda_{s} m_{s}(z)$.

Limiting spectral measure $\mu_{\vec{x}}$ of $M_N(\vec{x})$ is unique measure on \mathbb{R} satisfying

$$m(z) = \int_{\mathbb{R}} \frac{\mu_{\vec{x}}(\mathsf{d}\lambda)}{\lambda - z}, \qquad z \in \mathbb{H}$$

Then

$$rac{1}{N}\log \mathbb{E} |\det M_N(ec{x})| = \int \log |\lambda| \mu_{ec{x}}(\mathrm{d}\lambda) + o(1).$$

• Wish to maximize $F(\vec{x}) = C + \int \log |\lambda| \mu_{\vec{x}}(d\lambda) - \frac{1}{2} \langle \vec{x}, \Sigma^{-1} \vec{x} \rangle$

- Wish to maximize $F(\vec{x}) = C + \int \log |\lambda| \mu_{\vec{x}}(d\lambda) \frac{1}{2} \langle \vec{x}, \Sigma^{-1} \vec{x} \rangle$
- We find closed form $(\xi' = \nabla \xi(\vec{1}), \, \xi'' = \nabla^2 \xi(\vec{1}))$

$$\int \log |\lambda| \mu_{\vec{x}}(\mathsf{d}\lambda) = \frac{1}{2} \mathsf{Re}(\langle \vec{m}(0), \xi'' \vec{m}(0) \rangle) - \sum_{s \in [r]} \lambda_s \log |m_s(0)|.$$

- Wish to maximize $F(\vec{x}) = C + \int \log |\lambda| \mu_{\vec{x}}(d\lambda) \frac{1}{2} \langle \vec{x}, \Sigma^{-1} \vec{x} \rangle$
- We find closed form $(\xi' = \nabla \xi(\vec{1}), \, \xi'' = \nabla^2 \xi(\vec{1}))$

$$\int \log |\lambda| \mu_{\vec{x}}(\mathsf{d}\lambda) = \frac{1}{2} \mathsf{Re}(\langle \vec{m}(0), \xi'' \vec{m}(0) \rangle) - \sum_{s \in [r]} \lambda_s \log |m_s(0)|.$$

• If $\nabla F(\vec{x}) = 0$, then $\operatorname{Re}(m_s(0)) = 0$ or $|m_s(0)| = \sqrt{\lambda_s/\xi'_s}$

- Wish to maximize $F(\vec{x}) = C + \int \log |\lambda| \mu_{\vec{x}}(d\lambda) \frac{1}{2} \langle \vec{x}, \Sigma^{-1} \vec{x} \rangle$
- We find closed form $(\xi' = \nabla \xi(\vec{1}), \, \xi'' = \nabla^2 \xi(\vec{1}))$

$$\int \log |\lambda| \mu_{\vec{x}}(\mathsf{d}\lambda) = \frac{1}{2} \mathsf{Re}(\langle \vec{m}(0), \xi'' \vec{m}(0) \rangle) - \sum_{s \in [r]} \lambda_s \log |m_s(0)|.$$

- If $\nabla F(\vec{x}) = 0$, then $\operatorname{Re}(m_s(0)) = 0$ or $|m_s(0)| = \sqrt{\lambda_s/\xi'_s}$
- About 3^r solutions, one for each choice of $\Re(m_s(0)) = 0$, < 0, > 0

- Wish to maximize $F(\vec{x}) = C + \int \log |\lambda| \mu_{\vec{x}}(d\lambda) \frac{1}{2} \langle \vec{x}, \Sigma^{-1} \vec{x} \rangle$
- We find closed form $(\xi' = \nabla \xi(\vec{1}), \, \xi'' = \nabla^2 \xi(\vec{1}))$

$$\int \log |\lambda| \mu_{\vec{x}}(\mathsf{d}\lambda) = \frac{1}{2} \mathsf{Re}(\langle \vec{m}(0), \xi'' \vec{m}(0) \rangle) - \sum_{s \in [r]} \lambda_s \log |m_s(0)|.$$

- If $\nabla F(\vec{x}) = 0$, then $\operatorname{Re}(m_s(0)) = 0$ or $|m_s(0)| = \sqrt{\lambda_s/\xi'_s}$
- About 3^r solutions, one for each choice of $\Re(m_s(0)) = 0$, < 0, > 0
- Of these 2' satisfy $F(ec{x})=0$, where $m_s(0)=\pm\sqrt{\lambda_s/\xi_s'}$

• Need to show the remaining stationary points of F are **not** maxima

• Need to show the remaining stationary points of F are **not** maxima

• At each, construct \vec{w} where $\langle \vec{w}, \nabla^2 F(\vec{x}) \vec{w} \rangle > 0$

• Need to show the remaining stationary points of F are **not** maxima

- At each, construct \vec{w} where $\langle \vec{w}, \nabla^2 F(\vec{x}) \vec{w} \rangle > 0$
- Thus max $F = 0 \Rightarrow \mathbb{E}|\operatorname{Crt}| = e^{o(N)}$

• Annealed trivialization $\Rightarrow \mathbb{E}|\mathsf{Crt}| = e^{o(N)}$, and for each $\sigma \in \mathsf{Crt}$:

- Annealed trivialization $\Rightarrow \mathbb{E}|\mathsf{Crt}| = e^{o(N)}$, and for each $\sigma \in \mathsf{Crt}$:
 - $\left(\nabla_{\mathsf{rad}} \mathcal{H}(\boldsymbol{\sigma}), \frac{1}{N} \mathcal{H}(\boldsymbol{\sigma}), (\frac{1}{N} \langle \boldsymbol{G}_s^{(1)}, \boldsymbol{\sigma} \rangle)_{s \in \mathscr{S}} \right)$ one of 2^r possible values, up to o(1)

- Annealed trivialization $\Rightarrow \mathbb{E}|\mathsf{Crt}| = e^{o(N)}$, and for each $\sigma \in \mathsf{Crt}$:
 - $\left(\nabla_{\mathsf{rad}} \mathcal{H}(\boldsymbol{\sigma}), \frac{1}{N} \mathcal{H}(\boldsymbol{\sigma}), (\frac{1}{N} \langle \boldsymbol{G}_s^{(1)}, \boldsymbol{\sigma} \rangle)_{s \in \mathscr{S}} \right)$ one of 2^r possible values, up to o(1)
 - $\nabla^2_{sp} H(\sigma)$ well-conditioned

- Annealed trivialization $\Rightarrow \mathbb{E}|\mathsf{Crt}| = e^{o(N)}$, and for each $\sigma \in \mathsf{Crt}$:
 - $\left(\nabla_{\mathsf{rad}} \mathcal{H}(\boldsymbol{\sigma}), \frac{1}{N} \mathcal{H}(\boldsymbol{\sigma}), (\frac{1}{N} \langle \boldsymbol{G}_s^{(1)}, \boldsymbol{\sigma} \rangle)_{s \in \mathscr{S}} \right)$ one of 2^r possible values, up to o(1)
 - $\nabla^2_{sp} H(\sigma)$ well-conditioned
- $\bullet\,$ Approximate to exact lemma $\Rightarrow\,$ all approx crits satisfy this too

- Annealed trivialization $\Rightarrow \mathbb{E}|\mathsf{Crt}| = e^{o(N)}$, and for each $\sigma \in \mathsf{Crt}$:
 - $\left(\nabla_{\mathsf{rad}} \mathcal{H}(\boldsymbol{\sigma}), \frac{1}{N} \mathcal{H}(\boldsymbol{\sigma}), (\frac{1}{N} \langle \boldsymbol{G}_s^{(1)}, \boldsymbol{\sigma} \rangle)_{s \in \mathscr{S}} \right)$ one of 2^r possible values, up to o(1)
 - $abla^2_{\mathsf{sp}} \mathcal{H}(\sigma)$ well-conditioned
- $\bullet\,$ Approximate to exact lemma $\Rightarrow\,$ all approx crits satisfy this too
- Band recursion \Rightarrow localize all approx crits to 2^r small regions

- Annealed trivialization $\Rightarrow \mathbb{E}|\mathsf{Crt}| = e^{o(N)}$, and for each $\sigma \in \mathsf{Crt}$:
 - $\left(\nabla_{\mathsf{rad}} \mathcal{H}(\boldsymbol{\sigma}), \frac{1}{N} \mathcal{H}(\boldsymbol{\sigma}), (\frac{1}{N} \langle \boldsymbol{G}_s^{(1)}, \boldsymbol{\sigma} \rangle)_{s \in \mathscr{S}} \right)$ one of 2^r possible values, up to o(1)
 - $\nabla^2_{sp} H(\sigma)$ well-conditioned
- $\bullet\,$ Approximate to exact lemma \Rightarrow all approx crits satisfy this too
- Band recursion \Rightarrow localize all approx crits to 2^r small regions
- $abla^2_{\sf sp} {\it H}({\pmb \sigma})$ well-conditioned \Rightarrow each region has ≤ 1 exact crit

- Annealed trivialization $\Rightarrow \mathbb{E}|\mathsf{Crt}| = e^{o(N)}$, and for each $\sigma \in \mathsf{Crt}$:
 - $\left(\nabla_{\mathsf{rad}} \mathcal{H}(\boldsymbol{\sigma}), \frac{1}{N} \mathcal{H}(\boldsymbol{\sigma}), (\frac{1}{N} \langle \boldsymbol{G}_s^{(1)}, \boldsymbol{\sigma} \rangle)_{s \in \mathscr{S}} \right)$ one of 2^r possible values, up to o(1)
 - $abla^2_{\mathsf{sp}} \mathcal{H}(\sigma)$ well-conditioned
- $\bullet\,$ Approximate to exact lemma \Rightarrow all approx crits satisfy this too
- Band recursion \Rightarrow localize all approx crits to 2^r small regions
- $abla^2_{\sf sp} {\it H}({\pmb \sigma})$ well-conditioned \Rightarrow each region has ≤ 1 exact crit
- But $\geq 2^r$ exact crits by Morse theory \Rightarrow each region has 1 exact crit, all approx crits near one

- Annealed trivialization $\Rightarrow \mathbb{E}|\mathsf{Crt}| = e^{o(N)}$, and for each $\sigma \in \mathsf{Crt}$:
 - $\left(\nabla_{\mathsf{rad}} \mathcal{H}(\boldsymbol{\sigma}), \frac{1}{N} \mathcal{H}(\boldsymbol{\sigma}), (\frac{1}{N} \langle \boldsymbol{G}_s^{(1)}, \boldsymbol{\sigma} \rangle)_{s \in \mathscr{S}} \right)$ one of 2^r possible values, up to o(1)
 - $abla^2_{\mathsf{sp}} \mathcal{H}(\sigma)$ well-conditioned
- $\bullet\,$ Approximate to exact lemma $\Rightarrow\,$ all approx crits satisfy this too
- Band recursion \Rightarrow localize all approx crits to 2^r small regions
- $abla^2_{\sf sp} {\it H}({\pmb \sigma})$ well-conditioned \Rightarrow each region has ≤ 1 exact crit
- But $\geq 2^r$ exact crits by Morse theory \Rightarrow each region has 1 exact crit, all approx crits near one
- Converse: algorithmically construct e^{cN} approx crits with AMP

• We determine phase boundary for annealed and strong topological trivialization in multi-species spherical spin glasses

- We determine phase boundary for annealed and strong topological trivialization in multi-species spherical spin glasses
- Approximate critical points controlled by approximate-to-exact lemma

- We determine phase boundary for annealed and strong topological trivialization in multi-species spherical spin glasses
- Approximate critical points controlled by approximate-to-exact lemma
- Band recursion \Rightarrow strong trivialization, given only $e^{o(N)}$ -resolution annealed inputs

- We determine phase boundary for annealed and strong topological trivialization in multi-species spherical spin glasses
- Approximate critical points controlled by approximate-to-exact lemma
- Band recursion \Rightarrow strong trivialization, given only $e^{o(N)}$ -resolution annealed inputs

