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Motivation

Motivating problem

Sample from a high-dimensional distribution µ(dx) ∝ eV(x) dx with an efficient algorithm.

Useful in: inference, integration, optimization, . . .

µ strongly log-concave: ∇2V � −αI
Sampling is easy!

µ non-log-concave, highly multimodal
Setting of this talk
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Our model: spherical mean-field spin glass

Random cubic polynomial on spherical domain SN =
√

N · SN−1:

H(x) =
1
N

N

∑
i1,i2,i3=1

gi1,i2,i3 xi1 xi2 xi3 gi1,i2,i3
i.i.d.∼ N (0, 1)

Gibbs measure: µβ(dx) ∝ eβH(x) ≡ eV(x) β > 0 inverse temperature

• β = 0: µβ = uniform(SN). Easy to sample.

• β large: highly non-log-concave. H has exponentially many local maxima. Sampling seems hard!
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Langevin dynamics

Canonical Markov chain for continuous distributions:

dXt = ∇V(Xt)dt +
√

2 dBt

Xt+δ − Xt = δ · ∇V(Xt) +
√

2δ · gt
↑

N (0,IN)

Stationary distribution µ(dx) ∝ eV(x) .

Yields an efficient sampler if Markov chain mixes rapidly, i.e.

dTV(Law(XT), µ) = o(1) for T = poly(N) .
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Mixing guarantees: worst-case vs. random initialization

Ideal guarantee: rapid mixing from worst-case initialization. But not always possible!

µ well-connected µ well-connected except
o(1) mass in metastable states

µ shattered

Mixes from worst-case init Fails to mix from worst-case init
Can we show mixing from random init?

Fails to mix from any init
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Mixing guarantees: worst-case vs. random initialization

Ideal guarantee: rapid mixing from worst-case initialization. But not always possible!

µ well-connected µ well-connected except
o(1) mass in metastable states

µ shattered

Mixes from worst-case init Fails to mix from worst-case init
Can we show mixing from random init?

Fails to mix from any init

Huang, Mohanty, Rajaraman, Wu Weak Poincaré inequalities INFORMS APS 2025 5 / 13



Mixing guarantees: worst-case vs. random initialization

Ideal guarantee: rapid mixing from worst-case initialization. But not always possible!

µ well-connected µ well-connected except
o(1) mass in metastable states

µ shattered

Mixes from worst-case init

Fails to mix from worst-case init
Can we show mixing from random init?

Fails to mix from any init

Huang, Mohanty, Rajaraman, Wu Weak Poincaré inequalities INFORMS APS 2025 5 / 13



Mixing guarantees: worst-case vs. random initialization

Ideal guarantee: rapid mixing from worst-case initialization. But not always possible!

µ well-connected µ well-connected except
o(1) mass in metastable states

µ shattered

Mixes from worst-case init Fails to mix from worst-case init

Can we show mixing from random init?
Fails to mix from any init

Huang, Mohanty, Rajaraman, Wu Weak Poincaré inequalities INFORMS APS 2025 5 / 13



Mixing guarantees: worst-case vs. random initialization

Ideal guarantee: rapid mixing from worst-case initialization. But not always possible!

µ well-connected µ well-connected except
o(1) mass in metastable states

µ shattered

Mixes from worst-case init Fails to mix from worst-case init
Can we show mixing from random init?

Fails to mix from any init

Huang, Mohanty, Rajaraman, Wu Weak Poincaré inequalities INFORMS APS 2025 5 / 13



Mixing guarantees: worst-case vs. random initialization

Ideal guarantee: rapid mixing from worst-case initialization. But not always possible!

µ well-connected µ well-connected except
o(1) mass in metastable states

µ shattered

Mixes from worst-case init Fails to mix from worst-case init
Can we show mixing from random init?

Fails to mix from any init

Huang, Mohanty, Rajaraman, Wu Weak Poincaré inequalities INFORMS APS 2025 5 / 13



Simulated annealing

• Target distribution: µ(dx) ∝ eV(x) .

• For 0 6 β 6 1, define intermediate distributions µβ(x) ∝ eβV(x) . β ↔ “artificial” inverse temperature.

• Algorithm: run Langevin dynamics for µβ , and slowly increase β from 0 to 1.

β = 0.1

• Natural algorithm, but rigorous guarantees scarce.
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• Algorithm: run Langevin dynamics for µβ , and slowly increase β from 0 to 1.

β = 0.2

• Natural algorithm, but rigorous guarantees scarce.
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• Natural algorithm, but rigorous guarantees scarce.

Huang, Mohanty, Rajaraman, Wu Weak Poincaré inequalities INFORMS APS 2025 6 / 13



Simulated annealing

• Target distribution: µ(dx) ∝ eV(x) .

• For 0 6 β 6 1, define intermediate distributions µβ(x) ∝ eβV(x) . β ↔ “artificial” inverse temperature.

• Algorithm: run Langevin dynamics for µβ , and slowly increase β from 0 to 1.

β = 0.6

• Natural algorithm, but rigorous guarantees scarce.

Huang, Mohanty, Rajaraman, Wu Weak Poincaré inequalities INFORMS APS 2025 6 / 13



Simulated annealing

• Target distribution: µ(dx) ∝ eV(x) .

• For 0 6 β 6 1, define intermediate distributions µβ(x) ∝ eβV(x) . β ↔ “artificial” inverse temperature.

• Algorithm: run Langevin dynamics for µβ , and slowly increase β from 0 to 1.

β = 0.8

• Natural algorithm, but rigorous guarantees scarce.

Huang, Mohanty, Rajaraman, Wu Weak Poincaré inequalities INFORMS APS 2025 6 / 13



Simulated annealing

• Target distribution: µ(dx) ∝ eV(x) .

• For 0 6 β 6 1, define intermediate distributions µβ(x) ∝ eβV(x) . β ↔ “artificial” inverse temperature.

• Algorithm: run Langevin dynamics for µβ , and slowly increase β from 0 to 1.

β = 1.0

• Natural algorithm, but rigorous guarantees scarce.

Huang, Mohanty, Rajaraman, Wu Weak Poincaré inequalities INFORMS APS 2025 6 / 13



Simulated annealing

• Target distribution: µ(dx) ∝ eV(x) .

• For 0 6 β 6 1, define intermediate distributions µβ(x) ∝ eβV(x) . β ↔ “artificial” inverse temperature.

• Algorithm: run Langevin dynamics for µβ , and slowly increase β from 0 to 1.

β = 1.0

• Natural algorithm, but rigorous guarantees scarce.

Huang, Mohanty, Rajaraman, Wu Weak Poincaré inequalities INFORMS APS 2025 6 / 13



Main result: sampling for spherical mean-field spin glass
For sampling from Gibbs measure µβ(dx) ∝ eβH(x) ≡ eV(x):

0

β

βsh

Prediction: Langevin mixes from random init

Gibbs measure shatters; sampling predicted hard
(Crisanti Horner Sommers 93, El Alaoui Montanari Sellke 23,

Gamarnik Jagannath Kızıldağ 23, El Alaoui 24)

Langevin mixes rapidly from worst-case init
(Gheissari Jagannath 19, Eldan Koehler Zeitouni 22,

Anari Jain Pham Koehler Vuong 24, Anari Koehler Vuong 24)

βuniq

Langevin mixes slowly from worst-case init
(Ben Arous Jagannath 24)

βSL

Algorithmic stochastic localization succeeds
(El Alaoui Montanari Sellke 22, H. Montanari Pham 24)

This work: simulated annealing succeeds
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How to prove worst-case rapid mixing

Show the Markov chain P contracts distance to stationarity:

distance
(

Ptν‖µ
)
6 e−Ct · distance

(
ν‖µ

)
for all distributions ν

where C > 1/ poly(N).

There are by now many ways to show this:
Coupling (Bubley Dyer Jerrum 96)
Path coupling (Jerrum 95, Bubley Dyer 97)
Canonical paths (Jerrum Sinclair 89)
Curvature / Bakry–Émery theory (Bakry Émery 06, Villani 09)
Zero-freeness (Lee Yang 52, Barvinok 16, Chen Liu Vigoda 24)
Correlation decay (Dyer Sinclair Vigoda Weitz 04, Weitz 06)
Spectral independence (Anari Liu Oveis Gharan Vinzant 19)
Entropic independence (Anari Jain Pham Koehler Vuong 21)
Stochastic localization (Eldan 13, Eldan Koehler Zeitouni 22)

Localization schemes

Huang, Mohanty, Rajaraman, Wu Weak Poincaré inequalities INFORMS APS 2025 8 / 13



How to prove worst-case rapid mixing

Show the Markov chain P contracts distance to stationarity:

distance
(

Ptν‖µ
)
6 e−Ct · distance

(
ν‖µ

)
for all distributions ν

where C > 1/ poly(N).

There are by now many ways to show this:
Coupling (Bubley Dyer Jerrum 96)
Path coupling (Jerrum 95, Bubley Dyer 97)
Canonical paths (Jerrum Sinclair 89)
Curvature / Bakry–Émery theory (Bakry Émery 06, Villani 09)
Zero-freeness (Lee Yang 52, Barvinok 16, Chen Liu Vigoda 24)
Correlation decay (Dyer Sinclair Vigoda Weitz 04, Weitz 06)
Spectral independence (Anari Liu Oveis Gharan Vinzant 19)
Entropic independence (Anari Jain Pham Koehler Vuong 21)
Stochastic localization (Eldan 13, Eldan Koehler Zeitouni 22)

Localization schemes

Huang, Mohanty, Rajaraman, Wu Weak Poincaré inequalities INFORMS APS 2025 8 / 13



How to prove worst-case rapid mixing

Show the Markov chain P contracts distance to stationarity:

distance
(

Ptν‖µ
)
6 e−Ct · distance

(
ν‖µ

)
for all distributions ν

where C > 1/ poly(N).

There are by now many ways to show this:
Coupling (Bubley Dyer Jerrum 96)
Path coupling (Jerrum 95, Bubley Dyer 97)
Canonical paths (Jerrum Sinclair 89)
Curvature / Bakry–Émery theory (Bakry Émery 06, Villani 09)
Zero-freeness (Lee Yang 52, Barvinok 16, Chen Liu Vigoda 24)
Correlation decay (Dyer Sinclair Vigoda Weitz 04, Weitz 06)
Spectral independence (Anari Liu Oveis Gharan Vinzant 19)
Entropic independence (Anari Jain Pham Koehler Vuong 21)
Stochastic localization (Eldan 13, Eldan Koehler Zeitouni 22)

Localization schemes

Huang, Mohanty, Rajaraman, Wu Weak Poincaré inequalities INFORMS APS 2025 8 / 13



How to prove worst-case rapid mixing

Show the Markov chain P contracts distance to stationarity:

distance
(

Ptν‖µ
)
6 e−Ct · distance

(
ν‖µ

)
for all distributions ν

where C > 1/ poly(N).

There are by now many ways to show this:
Coupling (Bubley Dyer Jerrum 96)
Path coupling (Jerrum 95, Bubley Dyer 97)
Canonical paths (Jerrum Sinclair 89)
Curvature / Bakry–Émery theory (Bakry Émery 06, Villani 09)
Zero-freeness (Lee Yang 52, Barvinok 16, Chen Liu Vigoda 24)
Correlation decay (Dyer Sinclair Vigoda Weitz 04, Weitz 06)
Spectral independence (Anari Liu Oveis Gharan Vinzant 19)
Entropic independence (Anari Jain Pham Koehler Vuong 21)
Stochastic localization (Eldan 13, Eldan Koehler Zeitouni 22)

Localization schemes

Huang, Mohanty, Rajaraman, Wu Weak Poincaré inequalities INFORMS APS 2025 8 / 13



Worst-case mixing via Poincaré inequalities

If µ satisfies a Poincaré inequality, then

d
dt

χ2(Ptν‖µ) 6 −Cχ2(Ptν‖µ) for all distributions ν.

Implies exponential contraction of χ2 divergence:

χ2(Ptν‖µ) 6 e−Ct · χ2(ν‖µ) .

Spectral independence / localization schemes provide powerful framework for showing a PI holds.
(Anari Liu Oveis Gharan 21, Chen Eldan 22)
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Weak Poincaré inequalities

A weak Poincaré inequality implies

d
dt

χ2(Ptν‖µ) 6 −Cχ2(Ptν‖µ) + δ

∥∥∥∥dν

dµ

∥∥∥∥2

∞
for all distributions ν.

Error term captures contribution of metastable states.

Consequence: rapid mixing from warm starts ‖dν/ dµ‖∞ � 1/
√

δ.

Huang, Mohanty, Rajaraman, Wu Weak Poincaré inequalities INFORMS APS 2025 10 / 13



Weak Poincaré inequalities

A weak Poincaré inequality implies

d
dt

χ2(Ptν‖µ) 6 −Cχ2(Ptν‖µ) + δ

∥∥∥∥dν

dµ

∥∥∥∥2

∞
for all distributions ν.

Error term captures contribution of metastable states.

Consequence: rapid mixing from warm starts ‖dν/ dµ‖∞ � 1/
√

δ.

Huang, Mohanty, Rajaraman, Wu Weak Poincaré inequalities INFORMS APS 2025 10 / 13



Weak Poincaré inequality → simulated annealing succeeds

Consequence of weak Poincaré inequality
Langevin dynamics rapidly mix to µ from warm starts ‖dν/ dµ‖∞ � 1/δ.

Simulated annealing

Input: β, H. Goal: sample from µ(dx) ∝ eβH(x) .

In stage t = 0, . . . , T:
Set βt = β · t/T. Interpolates from β0 = 0 to βT = β.
Run Langevin dynamics for µt(dx) ∝ eβt H(x) , initialized at output of previous stage.

­ µt is a warm start for µt+1! WPI lets us inductively argue each stage mixes.
See El Alaoui Eldan Gheissari Piana 23 for related “staging warm starts” idea.
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How to show a weak Poincaré inequality

For h ∈ RN , define tilted measure
µh(dx) ∝ e〈h,x〉 µ(dx) .

Key message of spectral independence + localization schemes (Anari Liu Oveis Gharan 21, . . . )
µ satisfies a Poincaré inequality if

‖cov(µh)‖op = O(1) for all h ∈ RN .

Message of our work
µ satisfies a weak Poincaré inequality if

‖cov(µh)‖op = O(1) whp for random h ∈ RN .

We show this covariance bound when µ = spherical spin glass Gibbs measure.
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Conclusion
• Weak Poinaré inequalities imply sampling guarantees for simulated annealing.
• We introduce method to establish WPI + apply to spherical spin glass Gibbs measures.

• Open Qs: sample up to shattering threshold βsh? Simulated annealing for models on {±1}N?

0

βuniq

βSL

βsh

β

Langevin mixes rapidly from worst-case init

Algorithmic stochastic localization succeeds

This work: simulated annealing succeeds

Langevin mixes slowly from worst-case init

Prediction: Langevin mixes from random init

Gibbs measure shatters; sampling predicted hard

Thank you!
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